Problem Statement

- Deliver a fast-paced digest of the IEC/IEEE 60802 text contribution ‘Secure Device Identity Profile’,
- Filename: 60802-Pfaff-et-al-Secure-Device-Identity-Profile-0922-v04.pdf
- Date: 2022-09-06
- Highlight the main directions taken by this text – supporting its reading or even getting a rough picture without really reading it. Note: the slides do not aim at replacing the text
- Format:
 - One slide per level-4-headlines in the informative part
 - One slide per level-5-headlines in the normative part (with 2 exceptions)
Informative

Device Identity

a) Information to **talk about** a device, examples: *manufacturer name, model-name, serial-number*

b) Information **told by** the device about itself, same examples

c) Information to **talk to/address** a device, examples: *DNS names or IP addresses*

• Note: **IA-station = device**, the fundamental term of IEEE STD 802.1AR

• **Neighborhood**: the best-practice for “User Identity” (more precisely: IT’s perspective on Human User Identity) is documented in [NIST SP 800-63-3 Digital Identity Guidelines](https://csrc.nist.gov/publications/detail/sp/800-63/3/publication)}
Informative

Verifiable Device Identity

- Identity information about a device that can be verified esp. communication-related device identity items
 - b) Claims made by a device about itself, examples: manufacturer name, model-name, serial-number
 - c) Expectations on a device, examples: DNS names or IP addresses
- Important: verifiable ≠ verified
- Neighborhood: the best-practice for “Verifiable User Identity” is documented in NIST SP 800-63A Enrollment and Identity Proofing along with NIST SP 800-63B Authentication and Lifecycle Management
- Background: the NIST Digital Identity Guidelines aim at an authentication model with 3 parties (claimant=human user, verifier=online authentication authority, relying party=IT-service; the ‘online authentication authority’ decouples the relying party from complexity of authentication schemes/procedures)
- Commonalities: various conceptual elements on an abstract level esp. “identity” and “authentication” of entities in a distributed system
- Differentiators:
 - There is no human user in an IEC/IEEE 60802 system
 - There is no ‘online authentication authority’ in IEC/IEEE 60802
Informative

Verification Support Mechanisms

- Secure transports (of unsecured information): can help but provides no full solution for verifiable device identity
- Secure information: can provide a solution (using cryptographic checksums); introduces some small-print:
 - Validation keys are inevitable. They come in various forms:
 - Symmetric keys
 - Raw public keys
 - Self-signed public key certificates
 - CA-signed public key certificates
 - Their properties introduce details that matter for the scalability and security of the solution
- Important: verifiable-by-network communications ≠ verifiable-by-something else e.g. optically checking the body of a chassis; the latter is out-of-scope for IEC/IEEE 60802
Informative

IDevID and LDevID Credentials

- Objects defined by **IEEE STD 802.1AR** that facilitate verifiable device identity in form of:
 - Secure information using asymmetric schemes with CA-signed public key certificates (X.509v3)
 - Verifiable-by-network communications

- Object structure:
 - **Private key**
 - Certification path including a CA-signed public key certificate for the end entity (=device i.e. IA-station). This **EE certificate** (IETF RFC 5280) contains verifiable information about the device (accredited by the CA)

- Important: **IDevID ≠ LDevID**
 - IDevID (Initial Device Identity): issued by device manufacturers; contains information about the device known by time of its manufacturing, examples: *manufacturer name, model-name, serial-number*
 - LDevID (Locally significant Device Identity): issued by other entities esp. device users; contains information about the device known by time of its usage; examples: *DNS names or IP addresses*
Informative

IDevID Items Beyond IEEE STD 802.1AR

- Consider following cases for checking the initial device identity i.e. IA-stations in factory default state:
 - **Type check:**
 - Needs type information e.g. model-name, hw-revision, description in ietf-hardware YANG module
 - Not covered by IEEE STD 802.1AR ➔ need to place additional requirements
 - **Instance check:**
 - Needs instance information e.g. serial-num in ietf-hardware YANG module
 - IEEE STD 802.1AR has the product serialNumber as an option ➔ need to place additional requirements
 - **Manufacturer check:**
 - Needs manufacturer naming information e.g. mfg-name in ietf-hardware YANG module
 - IEEE STD 802.1AR requires issuer names, allows non-manufacturer issuer names ➔ need to place additional requirements
- **Important:**
 - Specifying “verifiable” device identity is regarded a task for the IEC/IEEE 60802 specification to facilitate an interoperable and automated verification of any IA-station by any CNC
 - Determining to-be-“verified” device identity is regarded a responsibility of CNC users; the whole interval [CheckNothing, CheckAllVerifiableItems] should be at user discretion
Informative

Device Identity Representation in IDevID/LDevID Credentials

- In the EE certificate
- In its subjectAltName extension (for naming information)
 - By-value
 - By-ref

Note:
- By-ref can introduce redundant information items
- By-ref can increase the complexity (securely binding to the referred object)
Normative – IDevID Profile

Object Contents: IA-Station Identity (1)

- **Raw form**: no requirement beyond IEEE STD 802.1AR i.e. verifiable items as follows:
 - Appearance: subject resp. issuer fields in EE certificate
 - Contents: product serial-number in serialNumber (OID 2.5.4.5; optional) attribute in subject field; issuer name in issuer field (may but does not have to refer to the device manufacturer)
 - Representation: by-value

- **Extended form**: IEC/IEEE 60802-specific requirements i.e. verifiable items as follows:
 - Appearance: subjectAltName extension in EE certificate with a GeneralName of type uniformResourceIdentifier using a URN with q-component (IETF RFC 8141) to encode following contents in form of keyword/value pairs
 - Contents: description, hardware-rev, serial-num, mfg-name, model-name values from ietf-hardware YANG module (using the ‘hardware’ container ‘component’ child element that represents the management entity resp. NETCONF/YANG server of an IA-station)
 - Representation: by-value
Normative – IDevID Profile

Object Contents: IA-Station Identity (2)

- Design rationale for the extended form:
 - Avoid conflicts: no overwriting of IEEE STD 802.1AR-defined items (see raw form) by IEC/IEEE 60802 items
 - Facilitate co-existence: allow other stakeholders e.g. middleware/application consortia or individual manufacturers to express their native device identity perception of an IA-station. Background:
 - 1 EE certificate has 1 subject field that is to be organized according X.501 (hierarchical naming tree underneath a single authority; can neither assume to fulfill “single authority” nor “hierarchical tree” in case of IA-stations)
 - 1 EE certificate can have 1 subjectAltName extension. 1 subjectAltName extension can carry 1..n GeneralName elements. One GeneralName provides a choice of various value types including but not limited to uniformResourceIdentifier
 - Rationale for proposing two forms:
 - In order to make an educated decision between one-of vs. both it makes sense to see their implications
 - Both forms may make sense, scenario: manufacturers who have IDevIDs in place and who do not want to be obliged to change their infrastructure in order to ship IEC/IEEE 60802-compliant products
Normative – IDevID Profile

Object Contents: Signature Suites

- RSA-2048/SHA-256 according to IEEE STD 802.1AR, clause 9.1
- ECDSA P-256/SHA-256 according to IEEE STD 802.1AR, clause 9.2
- ECDSA P-521/SHA-512
- ECDSA ed25519/SHA-256
- ECDSA ed448/SHA-512
- RSA-4096/SHA-512
Normative – IDevID Profile

Information Model: Entries

- IDevID credentials (concerns IA-stations):
 - YANG module: ietf-keystore
 - NMDA: system state i.e. as YANG config=false entries
 - Note: uses hidden-private-key i.e. the IDevID private key is not retrievable by NETCONF/YANG exchanges

- Trust anchors for IDevID credentials (concerns CNCs):
 - YANG module: ietf-truststore
 - NMDA: applied configuration i.e. as YANG config=true entries
 - Note: built-in trust anchors are regarded out-of-scope for IEC/IEEE 60802. They serve manufacturer-domestic use cases such as SW/FW update which are not covered by IEC/IEEE 60802
Normative – IDevID Profile

Information Model: Entry Manifoldness and Naming

• IDevID credentials (concerns IA-stations):
 • 1..n, one per supported signature suite; if multiple IDevIDs are provided for one device then they shall contain the same device identity information
 • /ietf-keystore:keystore/asymmetric-keys/asymmetric-key/name=IDevID-<SignatureSuiteName>-<CertificateSerialNumberOfEECertificate>

• Trust anchors for IDevID credentials (concerns CNCs):
 • 1..n
 • /ietf-truststore:truststore/certificate-bags/certificate-bag/certificate/name=IDevID-<SignatureSuiteName>-<CertificateSerialNumberOfCACertificate>
Normative – IDevID Profile

Processing Model: Credentials

- Use cases:
 i. NETCONF/YANG security setup from factory default
 ii. Device identity verification (a subtask of i. that may also be performed independently)

 In both use cases: IA-stations act as claimant (equipped with IDevIDs); CNCs act as verifier (equipped with trust anchors for IDevIDs)

- Use:
 1. IDevID certification path validation (IETF RFC 5280): compulsory
 2. Proof-of-possession for IDevID private key (IETF RFC 5246 for TLS 1.2): compulsory
 3. Device identity verification for IDevID EE certificate contents: situationally i.e. subject to CNC user policy

 • Raw case:
 • Verifiable items: none from perspective of IEC/IEEE 60802
 • Verified items: none (the device identity verification at CNCs is passed with directive „No-Identity-Check“)

 • Extended case:
 • Verifiable items: description, hardware-rev, serial-num, mfg-name, model-name
 • Verified items: subject to CNC user policy
Processing Model: Trust Anchors

- Use cases: same as above, now focusing on fundamental objects needed by CNCs to fulfill their verifier role for the use cases i. and ii.

- Caveats:
 - *Offer&accept*: CAs resp. certificate issuers do not distribute “trust anchors”; They distribute “CA certificates”. These objects become (or not become) “trust anchors” at the discretion of relying parties i.e. CNC users.
 - *Anomaly*: the signature in self-signed (CA) certificates does not vouch for the authenticity of the object (in contrast to CA-signed certificates) – *Mallory can issue self-signed CA certificates in the name of Alice that can not be distinct from those of Alice*
Contacts

Kai Fischer, Siemens AG, T CST SES-DE, kai.fischer@siemens.com

Andreas Furch, Siemens AG, T CST SES-DE, andreas.furch@siemens.com

Jiye Park, Siemens AG, T CST SEA-DE, jiye.park@siemens.com

Oliver Pfaff, Siemens AG, DI FA CTR ICO PO, oliver.pfaff@siemens.com