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Introduction – 1
References [1], and previous presentations in the series (by the same 

author), present simulation results for max|dTER| (i.e., maximum absolute 
value of dynamic time error relative to the grandmaster (GM)) using a 
Monte Carlo approach that does not involve time-domain simulation
The model is approximate, but has the advantage of running several orders of 
magnitude faster than time domain simulations using probabilistic models

In the discussion of [1] and preceding presentations, it was decided to 
compare corresponding results obtained using the Monte Carlo simulator 
and the time-domain simulator
The specific simulation cases are summarized in slide 6 of [1], which is 

reproduced on the next slide here for convenience.
The current presentation provides max|dTER| results for cases A, B, D, E, 

and F, obtained using the time-domain simulator, for comparison with 
results obtained using the Monte Carlo approach simulator
The time domain results are based on 300 multiple, independent 

replications for each case
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Introduction – 2

Case Reason

Errors Parameter Correction Factors
Clock Drift Model

– 40°C ↔ +85°C
Hold for 30s at Each

(Each node’s position in 
cycle distributed at 

random across 100% of 
Cycle)

Timestamp
Granularity

(ns)

Dynamic
Timestamp

Error
(±ns)

pDelay
Interval

(ms)

Residence 
Time
(ms)

pDelay
Turnaround

Time
(ms)

Mean Link
Delay

Averaging

mNRR
Smooting
Factor N

A Baseline with previous 
assumptions

Ramp Rate 1°C / s
(Cycle of 310 s)

8 8 31.25 1 1

Off 1

B
Verify optimised 
pDelayInterval 8 4

1000 10 10

C 250 10 10

D 31.25 10 10

E

Verify effect of reduced 
Timestamp Error (reduced 
DTE when pDelay Interval 
is low, i.e. 31.25ms)

4 2 31.25 10 10

F

Verify effect of reduced 
Clock Drift (reduced DTE 
when pDelay Interval is 
high, i.e. 1000ms)

Ramp Rate 0.5°C / s
(Cycle of 560 s) 8 4 1000 10 10

Timestamp Granularity and Dynamic Timestamp Error are uniform distributions
Sync Interval: 125ms
pDelay Interval variation is +0-30%; uniform distribution
Sync Interval variation is ±10%; gamma distribution with 90% probability of landing in the ±10% range
Note: 8ns Timestamp Granularity in Time Series Simulation is equivalent to ±4ns Timestamp Granularity Error in Monte Carlo Analysis
No difference between base (PHY related) propagation delay for pDelay and Sync messages

Proposed Time Series Simulations – Details (copied from [1])
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Introduction – 2

The time domain simulator computes the time history of dTE at each 
node (PTP Instance ) in a chain consisting of a GM, followed by 100 
PTP Instances (nodes)
Both unfiltered and filtered (by a PLL with specified parameters as 

given in the following slides) are computed at each node
dTER relative to the GM (i.e., the first node) is computed by 

interpolating the time histories at each node to a common set of 
times, and then computing the difference at corresponding times
Details of the simulation model are given in [2], [3], and [4], and 

references cited in those presentations.
Some of the details, and the assumptions, are given on the following 

slides (some of which are copied from [4])
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Model for Variable Sync Interval – 1

IEEE Std 802.1AS-2020 requires in 10.7.2.3 (an analogous 
requirement is in 9.5.9.2 of IEEE Std 1588-2019):

When the value of syncLocked is FALSE, time-synchronization messages shall be 
transmitted such that the value of the arithmetic mean of the intervals, in seconds, 
between message transmissions is within ± 30% of 2currentLogSyncInterval. In addition, a PTP 
Port shall transmit time-synchronization messages such that at least 90% of the inter-
message intervals are within ± 30% of the value of 2currentLogSyncInterval. The interval 
between successive time-synchronization messages should not exceed twice the value 
of 2portDS.logSyncInterval in order to prevent causing a syncReceiptTimeout event. The 
PortSyncSyncSend state machine (see 10.2.12) is consistent with these requirements, 
i.e., the requirements here and the requirements of the PortSyncSyncSend state 
machine can be met simultaneously.
NOTE 1—A minimum number of inter-message intervals is necessary in order to verify 
that a PTP Port meets these requirements. The arithmetic mean is the sum of the inter-
message interval samples divided by the number of samples. For more detailed 
discussion of statistical analyses, see Papoulis [B25].
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Model for Variable Sync Interval – 2

The above requirements do not specify the actual probability distribution; 
however, it was decided to model the Sync Intervals as being gamma-
distributed
The gamma distribution is often used to model inter-message times in 
networks
The same model was used in simulations for the PTP Telecom Time 
Profile with full timing support from the network (ITU-T Rec. G.8275.1), 
see 11.2 and Eqs. (11-1) through (11-10) of [7])

While both 802.1AS-2020 and 1588-2019 both allow variation in the duration 
of the Sync intervals up to ± 30% of the mean Sync interval, it was decided 
after the discussion of [4] to consider variations of ±β, with β = 10%
The shape and scale parameters of the gamma distribution are chosen such 

that the distribution has the desired mean and that 90% of the probability 
mass is within β of the mean
The resulting gamma distribution has a shape parameter of 270.5532; the 

details of how this parameter is obtained and how the samples of the gamma 
distribution are generated are given in [4]
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Model for Variable Pdelay Interval – 1
IEEE Std 802.1AS-2020 has the following NOTE in 11.5.2.2 (it refers to the 

requirement in 9.5.13.2 of IEEE Std 1588-2019):
NOTE 3—The MDPdelayReq state machine ensures that the times between 
transmission of successive Pdelay_Req messages, in seconds, are not smaller than 
2currentLogPdelayReqInterval. This is consistent with IEEE Std 1588-2019, which requires that the 
logarithm to the base 2 of the mean value of the interval, in seconds, between 
Pdelay_Req message transmissions is no smaller than the interval computed from the 
value of the portDS.logMinPdelayReqInterval member of the data set of the transmitting 
PTP Instance. The sending of Pdelay_Req messages is governed by the LocalClock and 
not the synchronized time (i.e., the estimate of the Grandmaster Clock time). Since the 
LocalClock frequency can be slightly larger than the Grandmaster Clock frequency (e.g., 
by 100 ppm, which is the specified frequency accuracy of the LocalClock; see B.1.1), it is 
possible for the time intervals between successive Pdelay_Req messages to be slightly 
less than 2currentLogPdelayReqInterval when measured relative to the synchronized time.

However, the actual requirement in 9.5.13.2 of IEEE 1588 is:
Subsequent Pdelay_Req messages shall be transmitted such that the value of the 
arithmetic mean of the intervals, in seconds, between Pdelay_Req message 
transmissions is not less than the value of 0.9 × 2portDS.logMinPdelayReqInterval. 

This requirement will be satisfied even if the LocalClock is 100 ppm fast due 
to the factor of 0.9 (frequency offsets resulting from the temperature profile 
and frequency stability model of [3] are less than 100 ppm)
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Model for Variable Pdelay Interval – 2

IEEE 802.1AS and IEEE 1588-2019 do not specify the distribution for 
the Pdelay interval, nor do they specify the maximum amount that the 
actual intervals can exceed 2portDS.logMinPdelayReqInterval

For the simulations, it was decided to use a uniform distribution over 
the range [P, 1.3P], where P is 2portDS.logMinPdelayReqInterval
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Assumptions for Temperature Profile ([1] – [4])

The temperature history is assumed to vary between – 40°C and 
+85°C, at a rate of 1°C /s in cases A, B, C, D, and E (slide 3), and 0.5
°C /s  in case F (slide 3); this takes 125 s or 250 s, respectively
When the temperature is increasing and reaches +85°C, it remains at 

+85°C for 30 s
The temperature then decreases from +85°C to – 40°C at a rate of 

1°C /s (cases A, B, C, D, E) and 0.5 °C /s (case F); this takes 125 s or 
250 s, respectively
The temperature then remains at – 40°C for 30 s
The temperature then increases to +85°C at a rate of 1°C /s or 0.5 °C 

/s ; this takes 125 s or 250 s, respectively
The duration of the entire cycle (i.e., the period) is therefore 310 s 

(cases A – E), or 560 s (case F)
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Assumptions for Frequency Stability due to Temperature Variation

The dependence of frequency offset on temperature is assumed to 
be as described in [4] and [5] of Reference [4] here
Specifically, the values a0, a1, a2, and a3 computed in [4] will be used in the 
cubic polynomial fit, and the resulting frequency offset will be multiplied by 
1.1 (i.e., a margin of 10% will be used).

The frequency stability data that this polynomial fit is based on is 
contained in the Excel spreadsheet attached to [5] of Reference [4] 
here
This data was provided by the author of [4] of Reference [5] here

The time variation of frequency offset will be obtained from the cubic 
polynomial frequency dependence on temperature, and the 
temperature dependence on time described in the previous slide
The time variation of phase/time error at the LocalClock entity will be 
obtained by integrating the above frequency versus time waveform
The time variation of frequency drift rate at the LocalClock entity will be 
obtained by differentiating the above frequency versus time waveform
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Assumptions on Relative Time Offsets of Phase Error Histories at Each Node

Choose the phase of the LocalClock time error waveform at each 
node randomly in the range [0,T], at initialization, where T is the 
period of the phase and frequency variation waveforms (i.e., 310 s or 
560 s)
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Other Assumptions – 1

Additional assumptions
Mean Sync interval:  125 ms
Mean Pdelay interval: 31.25 ms (cases A, D, E); 1000 ms (cases B, F); 
250 ms (case C)
Timestamp granularity: 8 ns (modeled by truncating to next lower multiple 
of 8 ns)
Residence time: 1 ms (case A); 10 ms (cases B – F)
Pdelay turnaround time is the same as the residence time for the 
respective case
Dynamic timestamp error is taken to have a uniform distribution over ±e, 
where e is 8 ns (case A), 4 ns (cases B, C, D, F), and 2 ns (case E)

Other assumptions are taken from slide 3 above or, if not indicated 
on slide 3, then from [4], and are summarized on the following slides
Note that only cases A, B, D, E, F are simulated; case C is not 

simulated due to insufficient time
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Other Assumptions - 2
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Assumption/Parameter Description/Value
Hypothetical Reference Model (HRM), see 
note following the tables

101 PTP Instances (100 hops; GM, followed by 99 PTP 
Relay Instances, followed by PTP End Instance

Computed performance results (a) max|dTER(k, 0)| (i.e., maximum absolute relative time 
error between node k (k > 0) and GM, both filtered 
(PLL filter output at each node) and unfiltered (input 
to PLL filter at each node)

Use syncLocked mode for PTP Instances 
downstream of GM

Yes

Endpoint filter parameters KpKo = 11, KiKo = 65 (f3dB = 2.5998 Hz, 1.288 dB gain 
peaking, ζ = 0.68219)

Simulation time 3150 s; discard first 50 s to eliminate any startup 
transient before computing max|dTER(k, 0)| (i.e., 10 
cycles of frequency variation after discard)



Other Assumptions - 3
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Assumption/Parameter Description/Value
Number of independent replications, for 
each simulation case

300

GM rateRatio and neighborRateRatio 
computation granularity

0 (i.e., we do not truncate when computing timestamp 
differences and ratios of differences, but use floating 
point arithmetic)

Mean link delay 500 ns

Link asymmetry 0

Any variable PHY delay in addition to the 
dynamic timestamp error described above 
is assumed to be zero

0



Other Assumptions – 4
neighborRateRatio is computed using windows of size of 1
The difference is taken between respective timestamps of current Pdelay 
exchange and the previous Pdelay exchange
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max|dTER| Results - 1
max|TER| results are for 300 independent replications of simulations 

for each case
max|TER| is computed for each replication, but after discarding the first 50 s 
of each replication to remove any startup transient
The 300 values are sorted in ascending order
A 99% confidence interval for the 0.95 quantile of max|TER| is given by the 
interval between the 275th and 294th smallest sample (and the midpoint, i.e., 
the 285th smallest sample, is taken as a point estimate of the 0.95 quantile)

•This is because the quantiles of independent samples of a population have a 
binomial distribution (this result has been used in previous presentations of 
multiple replication simulation results)

The maximum of each set of 300 independent results for each case is also 
obtained
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max|dTER| Results - 2
Results for max|dTER|, relative to the GM, versus node number are 

summarized on the next four slides
Slide 18: Filtered max|dTER|, 99% confidence intervals and maxima over 
300 runs, for all cases
Slide 19: Filtered max|dTER|, only maxima over 300 runs (to reduce 
clutter)
Slide 20: Unfiltered max|dTER|, 99% confidence intervals and maxima over 
300 runs, for all cases
Slide 21: Unfiltered max|dTER|, only maxima over 300 runs and only cases 
A, D, and E (to reduce clutter)
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max|dTER| Results - 3
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Cases A, B, D, E, F - mult replic results - filt
GM time error modeled; dTER is relative to GM
GM labeled node 1
neighborRateRatio measured with window of size 1 (N = 1) and no median calculation
KpKo = 11, KiKo = 65 (f3dB = 2.6 Hz, gain pk = 1.288 dB, zeta = 0.68219)
Sync interval variation: +/-10% with 90% probability (Gamma distribution)
Pdelay interval variation: 1.0 to 1.3 of input Pdelay interval (uniform distribution)
Timestamp granularity and dynamic timestamp error have uniform distributions
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Case A - max over 300 runs
Case B - lower confid limit
Case B - point estim
Case B - upper confid limit
Case B - max over 300 runs
Case D - lower confid limit
Case D - point estim
Case D - upper confid limit
Case D - max over 300 runs
Case E - lower confid limit
Case E - point estim 
Case E - upper confid limit 
Case E - max over 300 runs
Case F - lower confid limit
Case F - point estim 
Case F - upper confid limit 
CaseF - max over 300 runs



max|dTER| Results - 4
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Cases A, B, D, E, F - mult replic results - filt
GM time error modeled; dTER is relative to GM
GM labeled node 1
neighborRateRatio measured with window of size 1 (N = 1) and no median calculation
KpKo = 11, KiKo = 65 (f3dB = 2.6 Hz, gain pk = 1.288 dB, zeta = 0.68219)
Sync interval variation: +/-10% with 90% probability (Gamma distribution)
Pdelay interval variation: 1.0 to 1.3 of input Pdelay interval (uniform distribution)
Timestamp granularity and dynamic timestamp error have uniform distributions
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max|dTER| Results - 5
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Cases A, B, D, E, F - mult replication results - unfil
GM time error modeled; dTER is relative to GM
GM labeled node 1
neighborRateRatio measured with window of size 1 (N = 1) and no median calculation
KpKo = 11, KiKo = 65 (f3dB = 2.6 Hz, gain pk = 1.288 dB, zeta = 0.68219)
Sync interval variation: +/-10% with 90% probability (Gamma distribution)
Pdelay interval variation: 1.0 to 1.3 of input Pdelay interval (uniform distribution)
Timestamp granularity and dynamic timestamp error have uniform distributions
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Case B - lower confid limit
Case B - point estim
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Case B - max over 300 runs
Case D - lower confid limit
Case D - point estim
Case D - upper confid limit
Case D - max over 300 runs
Case E - lower confid limit
Case E - point estim 
Case E - upper confid limit 
Case E - max over 300 runs
Case F - lower confid limit
Case F - point estim 
Case F - upper confid limit 
CaseF - max over 300 runs



max|dTER| Results - 6
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Cases A, B, D, E, F - mult replication results - unfil
GM time error modeled; dTER is relative to GM
GM labeled node 1
neighborRateRatio measured with window of size 1 (N = 1) and no median calculation
KpKo = 11, KiKo = 65 (f3dB = 2.6 Hz, gain pk = 1.288 dB, zeta = 0.68219)
Sync interval variation: +/-10% with 90% probability (Gamma distribution)
Pdelay interval variation: 1.0 to 1.3 of input Pdelay interval (uniform distribution)
Timestamp granularity and dynamic timestamp error have uniform distributions
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Summary of Results at Last Node
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Case Filtered/
Unfiltered

Lower
(ns)

Point Est
(ns)

Upper
(ns)

Max
(ns)

A Filtered 1624 1688 1772 1888
Unfiltered 2265 2315 2375 2515

B Filtered 9190 9443 9945 10524
Unfiltered 8870 9207 9535 10037

D Filtered 5483 5546 5800 6407
Unfiltered 5894 5969 6304 7089

E Filtered 3024 3090 3256 3578
Unfiltered 3307 3366 3503 3845

F Filtered 4739 4940 5204 5605
Unfiltered 4623 4754 4896 5204



max|dTER| Results from[4] for comparison – 1
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Case 16 - single replication results
Base case: no Sync or Pdelay interval variation
Subcases 1-3: Sync var (+/- 10, 20, 30%)
Subcases 4-6: Sync (+/- 10, 20, 30%) and Pdelay var (0-30%)
GM time error modeled
GM labeled node 1
Clock Model (all clocks): Frequency vs temperature stability and temperature vs time profile from [2]
Accumulate neighborRateRatio, which is measured with window of size 11 and median
KpKo = 11, KiKo = 65 (f3dB = 2.6 Hz, gain pk = 1.288 dB, zeta = 0.68219)
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Case 16 - subcase 1
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max|dTER| Results from[4] for comparison – 2
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Case 16 - single replication results
Base case: no Sync or Pdelay interval variation
Subcases 7-9: Sync var (+/- 10, 20, 30%)
Subcases 10-12: Sync (+/- 10, 20, 30%) and Pdelay var (0-30%)
GM time error modeled
GM labeled node 1
Clock Model (all clocks): Frequency vs temperature stability and temperature vs time profile from [2]
Accumulate neighborRateRatio, which is measured with window of size 7 (11 for base case) and median
KpKo = 11, KiKo = 65 (f3dB = 2.6 Hz, gain pk = 1.288 dB, zeta = 0.68219)
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max|dTER| Results from[4] for comparison – 3

March 2022 IEEE 802.1 25

Subcase max|dTER|, 64 hops 
(ns)

max|dTER|, 100 hops 
(ns)

Base 
case

460 677

1 529 637
2 477 599
3 521 659
4 514 636
5 490 642
6 727 875
7 549 694
8 476 626
9 513 630

10 513 619
11 515 708
12 616 724

64 hops results
are for node 65

100 hops results
are for node 101

Base case is case 
16 of [1],
replication 1



Comparison of Monte Carlo and Time Series Simulation Results

Confidence Intervals & MAX → Monte Carlo Time Series – Unfiltered Time Series – Filtered

Case Reason Key Factor Lower Point Upper MAX Lower Point Upper MAX Lower Point Upper MAX

A
Baseline with 
previous 
assumptions

pDelayInterval 31.25ms; 1ms 
Residence Time & pDelay 
Turnaround; 8ns Dynamic 
Timestamp Error

2,543 2,657 2,774 2,941
2,265 2,315 2,375 2,515 1,624 1,688 1,772 1,887

-10.9% -12.9% -14.4% -14.5%

B

Verify optimised 
pDelayInterval

pDelay Interval 1000ms 13,621 13,927 14,505 15,566
8,870 9,207 9,535 10,037 9,190 9,443 9,945 10,,524

-34.9% -33.9% -34.3% -35.5%

C pDelay Interval 250ms 4,175 4,285 4,498 4,609 Not Run

D pDelay Interval 31.25ms 6,326 6,469 6,710 6,915
5,894 5,969 6,304 7,089 5,483 5,546 5,800 6,407

-6.8% -7.7% -6.1% 2.5%

E
Verify effect of 
reduced 
Timestamp Error

Timestamp Errors halved
pDelay Interval 31.25ms 3,623 3,684 3,915 3,996

3,307 3,366 3,503 3,845 3,024 3,090 3,256 3,578

-8.7% -8.6% -10.5% -3.8%

F
Verify effect of 
reduced Clock 
Drift

Clock Drift halved
pDelay Interval 1000ms 6,816 6,961 7,224 7,775

4,623 4,754 4,896 5,204 4,739 4,940 5,2045 13,087

-32.2% -31.7% -32.2% -33.1%

Taken from [5], with corrected time series simulation results for cases B and F
(and other minor corrections, e.g., mis-copied digits)

Compare Monte Carlo results with unfiltered Time Series Results
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Discussion of max|dTER| Results – 1

Case A is the best case; the assumptions for this case are similar to 
previous simulation cases [4], except that
the mRR smoothing factor N is 1 instead of 7 with median calculation
The dynamic timestamp error has a uniform distribution over [-8 ns, +8 ns] 
instead of ±8 ns each with 0.5 probability

The case A results are on the order of 3 – 4 times the previous results 
[4]; this is likely due to the smaller value of N
Cases D and E are larger still
The case E results are on the order of 4 – 6.5 times the previous results [4]
The case D results are on the order of 8 – 12 times the previous results [4]
This is due to the much larger residence time and Pdelay turnaround time 
compared to the previous simulations (10 ms here versus 1 ms in [4])

•Note that some of the previous simulation cases of [2] did use 10 ms residence 
time and had much larger results (12000 – 14000 ns over 100 hops; note that the 
dynamic timestamp error was ±8 ns each with 0.5 probability, which likely explains 
the larger results compared to case D here)
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Discussion of max|dTER| Results – 2
Max results for cases B and F are now smaller than in Revision 0 of this 

presentation, due to correcting an error in the post-processing code that performed 
interpolation (needed so that dTE relative to the GM could be computed)
Unfiltered Time Series Simulation results are now smaller than corresponding 

Monte Carlo simulation results in almost all cases
The former are 30 – 35% smaller for cases B and F, 5 – 15% smaller for cases 
A, D, and E (except the maximum values for cases D and E are much closer for 
the Monte Carlo and Time Series simulations.

One possible reason that the Monte Carlo simulation results are larger might be 
that different assumptions are used for the GM and Local Clock frequency offset 
and frequency drift rates
The Monte Carlo simulations choose the frequency drift rates randomly, and 
independently for each node, in the range ±1.5 ppm/s with 80% probability, and 
set the drift rate to 0 with 20% probability
The Time Series simulations use a temperature profile and frequency offset 
versus temperature stability that is a cubic polynomial

We now consider this more carefully; some of the slides that follow are adapted 
from [6]
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Model for Temperature Variation

We focus on cases A – E (case F has a smaller rate of 
temperature change)
The temperature history of [2] – [4] is assumed to vary between –

40°C and +85°C, at a rate of 60°C /minute, or 1°C /s
When the temperature is increasing and reaches +85°C, it remains at 

+85°C for 30 s
The temperature then decreases from +85°C to – 40°C at a rate of 

1°C /s; this takes 125 s
The temperature then remains at – 40°C for 30 s
The temperature then increases to +85°C at a rate of 1°C /s; this 

takes 30 s
The duration of the entire cycle (i.e., the period) is therefore 310 s
The temperature dependence is plotted over 620 s (2 cycles 

(periods)) on the next slide

March 2022 IEEE 802.1 29



March 2022 IEEE 802.1 30

Temperature History - 2 cycles
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Temperature Dependence of Frequency – 1

This slide and the next 6 slides are taken from [6] (and can be 
considered a review)
The temperature dependence of frequency is based on data provided 

by Reference [3] of [6]
Note that the dependence shows a small amount of hysteresis
The plot has the characteristic of a third-order polynomial
Note that temperature dependence of frequency is often referred to 

as frequency stability due to temperature variation
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Temperature Dependence of Frequency – 2
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Frequency Stability due to Temperature Variation
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Temperature Dependence of Frequency – 3
To facilitate the use of this data in the subsequent calculations of this 

presentation and in future simulations, the LINEST function of Excel 
was used to obtain a third-order polynomial least-squares fit
The polynomial is of the form

The least-squares fit of LINEST produces:
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Temperature Dependence of Frequency – 4
The 3rd-order polynomial with these coefficients, along with the Excel file data, 

is shown plotted on the next slide
At least visually, the results confirm that the cubic polynomial is a good fit
In addition, a second polynomial, with 10% margin, is obtained by multiplying 

each of the coefficients ai on the previous slide by 1.1
This second polynomial, with 10% margin, also is plotted

The differences between the plots is not easily visible on the scale of the plots
To see the differences more easily, a second plot is presented (on the slide 

after the next one) showing the detail of -18°C to +18 -18°C, and 87°C to 92 °C 
On this scale, the factor of 1.1 that relates the curve with margin (black 
curve) and curve without margin (red curve) is easily seen

As indicated earlier, the results for the time dependence of frequency drift rate, 
frequency offset, and phase offset will be shown for cases both with and 
without the 10% margin
Finally, the rate of change of frequency with respect to temperature is plotted

March 2022 IEEE 802.1 34

2
3 2 13 [ ( )] 2 [ ( )]dy a T t a T t a

dt
= + +



Temperature Dependence of Frequency – 5
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Temperature Dependence of Frequency – 5
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Frequency Drift Rate as a Function of Temperature
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Resulting Dependence of Frequency Offset on Time – 1

As indicated previously, the frequency offset, y, as a function of 
temperature, T, is modeled as a cubic polynomial

Let the time dependence of temperature (on the previous three slides) 
be represented by T(t); then the time-dependence of frequency offset is 
given by

The time history of frequency offset, with and without 10% margin for 
the frequency stability data, is plotted on the next two slides for 12000 s 
and 2000 s, respectively
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Resulting Dependence of Frequency Offset on Time – 1

As indicated previously, the frequency offset, y, as a function of 
temperature, T, is modeled as a cubic polynomial

Let the time dependence of temperature (on the previous three slides) 
be represented by T(t); then the time-dependence of frequency offset is 
given by

The time history of frequency offset is plotted on the next two slides for 
3 cycles (930 s)
The 10% margin considered in [6] is small, and is ignored
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Resulting Dependence of Frequency Offset on Time – 2
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Resulting Dependence of Frequency Drift Rate on Time – 1

The frequency drift rate is obtained by differentiating y(t) with respect 
to time

For the temperature profile above, dT/dt is 0 during the periods when 
temperature is constant at -40°C or +85°C, +1°C /s during the periods 
when temperature is increasing, and -1°C /s during the periods when 
temperature is decreasing
The time history of frequency drift rate, is plotted on the next two 

slides for 3 cycles (930 s) and 1 cycle (310 s), respectively
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Resulting Dependence of Frequency Drift Rate on Time – 2
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Resulting Dependence of Frequency Drift Rate on Time – 3
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Frequency Drift Rate History - 1 Cycle
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Resulting Dependence of Frequency Drift Rate on Time – 4

The maximum absolute value of frequency drift rate is approximately 
1.35 ppm/s (i.e., the range is [-1.35 ppm, +1.35 ppm])
However, for 19.35% of the cycle (60 s/310 s) the frequency drift rate 

is 0 because the temperature is constant for 60 s of the 310 s period
In addition, the absolute value of the frequency drift rate exceeds 1.0 

ppm/s for approximately 4.84% of each cycle (approximately 15 s out 
of 310 s)
See backup for results for free-run phase history versus time (not 

important for the current discussion)
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Equivalent Drift Rate Probability for Frequency Stability Model – 1

The Monte Carlo simulations use the following probabilistic model for 
Cases A – E
Frequency drift rate is 0 ppm/s with 20% probability
Frequency drift rate is chosen randomly from a uniform distribution in the 
range [-1.5 ppm/s, +1.5 ppm/s], with 20% probability
Then, if R is a random variable representing the drift rate in ppm/s, the drift 
rate probability density function (pdf) can be written

One approach to deriving an equivalent probability density function 
for the frequency versus temperature stability model described above 
is to assume that a value of time is chosen randomly from a uniform 
distribution over the 310 second period
With this approach, the plot on slide 43 can be considered to represent the 
random variable R (frequency drift rate) as a function of the random 
variable t (time)
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Equivalent Drift Rate Probability for Frequency Stability Model – 2

The function given by the curve R(t) on slide 43 can be used to derive 
pR(x) from pt(x)
However, the function R(t) on slide 43 is not one-to-one, and the 

analytical derivation of pR(x) from the unform distribution pt(x) will be 
complicated
For each value of frequency drift rate in the range [-1.5 ppm, +1.5 ppm], 
the corresponding values of time must be found, and dR/dt must be 
computed at each of these points
This is complicated by the fact that the number of values of t
corresponding to a given value of R is different depending on where R is in 
the [-1.5 ppm, +1.5 ppm] range
In addition, the period between 125 s and 155 s, and between 280 s and 
310 s, where the frequency drift rate is zero, give rise to a delta function at 
zero (in the pdf) of strength (i.e., amplitude) 60/310 = 0.19355
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Equivalent Drift Rate Probability for Frequency Stability Model – 3

Fortunately, a Monte Carlo approach can be used, which is 
approximate but much simpler
Generate a random sample of time in the range [0, 310] s
Compute the corresponding frequency drift rate
Repeat this a large number of times; the resulting values can be 
considered samples of the random variable R
Use these samples to construct estimates of the pdf, probability function 
(histogram), or any other statistics of interest

Note that this is the technique that would be used if this equivalent 
pdf were used to generate random samples of frequency drift rate in 
the Monte Carlo simulations for 60802 network dTE
This approach was used to construct the pdf and probability function 

(histogram) on the following slides
108 samples of frequency drift rate were generated
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Equivalent Drift Rate Probability for Frequency Stability Model – 4

The next slide shows the simulated (Monte Carlo approach) probability 
histogram for the frequency drift rate based on 108 samples, assuming the 
periodic time dependence described above and time chosen randomly from a 
uniform distribution over one period
As indicated previously, the range of frequency drift rate is [-1.35 ppm/s, 

+1.35 ppm/s]
The total range of 2.7 ppm/s is divided into 27 bins of size 0.1 ppm/s each
Each of the 108 samples is placed on one of the bins, and on completion the 

number of samples in each bin is divided by 108

The resulting histogram is shown on the next slide, and the height of each 
bar is the simulated probability that a frequency drift rate sample will be in the 
respective bin (range)
The large peak at 0 ppm/s represents the probability that the frequency drift 

rate is zero; ideally, this would have height 0.2, but since the bin of nonzero 
width, it include the probability of being in a range of width 0.1 ppm/s about 
zero
With this added probability, the height is 0.26
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Equivalent Drift Rate Probability for Frequency Stability Model – 5

The large side-peaks around 0.3 ppm/s and -0.3 ppm/s represent increased 
probability of these (and smaller absolute value) frequency drift rates
Examining the frequency drift rate time history for one period (slide 43), 
the two parabolas represent non-zero frequency drift rate when the 
temperature is either increasing or decreasing
For frequency drift rates in the range [-0.3 ppm/s, +0.3 ppm/s], both the 
periods of increasing and decreasing temperature (i.e., both parabolas) 
contribute to the probability
For frequency drift rates outside this range, only one parabola contributes 
to the probability

Slide 51 shows a probability histogram, but with 10,0000 bins (and 108

samples
Now, the height (probability) for each bin is smaller than on slide 50, 
because the bins are narrower
However, the probabilities do still sum to 1
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Equivalent Drift Rate Probability for Frequency Stability Model – 6

Slide 52 shows an estimate of the probability density function, based on 
10,000 bins and 108 samples
Each point is obtained by dividing the probability for each bin in slide 51 by 
the width of the bin
This results in the area under the curve summing to 1 (i.e., it is equal to 
the summation over bins of the height of each bin multiplied by the bin 
width, which is equal to the sum over the bins of the probabilities)
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Equivalent Drift Rate Probability for Frequency Stability Model – 7
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Equivalent Drift Rate Probability for Frequency Stability Model – 8
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Equivalent Drift Rate Probability for Frequency Stability Model – 9
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Equivalent Drift Rate Probability for Frequency Stability Model – 10

Slide 54 shows the probability histogram for the frequency drift rate 
probability model used in the dTE Monte Carlo simulations
20% probability that the frequency drift rate is 0
80% probability that the frequency drift rate is uniformly distributed 
in the range [-1.5 ppm/s, +1.5 ppm/s]
The number of bins is 30 (so that the bin width is approximately the 
same as on slide 51)
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Equivalent Drift Rate Probability for Frequency Stability Model – 11
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Equivalent Drift Rate Probability for Frequency Stability Model – 12
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Derived from Time Series
Simulations Frequency
Stability Model

• The probability of frequency draft rates with absolute value exceeding 0.5 ppm/s is 
considerably larger for the Monte Carlo simulation model

• The largest magnitude frequency drift rate is 1.5 ppm/s for the Monte Carlo
simulation model, and 1.35 ppm/s for the time series simulation model

• This could partially explain why the max|dTE| results are larger for the Monte Carlo 
simulations



Conclusions and Next Steps
The Monte Carlo simulation results for max|dTE| are larger than 

corresponding time series simulation results (except for 2 instances where 
the absolute maxima are similar)
The reason for this might be explained by the fact that in the Monte Carlo 

simulations the probability of larger frequency drift rates (e.g., larger than 0.5 
ppm/s in magnitude) is larger
It would be useful to run the Monte Carlo simulations again for cases A, B, D, 

E, and F, but with the frequency drift rate probability model based on the 
frequency drift rate time history (slides 46 and 47)
In addition, assumptions for the next set of simulation cases to be run with 

the time domain simulator are described in [7]; these are summarized on the 
following slides
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Next Time Series Simulations – 1

Common assumptions for all cases (taken from [7])
Clock stability and temperature profile modeled as described in slides 9 – 11
Variation in Sync and Pdelay intervals modeled as described in slides 5 – 8
Other assumptions in the table on slides 13 and 14 used
Mean Sync interval:  125 ms
Mean Pdelay interval: 125 ms
Timestamp granularity: 8 ns (modeled by truncating to next lower multiple of 
8 ns)
Dynamic timestamp error is taken to have a uniform distribution over ± 4 ns
Residence time: 10 ms
Pdelay turnaround time: 10 ms
Window size (N) for mean Neighbor Rate Ratio (mNRR) smoothing: 3
Window size (M) for median computation in mNRR smoothing: 1 (median is 
not taken)
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Next Time Series Simulations – 2
Consider four simulation cases (taken from [7])

1. Base case, using above assumptions and no compensation or link delay 
averaging

2. Base case plus neighborRateRatio drift correction
3. Base case, plus neighborRateRatio drift correction, plus rateRatio drift 

correction
4. Base case, plus neighborRateRatio drift correction, plus rateRatio drift 

correction, plus mean link delay averaging

 Algorithms for neighborRateRatio drift correction, rateRatio drift 
correction, and mean link delay averaging are described in slides 29 
– 44 of [7]

 These algorithms (items 2 – 4) must be 
added to time domain simulator

 The next slides show results for the base 
case, designated case G for convenience
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max|dTER| Results – Base Case (Case G) - 1
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Base case (case G) - mult replication results - filt
GM time error modeled; dTER is relative to GM
GM labeled node 1
neighborRateRatio measured with window of size 1 (N = 1) and no median calculation
KpKo = 11, KiKo = 65 (f3dB = 2.6 Hz, gain pk = 1.288 dB, zeta = 0.68219)
Sync interval variation: +/-10% with 90% probability (Gamma distribution)
Pdelay interval variation: 1.0 to 1.3 of input Pdelay interval (uniform distribution)
Timestamp granularity and dynamic timestamp error have uniform distributions

Node Number

0 20 40 60 80 100

m
ax

|d
TE

R
| (

ns
), 

fil
te

re
d

0

500

1000

1500

2000

2500

3000

Case G - lower confid limit
Case G - point estim
Case G - upper confid limit
Case G - max over 300 runs



max|dTER| Results – Base Case (Case G) - 2
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Base case (case G) - mult replication results - unfil
GM time error modeled; dTER is relative to GM
GM labeled node 1
neighborRateRatio measured with window of size 1 (N = 1) and no median calculation
KpKo = 11, KiKo = 65 (f3dB = 2.6 Hz, gain pk = 1.288 dB, zeta = 0.68219)
Sync interval variation: +/-10% with 90% probability (Gamma distribution)
Pdelay interval variation: 1.0 to 1.3 of input Pdelay interval (uniform distribution)
Timestamp granularity and dynamic timestamp error have uniform distributions
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max|dTER| Results – Base Case (Case G) - 3
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Case Filtered/
Unfiltered

Lower
(ns)

Point Est
(ns)

Upper
(ns)

Max
(ns)

G Filtered 2294 1688 2387 2688
Unfiltered 2419 2469 2521 2883

Summary of Results at Last Node

Compare with Monte Carlo Simulation result from[7] (slide 16) for case of no 
algorithms:

3938 ns

The time domain simulation result max (unfiltered) of2883 ns is 26.8% smaller

As indicated above (slide 57), it would be useful to run the Monte Carlo
simulations again for the base case, but with the frequency drift rate
probability model based on the frequency drift rate time history (slides 46 and 
47)



March 2022 IEEE 802.1 63

Thank you



References – 1

[1] David McCall, 60802 Dynamic Time Error – Additions – Error due to 
drift during Sync messaging – Potential Contribution, IEC/IEEE 60802 
Presentation, March 2022 (available at 
https://www.ieee802.org/1/files/public/docs2022/60802-McCall-Stanton-
Time-Sync-Error-Model-and-Analysis-0322-v01.pdf)
[2] Geoffrey M. Garner, New Simulation Results for dTE for an IEC/IEEE 
60802 , Based on New Frequency Stability Model, Revision 1, IEC/IEEE 
60802 presentation, April 9, 2021 (available at 
https://www.ieee802.org/1/files/public/docs2021/60802-garner-new-
simulation-results-new-freq-stab-model-0421-v01.pdf)
[3] Geoffrey M. Garner, New Simulation Results for dTE for an IEC/IEEE 
60802 , Based on New Frequency Stability Model, Version (Revision) 1, 
IEC/IEEE 60802 presentation, May 3, 2021 (available at 
https://www.ieee802.org/1/files/public/docs2021/60802-garner-multipe-
replic-simulation-results-new-freq-stab-model-0421-v01.pdf)

March 2022 IEEE 802.1 64

https://www.ieee802.org/1/files/public/docs2022/60802-McCall-Stanton-Time-Sync-Error-Model-and-Analysis-0322-v01.pdf
https://www.ieee802.org/1/files/public/docs2021/60802-garner-new-simulation-results-new-freq-stab-model-0421-v01.pdf
https://www.ieee802.org/1/files/public/docs2021/60802-garner-multipe-replic-simulation-results-new-freq-stab-model-0421-v01.pdf


References – 2

[4] Geoffrey M. Garner, New Simulation Results for dTE for an IEC/IEEE 
60802 Network, with Variable Inter-Message Intervals, Revision 2, 
IEC/IEEE 60802 presentation, July 1, 2021 (available at 
https://www.ieee802.org/1/files/public/docs2021/60802-garner-single-
replic-simul-results-variable-intermsg-intervals-0621-v02.pdf)
[5] David McCall, 60802 Dynamic Time Sync Error – Monte Carlo 
Analysis Results for Comparison with Time Series Simulations, Revision 
v02, IEC/IEEE 60802 presentation, March 2022 (available at 
https://www.ieee802.org/1/files/public/docs2022/60802-McCall-Time-
Sync-Monte-Carlo-Results-for-Time-Series-Comparison-0322-v02.pdf)
[6] Geoffrey M. Garner, Phase  and Frequency Offset, and Frequency 
Drift Rate Time History Plots Based on New Frequency Stability Data, 
IEC/IEEE 60802 presentation, March 8, 2021 (available at 
https://www.ieee802.org/1/files/public/docs2021/60802-garner-temp-
freqoffset-plots-based-on-new-freq-stabil-data-0321-v00.pdf)

March 2022 IEEE 802.1 65

https://www.ieee802.org/1/files/public/docs2021/60802-garner-single-replic-simul-results-variable-intermsg-intervals-0621-v02.pdf
https://www.ieee802.org/1/files/public/docs2022/60802-McCall-Time-Sync-Monte-Carlo-Results-for-Time-Series-Comparison-0322-v02.pdf
https://www.ieee802.org/1/files/public/docs2021/60802-garner-temp-freqoffset-plots-based-on-new-freq-stabil-data-0321-v00.pdf


References – 3

[7] David McCall, 60802 Dynamic Time Sync Error – Recommended 
Parameters & Correction Factors, IEC/IEEE 60802 presentation, 
Revision v04, March 2022 (available at 
https://www.ieee802.org/1/files/public/docs2022/60802-McCall-Time-
Sync-Recommended-Parameters-Correction-Factors-0322-v04.pdf)

March 2022 IEEE 802.1 66

https://www.ieee802.org/1/files/public/docs2022/60802-McCall-Time-Sync-Recommended-Parameters-Correction-Factors-0322-v04.pdf


BACKUP

March 2022 IEEE 802.1 67



Resulting Dependence of Phase Offset on Time - 1
The phase offset as a function of time, x(t), is obtained by integrating 

the frequency offset time history, y(t), and expressing x(t) in 
appropriate units
Assuming phase offset is zero at time zero:

If y(t) is in ppm, then x(t) will be in µs

The integration is done numerically, using the trapezoidal rule
A higher-order scheme (e.g., Simpson’s rule) was not used because this 
would require values of  in between time steps (or, alternatively, would not 
produce a result at every time step)
The iteration is:
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Resulting Dependence of Phase Offset on Time - 2
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Resulting Dependence of Phase Offset on Time - 4
The phase time history shows a phase drift of approximately – 6.7 ms over 

3100 s
This is equivalent to a frequency offset of 6700/3100 µs/s = – 2.2 ppm
This frequency offset arises because, with the frequency offset as a function 

of temperature (slide 8) and temperature profile (slide 15) assumptions, the 
frequency offset averaged over one cycle of temperature variation is not zero 
(i.e., it is approximately – 4.2 ppm)
Actually, the average frequency offset of the crystal unit does not matter, 

because this is the frequency offset of the free-running LocalClock entity in 
802.1AS
The neighborRateRatio is measured using the Pdelay messages and the 
overall rateRatio relative to the GM is accumulated in a TLV
What matters is how much the frequency of the free-running LocalClock 
entity changes between Pdelay messages

Finally, as described in Reference [3] of [6], the actual long-term frequency 
offset can be different from this value because the frequency versus 
temperature curve of slide 8 can be shifted vertically due to the frequency 
tolerance of the crystal unit
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