

IEEE P802.1DP Features | January 2022

Stream Identification for Avionics Networks

Todd Schavey GE Aviation

Abdul Jabbar GE Research

- Overview of stream identification in current avionics networks
- Discussion on future TSN based architecture for avionics networks
- Discussion of stream identification requirements for 802.1DP

End Station Centric Model

Existing avionics networks are very much end station centric, wherein the end station or end system performs:

- 1. Stream tagging for identification
- 2. All the shaping functions
- 3. All the redundancy functions
- 4. Integrity functions additions and checks

Requirement: support shaping (Qbv, Qav), Redundancy (FRER), stream identification and transformation at end station without bridge involvement.

Stream Identification

Stream Identification is used by [Ref: P802.1DG Draft 1.4, Annex H.1.1.]

- 1. Redundancy (CB)
- 2. PSFP (Qci)
- 3. Asynchronous Traffic Shaping (Qcr)
- 4. Congestion Isolation (Qcz)
- 5. Forwarding and therefore shaping

Following is a discussion on stream identification and stream ID <u>generation/tagging</u> for avionics networks

Note that the tagging capabilities may dictate the stream identification requirements

Stream Identification in Current Avionics Networks Stack View

ES

5

A664 End System Stack Application Msg Payload RTOS 1500 Bytes Data Hardware ComPortId End System Layer 4 UDP Src/Dst IDs Layer 3 IP Src/Dst Addresses Layer 2 CFG VL ID for Fowarding, Policing and FRER 8 Bytes 6 Bytes 6 Bytes 2 Bytes 1500 Bytes 4 Bytes Min 12 Bytes PRE S DST SRC ETYPE Data S FCS Gap **Transmit Shaper** Α В **Physical Ports**

SAE AS6802 (TTE) End System Stack

Stream Identification in Current Avionics Networks Source and Destination MAC address

ARINC 664 Layer 2

- Performed by Hardware

- Destination Multicast MAC Address (Locally Administered Group Address)
 - Exclusively used for all VL identification (both Multicast & Unicast)
 - Form = 4 byte Network Domain Id + 2 byte VL ID

- Network Domain Id statically defined by the network integrator
- Source MAC Address
 - Controlled by the integrator. In practice, it is used primariliy for troubleshoot, but can be leveraged for Security via Source Validation policing.

10	Network ID	Equip ID	Interface ID	Pad
(24 bits) constant	(8 bits)	(8 bits)	(3 bits)	(5 bits)

AS6802 (TTE) has the similar process for setting the destination MAC address, but uses native (manufacturer assigned) source MAC address

A664 L3 Application Addressing

- Mulitcast and Unicast use different mechanisms
- Unicast IP Src & Dst Addresses range from 10.0.0.0 to 10.255.255.255 at takes the form:

10	Network ID	EquipID	Partition ID
8 (bits) constant	(8 bits)	(8 bits)	(8 bits)

- Multicast IP Destination addresses takes the form 224.224.[VLID] with the 16-bit VLID is split into two 8-bit octets.

224	224	VL ID 1 st Octet	VLID Octet
8 (bits) constant	(8 bits) constant	(8 bits)	(8 bits)

Stream Identification in Current Avionics Networks

End-to-End Example: VL7000 (0x1B58) is transmitted redundantly to ES5, ES6, ES7, ES8

Forwarding Frame is NEVER modified

Stream Identification in Current Avionics Networks Summary

Current Approach

- VL Identification uses a Multicast DMAC & Multicast IP convention consistently across the network
- Simple to understand, implement, and troubleshoot
- Scales for small and large avionic network deployments
- Meets needs for various features required by Aerospace (Redundancy, Security, etc.)
- Adheres to Ethernet Addressing's spirit and intent

Discussion: Should we adopt similar approach in 802.1DP?

Pros:

- Builds upon proven methods; accepted by the industry
- Zero to Low learning curve to Aerospace Ethernet community

Cons:

• May limit flexibility and support for new architectures

Stream Identification as defined in 802.1CB and 802.1 CBdb

Stream Identification Function	Active/passive	Examines	Overwrites
Null Stream identifi- cation	Passive	destination_address, vlan_identifier	None
Source MAC and VLAN Stream iden- tification	Passive	source_address, vlan_identifier	None
Active Destination MAC and VLAN Stream identifica- tion	Active	destination_address, vlan_identifier	destination_address, vlan_identifier, pri- ority
IP Stream identifica- tion	Passive	destination_address, vlan_identifier, IP source address, IP des- tination address, DSCP, IP next proto- col, source port, desti- nation port	None
Mask-and-match Stream identifica- tion function	Passive	destination_address, source_address, mac_service_data_unit	None

Stream Identification Requirements Based on Use Cases

Stream Identification Requirements Based on Use Cases

Questions/Discussions

- Aerospace use cases may require flexibility in stream identification to expand beyond the current architectures
- What are the current approaches for tagging of TSN streams with pre-existing applications and network stacks
- What stream identification methods should be prescribed in DP for end stations and bridges
- How to support end station centric model with TSN standards
 - FRER stack for a dual homed end station?

Case 3 Conceptual Working Examples on following slides

Case 3 Conceptual Working Example

Case 3 Working Example Breakdown

Send UDP payload on Stream 7000 to multiple listeners

VID=7000

Frame within the network now exclusively use the DMAC+VLID for Policing, Forwarding, etc.