Bridging Frames with 64-bit addresses
Background

- IEEE Std 802: Overview and Architecture
 - MAC address is either 48 bit and 64-bits
 - Global and local
 - Bridging for an IEEE 802 network with 64-bit MAC addresses is currently not specified.
 - The reason is that the bridging function in IEEE Std 802.1D and IEEE Std 802.1Q assumes that 48-bit MAC addresses are unique among all the connected networks. Truncating an 64-bit MAC address into an 48-bit field can lead to two stations having the same 48-bit value. Instead, traffic between 64-bit and 48-bit MAC addressed networks needs to be routed at a layer above the DLL.

- IEEE Std 802.15.4 operates with 64-bit addresses
 - and 16-bit “short addresses”

- Bridging is possible
 - not by simplistically truncating a 64-bit address to 48 bits
Relevant Prior Contribution

• “Adapting/Bridging 64-bit MACs with 48-bit MACs”
 ▫ Behcet Sarikaya, Li Yizhou, Tom McBeath, Clint Powell, Max Riegel, Robert Moskowitz, Ben McCrane

• In a Personal Area Network, there are nodes connected to two IEEE 802 technologies like 802.15.4 with 64-bit MACs and 802.3 with 48-bit MACs, PAN coordinator and intermediate bridges and routers

• This document presents use cases for using 802.1 bridges to adopt 64-bit MACs with 48-bit MACs

• Address Bridging: 64-bit to 48-bit address adaptation work is needed in 802.1

• Local addresses can be used by the bridge during address bridging (both for 64-bit to 48-bit and vice versa)
A Potential Use Case: RF Barrier
48-bit Bridging of 64-bit subLANs

- 64-bit subLANs (A, B, C) convert MPDU ("64MPDU")
- Bridged frame uses 48-bit DA and SA, carrying MSDU
- MSDU has sufficient information to reconstruct 64MPDU
- DA & SA represent either the 64-bit node, or its subLAN
Address Mapping Options

A. 1:1 address mapping
 - Each 64-bit address is mapped 1:1 to a 48-bit address; e.g.
 - by algorithm, or
 - by mapping table in each bridge interface
 - Bridge interface translates 64MPDU \leftrightarrow MSDU
 - Bridge forwards by node address
 - needs a forwarding entry for each node in the network (may timeout often)

B. Encapsulation
 - Bridge interface encapsulates and decapsulates 64MPDU as MSDU
 - Bridge forwards by 48-bit subLAN address of bridge interface
 - needs a forwarding entry for each bridge interface
 - forwarding entry timeouts are rarer than with 1:1 address mapping
 - Bridge interface knows the 48-bit subLAN address of each 64-bit DA
 - by algorithm, or by mapping table

C. Reframing (generalized encapsulation)
 - Similar to B
 - MSDU does not need to carry 64MPDU explicitly, as long as the frame includes sufficient information to reconstruct the 64MPDU
A: 1:1 Address Mapping

• 1:1 address mapping is possible

• Example: as of 2012, the IEEE SA Registration Authority’s Guidelines for 64-bit Global Identifier (EUI-64) said:
 ▫ Restricted Encapsulated Values
 ▫ To support encapsulation of EUI-48 ... within small subsets of the EUI-64 values, the first four digits of the manufacturer's extension identifier shall not be FFFF₁₆ or FFFE₁₆. Thus, the 64-bit values of the following form are never-assigned EUI-64 values:
 • cccccccccccccccccFFFFeedeedeedd (encapsulation of EUI-48 cccccccccccccFFFFeedeedeedd)
 • cccccccccccccccccFFFFeedeedeedd (encapsulation of EUI-48 cccccccccccccFFFFeedeedeedd)
 ▫ ...the EUI-48 value can be unambiguously encapsulated within the EUI-64

• Currently, per the IEEE Registration Authority:
 ▫ Mapping an EUI-48 to an EUI-64 is deprecated. The mapping is described here for historical reasons.
 ▫ More importantly: the restriction on EUI-64 was dropped.
 • no longer possible to distinguish an encapsulated EUI-48 from an EUI-64

• In any case, bridging by 1:1 address mapping requires that bridge keeps a forwarding entry for each node in the network.
B/C: Reframing with Dynamically-Assigned Local Addresses

- 64-bit subLAN address allocation:
 - 8E-11-11-11-11-11-11-11
 - 8E-22-22-22-22-22-22-22
- 48-bit prefixes could be suppressed
- Note: This is not compatible with global addressing because the hardware address of the nodes in the subLAN will not share a common first 48 bits; a mapping table would be needed.

- Bridge interface address is the subLAN address
- 64MPDU includes sufficient information for bridge interface to determine subLAN address
- subLAN address is the first 48 bits of 64-bit node address
- allocated 64-bit node addresses are unique across the union of 64-bit networks
- union of the all the 64-bit subLANs works like a single bridged 64-bit LAN
- MSDU can encapsulate the entire 64MPDU, with a 64-bit DA & SA
 - no need, because the first 48 bits are redundant
 - can compress to 16 bit extension (ext) [zero overhead]
- otherwise, bridge interface could use a 48/64 mapping table
Reframing detail: 64-bit or 16-bit frame represented in 48-bit frame
Dynamic Local Addresses Assignment with P802.1CQ BARC

- **P802.1CQ/D0.7:**
 - Assigns local addresses in address blocks
 - Assignee of a 48-bit address is implicitly assigned all 64-bit extensions
 - e.g. 8E-11-11-11-11-11 is assigned to the subLAN’s bridge interface
 - then all 8E-11-11-11-11-11-**-** are simultaneously assigned to the subLAN
 - 16-bit extensions are dynamically assigned within the subLAN
 - While BARC operates in a network based on 48-bit addresses, it provides for assignment of both 48-bit and 64-bit addresses. Assigned 48-bit addresses are usable on the bridged LAN on which BARC operates, whereas 64-bit addresses are not. A set of dual-interface devices all attached to a 48-bit bridged LAN can, using BARC, obtain 64-bit address assignments that will be unique among those devices for use on the 64-bit network.
 - BARC functions on a standard bridged LAN. It’s possible that BARC could be extended to assign extension addresses to nodes in the subLAN.
 - More information is needed about specific LANs on which such support may be required.
Call to Action

- If you are interested in this use case, see if BARC makes sense for your favorite subLAN.
- Review P802.1CQ and see if it meets your needs.
 - P802.1CQ/D0.8 is in development following comment resolution
 - Still in Task Group Ballot stage in 802.1 TSN Task Group
- Consider whether the 802.15.4 16-bit “short address” field is suitable to be concatenated to the 48-bit subLAN address to form the 64-bit 802.15.4 “extended address” in the BARC assignment.
- Consider whether a standardized address assignment protocol to hand out the node address would be helpful.
 - Should it be an extension of BARC?
 - Should it be specified in P802.1CQ, or elsewhere?
Annex: Other bridging issues

• Issues other than address size could affect bridging among 802.15 subLANs.
• Such issues are not addressed in this contribution, but...
• One point previously raised is that subLAN may have a smaller maximum frame size than Ethernet.
 ▫ If the subLAN needed to serve as a bridge itself (for example, two Ethernet networks bridged by 802.15.4), that would be a problem.
 ▫ In the subLAN scenario described here, frames intended for a node are generated by another node with the same requirements.
 ▫ No problem, unless those frames exceed the bridge frame size limit.
• If subLAN frame is too long for Ethernet, fragmentation may be required.