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Agreement Generation & Agreement Propagation
• Agreement Generation (for time)

• How multiple GrandMasters come to agreement on the time
• This involves multiple clocks continuously “collaborating” with one another to agree on a 

common time
• This is not a leading and following mechanism

• A protocol like Time Triggered Ethernet (TTE) performs this type of Agreement 
Generation

• Agreement Propagation (for time)
• How time is propagated from GrandMasters to end systems
• Clocks do not collaborate to agree on a common time 
• Per IEEE 1588 and IEEE 802.1AS,  clocks collaborate to decide which single clock will lead 

all the others (e.g., BMCA)
• If external port configuration mode is used, then this decision is made by whomever did the 

configuration
• Once the TSN Grandmaster (GM) clock has been decided, the IEEE 1588 and IEEE 

802.1AS protocols perform an Agreement Propagation operation

• The terms Time Generation and Time Propagation will be used in this 
presentation
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Proposal Overview
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Time Generation: Fault Tolerance Concepts

• Time Generation requires > 3 participants to overcome a failure in any 
one participant unless, from [3]:

“Theorem 3: If there is a bound on the rate at which messages can be generated or if there is a 
protocol for signing unforgeable signatures that can be authenticated, then the Clock 
Synchronization Condition can be achieved as long as the faults do not disconnect the network.”

• A Time Generation mechanism with a bound on the message rate could 
be used to synchronize the Grandmaster (GM) clocks of 3 PTP time 
domains for TSN
• Since all 3 time domains are aligned, an end station’s use of any non-faulty time 

domain cannot be distinguished from its use of another non-faulty time domain

• This presentation will not delve any more into the Time Generation topic
• Outside the scope of IEEE 802.1AS
• Another topic for study by IEEE 802.1DP and SAE AS6675?

• State theoretical requirements but don’t specify implementation?
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Background:  Use Cases and Needs

• From TSN Time Synchronization NASA’s Use Cases and Needs
[1]:
• “[Need to tolerate arbitrary failures of end systems]

Note: Includes timing failures. Drives the need for fault-tolerant 
averaging rather than a single trusted high-priority master”

• “[Need to] tolerate multiple device failures – at least one 
simultaneous worst-case failure of an end system and switch”

• “Ideally the network should tolerate the failure of any network 
component, … without any non-faulty devices transitioning out of a 
stable synchronized state”
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Time Propagation:  Assumptions, Properties, & 
Guarantees
• Assumptions:

• GMs are in agreement, within some tolerance

• When there are no faults, all PTP End Instances (all time domains) will 
be aligned within some tolerance

• Properties:
• PTP End Instances operate independently 

• PTP End Instances don’t need to agree on a faulty time domain

• PTP End Instances don’t need to agree on “the best” time domain

• Guarantees:
• What can be guaranteed by a solution? We’ll come back to this.
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Time Propagation:  Fault Tolerance Concepts

• Considerations (for TSN):
• Once the GM has been determined and external port configuration mode is used 

to set the timing propagation paths, no decisions need to be made by the clocks. 

• The GM simply sends its time and the PTP End Instances simply follow it. 

• Triple Mode Redundancy (TMR) can be used to detect and identify one 
faulty time domain at an end station
• Use 3 PTP time domains to achieve TMR

• The 3 GM clocks are synchronized, per Time Generation Theorem 3 from [3]

• Double Mode Redundancy (DMR) can be used to detect (but not identify) 
a faulty time domain at an end station
• Use 2 PTP time domains to achieve DMR

• Are 3 participants still needed for Time Generation of the GM clocks?
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TMR-Based Fault Detection at End Station
• Find median Time of Day (ToD) from the 3 time domains

• The maximum expected difference between the ToDs of 2 time domains, TDX and 
TDY, can be determined as follows:
• maxdiffTDXvTDY = accumTETDX + accumTETDY + otherTE

• accumTETDn = maximum absolute expected time error accumulated in the PTP communication path from GM 
to PTP End Instance for time domain n

• otherTE = non-PTP sources of time error (e.g., offsets between GM clocks of TDX and TDY)

• Time domain X (TDX) is deemed to be faulty if its ToD differs from the ToD of the 
median time domain (TDMED) by more than the following threshold:
• thresholdTDXvTDY = maxdiffTDXvTDY + margin + hysteresis

• TDX = the time domain being tested, TDX ≠ TDMED
• TDY = TDMED

• Time Propagation failure is declared if more than one time domain is deemed to be 
faulty

• Do not use hot-standby
• Changing 2 working + 1 faulty time domain into 2 working time domains does not improve fault 

tolerance
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DMR-Based Fault Detection at End Station

• Time Propagation failure is declared if the ToDs from the 2 time domains 
differ by more than a threshold
• thresholdTD1vTD2 = maxdiffTD1vTD2 + margin + hysteresis

• Do not use hot-standby
• Hot-standby and DMR serve different purposes and do not work together

• DMR’s goal is simply to detect a failure by comparing two time domains

• Hot-standby tries to fix a faulty time domain, which eliminates DMR and prevents nodes 
downstream of the hot-standby from detecting a failure
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ToD Selection at End Station

• Options to select from any set of non-faulty time domains
• Select time domain per precedence level set by management layer

• Select time domain with minimum expected accumTE
• accumTE could be set by management layer

• accumTE could be signaled in Announce messages using ENHANCED_ACCURACY_METRICs 
TLV (defined in p1588a draft amendment)

• Select time domain whose GM is closest
• smallest stepsRemoved value in Announce messages

• Combining results from multiple time domains
• Might be more complex to analyze and to implement

• Might not produce a better result than simple selection
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TSN Use of “Best” Time Domain

• Can other TSN protocols make use of the selected “best” time 
domain?
• IEEE 802.1Qbv Enhancements for Scheduled Traffic: Time-Aware 

Shaper (TAS)
• Protect against disruption of time sensitive traffic flow due to a failed time 

domain

• Since all 3 time domains are synchronized, switching from one time domain to 
another time domain should not cause any disruption and might not even be 
noticeable

• Any others? 
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Guarantees

• With 3 time domains:
• If up to one time domain is faulty at any/all end station(s), all end stations are 

guaranteed to remain aligned within the allowed tolerance (fail operational)

• With 2 time domains:
• If up to one time domain is faulty at any end station, other end stations without 

faults are guaranteed to remain aligned within their allowed tolerance

• Any single fault that causes a time domain to stray beyond its allowed tolerance at 
an end station is detected (fail stop)
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Conclusions

• Time Generation for GMs needs to be dealt with independently from 
Time Propagation

• TMR and DMR methods using multiple PTP time domains enhance fault 
tolerance for Time Propagation, and guarantee some behaviors (given 
certain assumptions and properties are true)

• Time domain selection is simple to implement and analyze 

• Use of “best” time domain can improve fault tolerance of time sensitive 
traffic
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Examples for Fault Tolerant Time 
Generation and Propagation 

System 
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Example Fault-Tolerant Time Gen and Propagation System

• GMs of all three gPTP
domains are synchronized 
with each other

• IEEE Std 802.1AS 
propagates time of three 
gPTP domains to all PTP 
End Instances via PTP Relay 
Instances

• End Applications use the 
“best” time recovered 
from the PTP End Instances

• Other TSN protocols (e.g., 
TAS) can also use the 
“best” time
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Example Time Propagation without Failure

• End App checks 
alignment of the 3 
gPTP ToDs to 
determine if any are 
faulty

• Can use any non-faulty 
gPTP domain to get its 
local “best” gPTP ToD

• Can select “best” (non-
faulty) gPTP domain 
based on various 
criteria
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Example Fault-Tolerant Time Propagation with Failure (1/2)

• gPTP domain 1 fails 
(momentarily) at End 
Application and 
corresponding PTP Relay and 
End Instance

• Failure of gPTP domain 1 can 
be detected by:
• Misalignment with gPTP

domains 2 and 3
• Lack of corresponding gPTP

messages

• End Instance and End 
Application can continue use 
of either/both gPTP domains 
2 and 3

• gPTP domain 1 is excluded 
from selection of “best” gPTP
domain
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Example Fault-Tolerant Time Propagation with Failure (2/2)

• PTP Relay Instance for gPTP
domain 1 fails and corrupts 
the time that it relays

• Failure of gPTP domain 1 
can be detected by:
• Misalignment with gPTP

domains 2 and 3

• gPTP domain 1 is still 
followed by PTP End 
Instances but is excluded 
from selection of “best” 
gPTP domain by the End 
Application
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Example Time Propagation Failure Restoration

• gPTP domain 1 is rerouted so 
it gets to End Application and 
corresponding PTP End 
Instance, bypassing the faulty 
link

• This new route shares a PTP 
Relay Instance and link with 
gPTP domain 2

• A second failure, on the 
highlighted link, can break 
both gPTP domains 1 and 2 
and cause a sync failure at the 
End Application
• This failure mode might be 

acceptable
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Appendix
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Example Time Propagation with Enhanced Failure Restoration

• A network with more extensive 
fault tolerance is shown

• gPTP domain 1 is rerouted so it 
gets to End Application and 
corresponding PTP End Instance, 
bypassing the faulty link without 
sharing any links with the gPTP
domains 2 or 3

• TMR can detect realignment of 
gPTP domain 1 with gPTP
domains 2 and 3

• End Instance and End 
Application can use either/any 
gPTP domains 1, 2, and 3 again

• gPTP domain 1 is now included 
back into the selection process 
of “best” gPTP domain
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