Reworking on the extensions of UNI traffic specification and status for flexible scheduling in RAP

Konstantinos Alexandris, Lihao Chen, Tongtong Wang Huawei Technologies

IEEE 802.1, 2022 November Plenary meeting, 14-11-2022

Introduction

- Variation in traffic characteristics has not been thoroughly investigated in existing traffic specification (TSpec) TLVs [1].
- Common **resource allocation** schemes need to be reworked to support traffic fluctuation.
- Plug & produce concept creates incentives to enable interoperable flexibility in traffic engineering.
- Fresh streams arrival stands in need of incremental (online) scheduling mechanisms.
- Under such operational regime, **QoS** control mechanisms are currently missing.
- Present **Tspec** TLVs focus only on **static allocation**, while there is no palpable understanding on how to cover systematically **adaptive** resource allocation.

[1] 802.1Qcc-2018. https://standards.ieee.org/ieee/802.1Qcc/5784/

Background in IEEE P802.1Qdd

Talker Announce attribute TLV (ANNOUNCE_STREAM.request)

Encodes a set of parameters followed by a series of sub-TLVs part of those are related to Tspec (**MSRP or Tocken Bucket option, see 99.5.3 [2]**):

- **MSRP Tspec sub-TLV** is limited to basic parameterization excluding Transmission Selection field described in 802.1Qcc-2018 [1]:
 - + Interval
 - + MaxFramesPerInterval
 - + MaxFrameSize
- **Token Bucket Tspec sub-TLV** compared to MSRP option is more advanced and provides the following parameters:
 - + Maximum Transmitted Frame Length
 - + Minimum Transmitted Frame Length
 - + Committed Information Rate (CIR)
 - + Committed Burst Size (CBS)

IEEE Std P802.1Qdd

_		Octet	Length
	StreamId	1	8
	StreamRank	9	1
	AccumulatedMaximumLatency	10	4
	AccumulatedMinimumLatency	14	4
	Data Frame Parameters sub-TLV	18	11
_	Token Bucket TSpec sub-TLV or MSRP TSpec sub-TLV	29	19 or 7
	0 or 1 Redundancy Control sub-TLV	variable	variable
ľ	0 or 1 Failure Information sub-TLV	variable	variable
	0 or more Organizationally Defined sub-TLVs	variable	variable

Figure 99-12—Value of Talker Announce attribute TLV

Figure 99-14—Value of Token Bucket TSpec sub-TLV

	Octet	Length
Interval	1	4
MaximumFramesPerInterval	5	2
MaximumFrameSize	7	2

Figure 99-15—Value of MSRP TSpec sub-TLV

[2] https://www.ieee802.org/1/files/private/dd-drafts/d0/802-1Qdd-d0-6.pdf

P802.1Qdd – RAP: Extensions of UNI traffic specification

Objective: Incremental (online) scheduling upon new stream arrival in the network (e.g., plug a new device on the fly).

- Would be useful to add data rates and burst size min/max values in the Tspec of UNI?
- Parameters already been proposed (max value): Committed Information Rate (CIR), Committed Burst Size (CBS).
- New parameters to be added (min value): Minimum Information Rate (MIR), Minimum Burst Size (MBS).
- Flexibility in resource allocation: Based on such upper/lower bounds, could we define a set of values where still talker's QoS is sustainable (i.e., not limited to CIR/CBS values) ?

What about ANNOUNCE_STREAM.request within a set of discrete QoS values ?

- Agile network management to return a target value of information rate R(t) and burst size S(t) tailored to talkers' value set and the availability of network resources.
- A Talker to announce a set of discrete QoS values in the network and RAP procedures to reserve resources accordingly within that range:

 $R(t) \in R = \{R_1, ..., R_N\}, S(t) \in S = \{S_1, ..., S_N\}, where MIR: R_1, CIR: R_N & MBS: S_1, CBS: S_N.$

• Feasibility in admission of streams to be guaranteed within talkers disseminated QoS range.

Talker/Listener to Network – New stream reservation

- **Talker announce** comprises a discrete QoS value set bounded by Tspec **min/max** values.
- Listener attach propagation manages the resource allocation/de-allocation *hop-by-hop* based on the announced QoS value set and available capacity in the network.
- The **target values** to be returned are chosen by the announced value set.
- An indication shall be sent in case a stream can or cannot be admitted in the network.

Example - New stream reservation (1/5)

Bridges: A, B, C

Link capacity: 100 Mbps

Target rate $R(t) \in R = \{R_1, \dots, R_N\}$ Mbps

MIR: R_1 & CIR: R_N

Additional remarks:

- 1. Initially, the link utilization is 0%, since no talker/listener pairs are connected.
- 2. Incrementally, we start adding user pairs in the network (i.e., new stream arrival).
- 3. For the sake of brevity, we skip the talker announce request procedure assuming that has been preceded.

Example - New stream reservation (2/5)

Bridges: A, B, C

Link capacity: 100 Mbps

New stream: T1 \rightarrow L1

Link utilization (LU%):

be reserved.

Estimation is depicted assuming relevant network resources will

T1 target rate = 40 ∈ {20,40} Mbps

Reservation path: $L1 \rightarrow A \rightarrow B \rightarrow T1$

Example - New stream reservation (3/5)

Reservation path: L2 \rightarrow B \rightarrow C \rightarrow T2

Example - New stream reservation (4/5)

T3 target rate = 60 ∈ {20,40,60} Mbps

Reservation path: L3 \rightarrow A \rightarrow B \rightarrow C (No available resources)

Worst case: Upstream direction needs to be fully traversed for re-configuration of the target rate.

Example - New stream reservation (5/5)

T3 target rate = 40 ∈ {20,40,60} Mbps

Reservation path: L3 \rightarrow A \rightarrow B \rightarrow C \rightarrow T3 (Available resources)

Summary – Contribution & Next steps

- P802.1Qdd Tspec TLVs have been reworked to enable flexibility in network resource allocation.
- Advanced mechanisms are discussed including adaptive traffic engineering within a pre-determined range of values.
- Modification of the current RAP schemes is required to leverage the Tspec extension proposal.

How to proceed?

- Proposed work to be coordinated within P802.1Qdd and further discussions to follow.
- Strongly correlated with current Tspec definition that supports only **CIR/CBS** parameterization:
 - Token Bucket TSpec sub-TLV includes the aforementioned attributes.
 - Related record issues in Annex Z.8.
- 1. MIR & MBS parameters inclusion to be considered as an upcoming contribution in the draft.
- 2. Discussion: Consider a set of discrete QoS values (R, S) as part of the Tspec TLV bounded by CIR/CBS and MIR/MBS.
 - Incremental adjustment of upcoming streams to improve schedulability subject to network capacity constraints.
 - Resilience in reservations is offered by such parameters that define a range within QoS is sustainable.
- 3. Future work: Devise relevant YANG modules. Preliminary proposal in former presentation [3].

[3] <u>https://www.ieee802.org/1/files/public/docs2022/new-alexandris-extension-traffic-specification-TSN-UNI-0722-v01.pdf</u>

Thank you.

