Cycle Identification

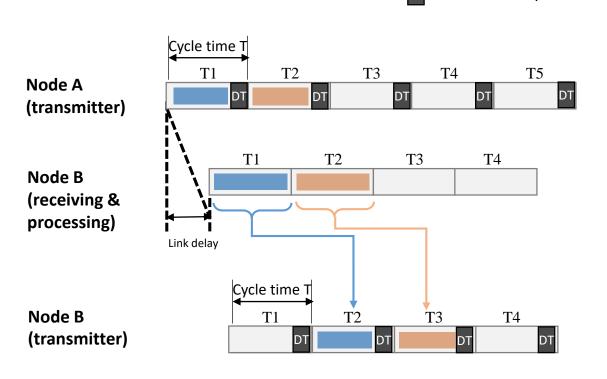
Yizhou Li (Huawei)

Guanhua Zhuang (Huawei)

Jiang Li (Huawei)

Jeong-dong Ryoo (ETRI)

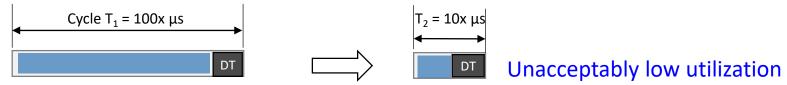
Li Dong (Shenyang Institute of Automation)


Wenbin Dai (Shanghai Jiao Tong University)

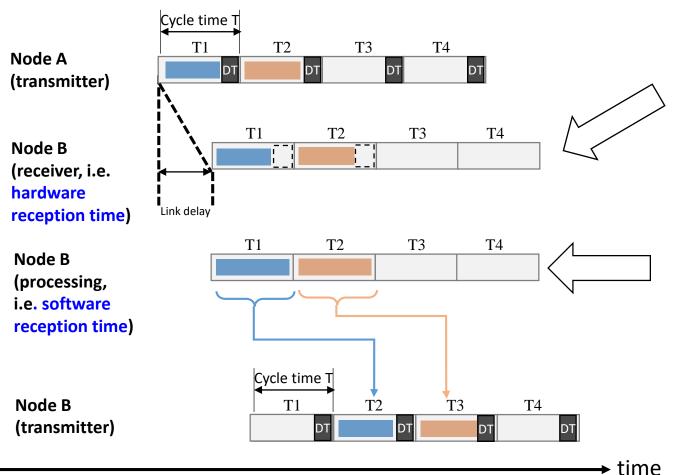
Introduction

- 802.1Qdv proposes to
 - 1. Store received frames into multiple cyclic bins based on the time of reception of the frame
 - 2. Bins are drained in rotation manner at a fixed interval (i.e. cycle/cycle time in the slides)
- Goal of the slides
 - Show the goal to improve the bandwidth utilization in small cycle
 - Discuss the cycle ambiguity problem when making dead time (DT) minimum to improve the utilization
 - Propose to use cycle id based determination in addition to time based one in 802.1Qdv
 - Provide three options to carry cycle id

DT (dead time) is the key to absorb the time variation


Dead time imposed at each cycle

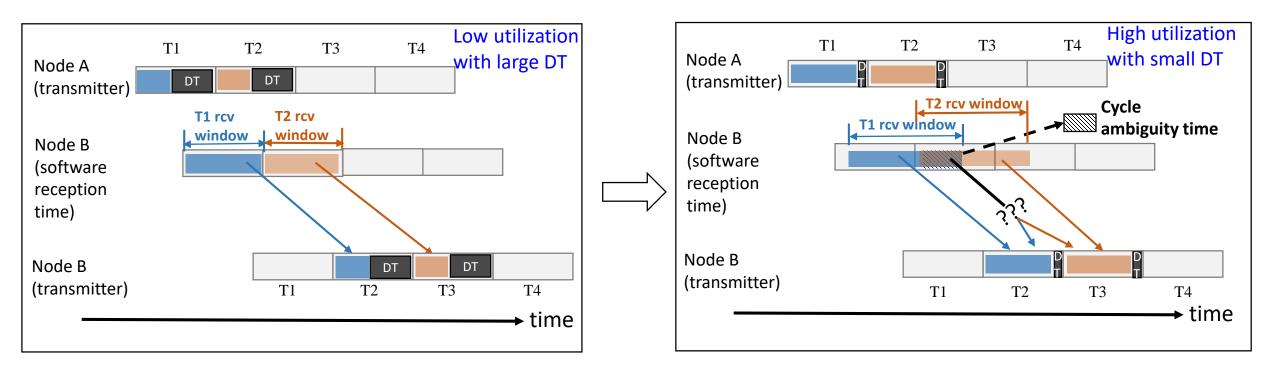
- DT (Dead time): time imposed in a cycle to ensure that the last byte sent in node A's cycle x is fully received and ready to be sent at the start of node B' cycle y, where cycle y is usually the earliest available cycle to meet such a requirement
- DT (*) = output delay at node A + link delay + preemption delay + processing delay at node B
 - Link delay will not contribute to DT if node B's receiving side offsets the cycle start time by link delay
- DT << T, so DT is negligible conventionally
 - cycle time T is normally ~100x μs
 - DT is ~10x μs
 - DT/T < 5% generally
- Frame reception time at node B determines to which bin the frame should be put


Utilization unacceptably low in small cycle

- E2e latency and jitter is proportional to cycle time T and #of hops
- Desire to use smaller T for better latency and jitter
 - To achieve e2e latency (e.g. < 1ms) or large # of hops (e.g. 10+)
 - A known app cycle 31.25 μ s; cycle T < 31.25 would be desired
 - Should support T in the order of \sim 10x μ s
 - DT is in the order of ~10x μs as well
 - DT and T are in the same order then
- Utilization decreases when cycle time T decreases
 - DT eats T, e.g. ≈50% when T=40 μs & DT=20 μs

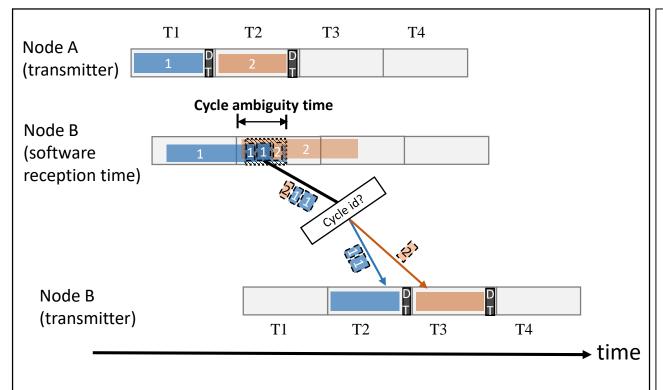
Hardware and Software frame reception time used for output bin determination

Dead time imposed at each cycle


Hardware reception time

- Timestamp every data frame with the 1st bit reception time at phy layer
- Each frame offset by link delay invariably
- Not always available in practice

Software reception time


- Time at the moment that the frame starts the receiving processing
- Generally available in implementations, e.g. high mac layer in programmable NP
- Frames in a cycle experience the variable delay in Node B.
 Why?
 - Store the variable frame size
 - Variable time before frame started being processed, e.g. by PBA (packet bus arbiter)
- used as frame reception time in the following slides to determine to which bin the frame should be put at node B

Goal - Improve the utilization in small cycle T

- Why low utilization? DT is too large.
- A straightforward way to improve utilization: make DT minimum
 - Absorb only the preemption delay instead of the full time variation, i.e. curve out output delay and processing delay
- A remaining problem: cycle ambiguity in reception time based bin determination

Propose to use the explicit cycle identification

- Carry cycle id and change per hop
- Use cycle id based output bin determination instead of time based
- Remove the ambiguity
- Achieve the good utilization in small cycles by making DT minimum

How to carry a cycle id

1. R-tag (defined in 802.1CB)

Ethertype (F1-C1)	Reserved (16-bit)	Sequence number (16-bit)
-------------------	-------------------	--------------------------

• Option A: Use the last 3-bit in Reserved field for cycle id. 8 bins are sufficient in all cases?

Ethertype (F1-C1)	Reserved (16-bit)		Coguana number (10 bit)
	Reserved (13)	Cycle id (3)	Sequence number (16-bit)

• Option B: Use the first bit in Reserved field for subtyping of cycle id. When set, field "sequence number" becomes 3-bit cycle id + 13-bit sequence.

Ethertype (F1-C1)	Reserved (16-bit)		Seq# (16-bit)	
	flag(1)	Reserved (15)	Cycle id(3)	Seq# (13)

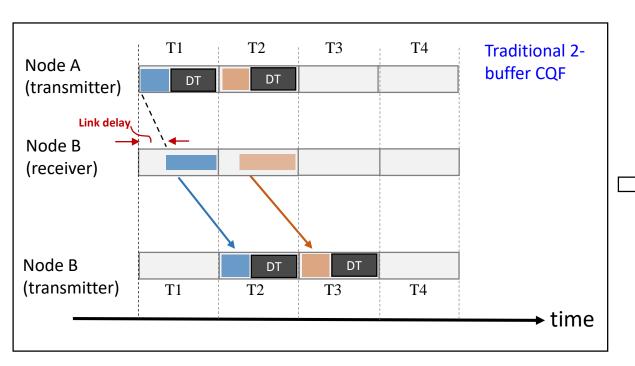
How to carry a cycle id (cont'd)

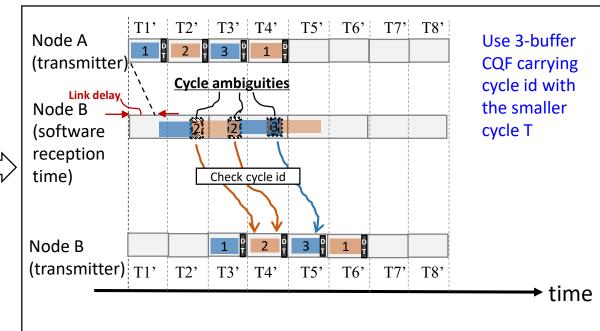
2. Define a new cycle-tag

Ethertype (cycle-tag)	Reserved	Cycle ID
	(8-bit)	(8-bit)

How to carry a cycle id (cont'd)

- 3. Use vlan stacking + vlan mapping function
 - Inner vlan is used for cycle id, use ACL to map from ingress cycle id to egress cycle id
 - Outer vlan is used as normal vlan based mac learning and forwarding
 - Used in a controlled domain, may not be compatible with some existing svlan + c-vlan usage

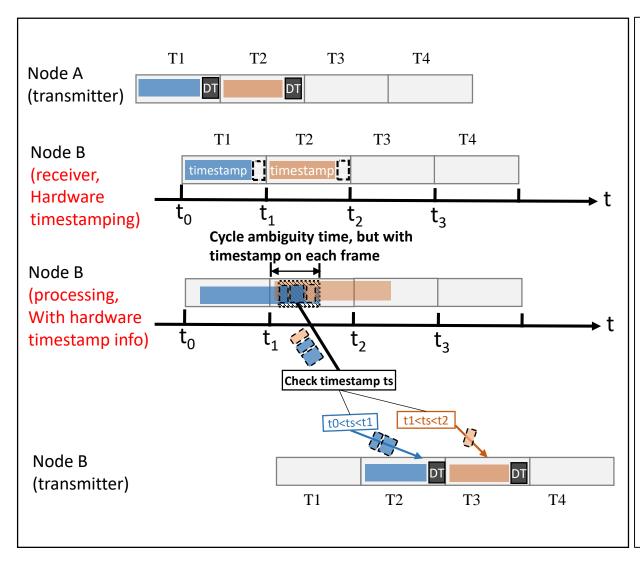

Ethertype (s-vlan) v	/lan-tag (16-bit)	Ethertype (c-vlan)	Cycle id (16-bit)
----------------------	-------------------	--------------------	-------------------


ACL example: if-match cvlan-id cycle-id-in

remark cvlan-id cycle-id-out

backup

Cycle id used in the extension to traditional 2-buffer CQF



- Demand to have the restricted extension to traditional 2-buffer CQF usage
- Re-use traditional CQF as much as possible
- Nodes sync their cycles as usual, gate open/close controlled by sync'ed time
- Utilization gets worse as DT can not curve out the link delay

Restricted extension:

- Use 3 buffer rotation with the smaller buffer space each
- Set cycle T smaller, e.g. half of the original in pic above
- Cycle id based determination works well to solve the ambiguity in this case and improve the utilization effectively

What if frame 1st bit hardware timestamping is available

- It can remove the cycle ambiguity
- However output delay at A can not be curved out from DT
- A feasible way when
 - Capability of hardware timestamping on the 1st bit of each data frame is available
 - Output delay is negligible