
Enhanced CQF and Stream Aggregation
Norman Finn
Huawei Technologies Co. Ltd
nfinn@nfinnconsulting.com
dv-finn-CQF-stream-aggregation-v01.pdf
July 11, 2022

Introduction

dv-finn-CQF-stream-aggregation-v01 2

Purpose of this presentation
The purpose of these slides is to present some ideas related to
Stream Aggregation. These thoughts are candidates for inclusion in
the Annex to IEEE Std 802.1Q that is called out in the proposed PAR
for IEEE P802.1Qdv Enhancements to Cyclic Queuing and
Forwarding.

dv-finn-CQF-stream-aggregation-v01 3

Enhanced Cyclic Queuing and
Forwarding (review)
● Enhanced CQF is proposed for a PAR at this meeting (July, 2022, IEEE

802 plenary). Search “CQF” in the IEEE 802.1 public contributions pages
for 2022 for a number of presentations on the subject.

● In brief, an IEEE 802.1Q class-of-service queue is (conceptually) divided
into bins which are enabled for transmission sequentially, at a fixed
frequency. CQF ensures that each bin will be emptied before the next
bin is due for transmission. There are two ways of filling the bins:
● Time-based CQF (multi-CQF) fills bins based on the time of arrival of each frame.
● Count-based CQF (paternoster) fills bins based on per-Stream-per-output-queue

byte counter state machines.
● Multiple queues on one output port can run at different frequencies,

but they must be locked in particular phase relationships.

dv-finn-CQF-stream-aggregation-v01 4

Stream Aggregation
● Stream Aggregation is NOT IEEE Std 802.1AX Link Aggregation.
● Stream Aggregation is the treatment, for at least the purpose of

QoS, of all frames belonging to 1 or more TSN (Time-Sensitive
Networking) Streams as if they belong to one single Stream.
● Identification of the aggregate can be implicit, when multiple stream

identification filters yield the same stream_identifier (see IEEE Std 802.1CB).
● Identification can be explicit, when frames belonging to the aggregated

streams are wrapped in outer header, matching a single identification filter.
● This presentation will not discuss any methods for explicit

aggregation, nor discuss their effects on forwarding decisions,
except to mention three of the many possible methods: IEEE Std
802.1ah MAC-in-MAC, IETF MPLS, IETF L2VPN.

dv-finn-CQF-stream-aggregation-v01 5

Why is Stream Aggregation needed?
● In some applications, particularly internet service provision, but

potentially for others, the number of Streams handled by a bridge
can exceed practical limits on per-Stream resources such as Stream
identifiers and QoS state machines.

● CQF, in particular, suffers as the number of Streams grows, as this
increases the bin size, lowers the bin frequency, and increases end-
to-end latency.

● For non-CQF TSN, for any given level of resource allocation
efficiency, the time and compute cycles required to add or delete
Streams increases much faster than linearly with the number of
Streams.

dv-finn-CQF-stream-aggregation-v01 6

How does Stream Aggregation help?
●Aggregating Streams reduces the number of Streams recognized,

at least in the interior of a TSN network, thus reducing
requirements for Stream identification, per-Stream QoS state
machines, computation, and provisioning.

● Pre-allocation of an aggregated Stream allows its component
Streams to be created or deleted with a minimum of computation
and/or provisioning effort.

● Less obviously, Stream Aggregation can significantly decrease the
per-hop delays of its component Streams. The result is to lower
both the bridges’ buffer requirements and the end-to-end delay.

dv-finn-CQF-stream-aggregation-v01 7

Why is CQF important to aggregation?
● If the Aggregated Streams use CQF, whether time-based or count-

based, then the original burst/gap characteristics of the
component Streams are maintained very well for the length of the
aggregation. This minimizes the buffering required when the
aggregation is dissolved.

●More to come in later slides, after we develop some concepts.

dv-finn-CQF-stream-aggregation-v01 8

Per-hop delay

dv-finn-CQF-stream-aggregation-v01 9

Decreasing per-hop delay
●We do not assume that TSN Streams are coordinated at their

sources in order to avoid collisions at output ports in the network;
such coordination is possible, but computationally difficult in the
general case.

● This means that, for every Stream, there is typically one frame
from that stream sitting in a buffer in every hop along its path. The
end-to-end delay (not counting link and transmission delays) is
then inversely proportional to the frame rate. (This relationship is
obviously true by design for CQF, but it also applies to other
queuing methods.)

dv-finn-CQF-stream-aggregation-v01 10

Decreasing per-hop delay

dv-finn-CQF-stream-aggregation-v01 11

Streams
aggregated

3 Streams
3 stored frames/hop
1k frames/s/Stream
1ms delay/hop

3 Streams
3 stored frames/hop
1k frames/s/Stream
1ms delay/hop

1 Stream
1 stored frame/hop
3k frames/s/Stream
333µs delay/hop

1 Stream
1 stored frame/hop
3k frames/s/Stream
333µs delay/hop

3 Streams
3 stored frames/hop
1k frames/s/Stream
1ms delay/hop

Streams
dis-aggregated

Buffers required for
basic operations

dv-finn-CQF-stream-aggregation-v01 12

Buffering requirements
Extra buffering, and therefore extra delays, are encountered:
●Where Streams are merged to form an Aggregated Stream.
●Where an Aggregated Stream is dissolved and the Streams

separated.
●Where an Aggregated Stream is reformed, with Streams both

joining and exiting.

dv-finn-CQF-stream-aggregation-v01 13

Aggregation merge buffers

dv-finn-CQF-stream-aggregation-v01 14

Bin n+11

6 Streams arriving from 3 inputs in 6ms
CQF bins. This bridge aggregates them
into one Aggregate Stream in 1ms bins.
(Yellow frames are not part of this
Aggregated Stream.)

Bin n

Bin n+1

Bin n

Bin n+1

Bin n

Bin n+1

Bin n

Bin n+1

Bin n+2

Bin n+3

Bin n+4

Bin n+5
Each bin is 6x smaller and
faster, but we need a lot of
them at the aggregation
point, because the frames
we want can arrive in
lumps with gaps.

At the next hop, we will
need only a few bins,
typically 2 or 3.

It’s the same issue with non-CQF; we need extra buffers when aggregating, to be sure that we’ll never be starved
for aggregated frames to transmit because of unfortunate coincidences in input timing.

Note particularly
the long delay
between frames
of the orange
Stream (first and
last frames). This
will come up in
subsequent slides.

Bin n+6

Aggregation dissolution buffers

dv-finn-CQF-stream-aggregation-v01 15

Because the lumps/gaps in each
component Stream are determined by its
characteristics before aggregation (2 6-
frame bins per input port in this case),
the equivalent buffer space is needed
after disaggregation (2 6-frame bins per
output port), to ensure against
starvation.

Bin n

Bin n+1

Bin n

Bin n+1

Smaller or larger bins at different rates than the original Streams can be used, of course, as long as the allocated
bandwidth is appropriate. But, the spacing of the frames for a given Stream was determined when the Stream
Aggregation was formed, and that determines the buffer requirements, here.

Since the Streams’ original bin
boundaries have been lost,
the output bins are filled
using count-based, not time-
based, CQF.

Mix/merge buffers

dv-finn-CQF-stream-aggregation-v01 16

(or

At some intermediate hop, we
might mix/merge two composite
Streams, the red-rimmed and the
black-rimmed Streams, to form a
blue-rimmed stream.

But, the timing is all wrong. The
frames that we want can arrive in
lumps, with big gaps in between.
And, the timing can vary from
(original) bin to bin.

The sizes of the lumps/gaps, and thus the number of output bins required, are determined by the original
Streams’ characteristics (before aggregation). Count-based CQF fills the output bins.

(original bin boundaries)

Even though small bins are used for the Stream Aggregations,
at a mix/merge point, the amount of buffer space needed is
determined by the original characteristics of the Aggregated
Streams, and in general, is equal to the buffer space needed
by the Streams before aggregation.

Bin n+11 Bin n

Mix and dissolution buffers
● It was mentioned that that amount of buffer space at a mix or

dissolution point depends on the original characteristics of the
component Streams.

● It also depends on how faithfully the Aggregated Stream’s intermediate
nodes maintain those characteristics.

● In time-based (syntonized) CQF, the Aggregated Stream’s bin
frequencies can be chosen to maintain those characteristics perfectly,
and the required dissolution buffer requirements are the same size as
for the original Streams.

● If count-based (paternoster) CQF is used, (bin assignments based on
per-Stream byte counters), then the (relatively small) difference
between the best- and worst-case delivery times from end to end of the
Aggregated Stream will determine the extra dissolution buffer space
required.

dv-finn-CQF-stream-aggregation-v01 17

Faithfully maintaining Stream
characteristics in the Aggregated Stream

dv-finn-CQF-stream-aggregation-v01 18

● If the original Streams go into CQF bins as if they were not aggregated,
and those bins are then drained into smaller, faster bins for the
Aggregated Stream, always with aligned bin boundaries and integral
frequency multiples (see multi-CQF writeups on IEEE 802.1 public site),
then at least at the output from the merge point, the Aggregated
Stream will faithfully reflect the original Streams’ bin packing structure.
● (Note that ”drained into smaller, faster bins” can be accomplished without actually

moving data or pointers, and without an extra small-bin delay, if one is clever.)

Faithfully maintaining Stream
characteristics in the Aggregated Stream

●Alternatively, count-based CQF (paternoster) can be used to drop
frames directly into the small buffers. The same amount of buffers
space is required, as the input characteristics are still the same.
This makes the merging job simpler, but the large bin boundaries
are lost, so there is more variation within a single Stream, and
more dissolution buffers are needed.

●With either form of CQF, the component Streams’ frames do not
make big jumps forwards or backwards through the small bins of
the Aggregated Stream, so the extra dissolution buffers required
are not excessive.

dv-finn-CQF-stream-aggregation-v01 19

Faithfully maintaining Stream
characteristics in the Aggregated Stream
● If any of the IEEE Std 802.1Q-2022 transmission selection

algorithms other than CQF are used to carry the Aggregated
Stream, then variations in one component Stream’s activity can
affect other Streams’ delays along the path of the aggregation.
This is because frames belonging to one component Stream can
use other component Streams’ unused bandwidth.

● This variation can be computed and extra dissolution buffer space
allocated.

● If CQF carries the Aggregated Stream, this is either not possible
(time-based CQF) or the variation is much smaller (count-based
CQF).

dv-finn-CQF-stream-aggregation-v01 20

Other points

dv-finn-CQF-stream-aggregation-v01 21

Mix/merge madness
● If the order of the component Streams’ frames were set in a particular

order in each of the Aggregated Streams, then at the mix/merge point,
the lumps/gaps could be reduced and many fewer extra buffers would
be needed.

● This is similar, in principle, to the familiar (to some of us) proposal to
allocate less than on frame per CQF bin to a Stream, and thus allow
several Streams to share a single allocation in turn. When two such
Streams fan in to one output port, there is a similar lump/gap problem.

● I have no plans to explore these possibilities, because if multicast
Streams are included, or if the Aggregated Streams split and merge
multiple times, it becomes computationally difficult to resolve the
resultant conflicts in ordering requirements. It is also not trivial to
initialize the transmitters, nor to adjust them to changing needs.

● Others are free to follow their own star, of course.

dv-finn-CQF-stream-aggregation-v01 22

Swings and roundabouts
One may reasonably ask, “What have we gained with Stream Aggregation?” and,
“At what cost?”
● If an Aggregated Stream is split and merged at every hop, absolutely nothing is

gained.
● At the aggregation point, mix/merge point, and dissolution point, nothing is

gained.
● In a network whose Streams have sufficiently unrelated paths, it may be than

little can be gained.
● But, if many Streams have paths in common, for example, over a central

interconnect ring, significant improvements can be made, both in TSN
resources required, and in end-to-end delivery times.

● Explicit aggregation (adding a wrapper) is a common feature, but it can be
costly. Implicit aggregation requires touching each bridge along the path of
the Aggregated Stream. Perhaps some more creative solutions, based on IEEE
P802.1CBdb, are possible.

dv-finn-CQF-stream-aggregation-v01 23

Further work
● Mix/merge points affect the delay variation of component Streams, and

thus affect the amount of dissolution buffering required. Further work
is required to balance ease of implementation at mix/merge points
against additional dissolution buffering at the network edge.

● It would be useful to look further at the case of merging Streams into
compound aggregations. For example, do the requirements for mix or
dissolution buffers change, depending on whether the composite
Stream Aggregation is decomposed in steps, in reverse order, in some
completely different order, or all at once?

● Further investigation is required on the question of what information is
required for a mix or dissolution point to determine its buffer
requirements.

● If Stream Aggregation becomes common, then it may become desirable
to augment RAP (Resource Allocation Protocol).

dv-finn-CQF-stream-aggregation-v01 24

A note on terminology
● I have used the terms “Stream Aggregation” and “Aggregated Streams”

in this presentation.
● If the idea progresses in IEEE 802, then these terms will undoubtedly

become overloaded. Possible uses of these and related terms include:
● Aggregation of TSN Streams to conserve filtering/forwarding database resources.
● Aggregation of TSN Streams to conserve QoS state machine resources.
● Aggregation of non-TSN flows for either of those purposes.
● Aggregations of Stream Aggregations, or component Aggregations in Aggregations.
● Possible new forms of explicit (header wrapper) Stream Aggregation.
● Ideally, we will consider this overloading before selecting a term (or

terms) for standard text that specifies any of these or similar uses.

dv-finn-CQF-stream-aggregation-v01 25

ß primary use here

Thank you

dv-finn-CQF-stream-aggregation-v01 26

