
Cycle Identification

Sept, 2022 1

Yizhou Li (Huawei)

Guanhua Zhuang (Huawei)

Jiang Li (Huawei)

Jeong-dong Ryoo (ETRI)

Li Dong (Shenyang Institute of Automation)

Wenbin Dai (Shanghai Jiao Tong University)

Introduction
• 802.1Qdv proposes to

1. Store received frames into multiple cyclic bins based on the time of
reception of the frame

2. Bins are drained in rotation manner at a fixed interval (i.e. cycle/cycle time
in the slides)

• Goal of the slides
• Show the goal to improve the bandwidth utilization in small cycle
• Discuss the cycle ambiguity problem when making dead time (DT) minimum

to improve the utilization
• Propose to use cycle id based determination in addition to time based one in

802.1Qdv
• Provide three options to carry cycle id

2

DT (dead time) is the key to absorb the time variation

3

• DT (Dead time)：time imposed in a cycle to
ensure that the last byte sent in node A’s cycle
x is fully received and ready to be sent at the
start of node B’ cycle y, where cycle y is usually
the earliest available cycle to meet such a
requirement

• DT (*) = output delay at node A + link delay +
preemption delay + processing delay at node B

• Link delay will not contribute to DT if node B’s
receiving side offsets the cycle start time by link delay

• DT << T, so DT is negligible conventionally
• cycle time T is normally ~100x μs

• DT is ~10x μs

• DT/T < 5% generally

• Frame reception time at node B determines to
which bin the frame should be put

(*): draft-ietf-detnet-bounded-latency

Label 1 Label 2

Node A
(transmitter)

Node B
(receiving &
processing)

Cycle time T

T1 T2 T3 T4 T5

T1 T2 T3 T4

DT DT DT DT DT

Node B
(transmitter)

Cycle time T

T1 T2 T3 T4

DT DT DTDT

Link delay

time

DT Dead time imposed at each cycle

/
Time window for sending or
receiving frames (not a single frame)

Utilization unacceptably low in small cycle
• E2e latency and jitter is proportional to cycle time T and #of hops h

• E2e delay ≈ h * T; jitter = 2T

• Desire to use smaller T for better latency and jitter
• To achieve e2e latency (e.g. < 1ms) or large # of hops (e.g. 10+)
• A known app cycle 31.25 μs; cycle T < 31.25 would be desired
• Should support T in the order of ~10x μs
• DT is in the order of ~10x μs as well
• DT and T are in the same order then

• Utilization decreases when cycle time T decreases
• DT eats T, e.g. ≈50% when T=40 μs & DT=20 μs

4

DT

Cycle T1 = 100x μs

DT

T2 = 10x μs

Unacceptably low utilization

Hardware and Software frame reception time used for
output bin determination

5

Hardware reception time
• Timestamp every data frame with the 1st bit reception time at

phy layer
• Output delay at node A contributes to time variation
• Each frame offset by link delay at minimum
• Not always available in practice

Label 1 Label 2

Node A
(transmitter)

Cycle time T

T1 T2 T3 T4

T1 T2 T3 T4

DT DT DT

Node B
(transmitter)

Cycle time T

T1 T2 T3 T4

DT DT DTDT

Link delay

Node B
(receiver, i.e.
hardware
reception time)

Node B
(processing,
i.e. software
reception time)

DT

Label 1 Label 2

T1 T2 T3 T4

Software reception time
• Time at the moment that the frame starts the processing
• Generally available in implementations, e.g. high mac layer in

programmable NP
• Frames in a cycle experience the variable delay in Node B.

Why?
• Store the variable frame size
• Variable residence time before frame started being

processed, e.g. by PBA (packet bus arbiter) or buffering

• The following slides uses the software reception
time to determine to which bin the frame should
be put at node B time

DT Dead time imposed at each cycle

/
Time window for sending or receiving
frames (not a single frame)

Goal - Improve the utilization in small cycle T

• Why low utilization? DT is relatively too large.

• A straightforward way to improve utilization: make DT minimum
• Absorb only the preemption delay instead of the full time variation, i.e. curve out output delay and processing delay

• A remaining problem: cycle ambiguity in reception time based bin determination

6

Node A
(transmitter)

Node B
(transmitter)

Node B
(software
reception
time)

T1 rcv
window

T2 rcv
window

time

T1 T2 T3 T4

DT DT

T1 T2 T3 T4

DT DT

Low utilization
with large DT

Cycle
ambiguity time

Node A
(transmitter)

Node B
(transmitter)

Node B
(software
reception
time)

D
T

T1 rcv window

T2 rcv window

D
T

T1 T2 T3 T4

D
T

D
T

time

T1 T2 T3 T4
High utilization
with small DT

Propose to use the explicit cycle identification

7

1 2

1 2

Node A
(transmitter)

Node B
(transmitter)

Node B
(software
reception time)

D
T

D
T

T1 T2 T3 T4

D
T

D
T

time

T1 T2 T3 T4

21 1

Cycle ambiguity time

• Carry cycle id and change per hop

• Use cycle id based output bin
determination instead of time
based

• Remove the ambiguity

• Achieve the good utilization in small
cycles by making DT minimum

DT Dead time imposed at each cycle

/
Time window for sending or receiving
frames (not a single frame)

How to carry a cycle id
1. R-tag (defined in 802.1CB)

Define a subtype flag and use the last 4-bit in Reserved field for cycle id.

8

Ethertype (F1-C1) Reserved (16-bit) Sequence number (16-bit)

Ethertype (F1-C1)
Reserved (16-bit)

Sequence number (16-bit)
flag(1) Rsvd (11) Cycle id (4)

How to carry a cycle id (cont’d)

2. Define a new cycle-tag

9

Ethertype
(cycle-tag)

Subtype
(4-bit)

Reserved
(4-bit)

Cycle ID
(8-bit)

How to carry a cycle id (cont’d)

3. Use vlan stacking + vlan mapping function
• Inner vlan is used for cycle id, use ACL to map from ingress cycle id to

egress cycle id

• Outer vlan is used as normal vlan based mac learning and forwarding

• Used in a controlled domain, may not be compatible with some existing s-
vlan + c-vlan usage

ACL example: if-match cvlan-id cycle-id-in

remark cvlan-id cycle-id-out

10

Ethertype (s-vlan) vlan-tag (16-bit) Ethertype (c-vlan) Cycle id (16-bit)

backup

11

Cycle id used in the extension to traditional 2-buffer CQF

12

Node A
(transmitter)

Node B
(transmitter)

Node B
(receiver)

time

T1 T2 T3 T4

DT DT

T1 T2 T3 T4

DT DT

Link delay

Traditional 2-
buffer CQF

Node A
(transmitter)

Node B
(transmitter)

Node B
(software
reception
time)

time

Cycle ambiguities
Link delay

1 2

T1’ T2’ T3’ T4’ T5’ T6’ T7’ T8’
D
T

D
T 3

D
T

D
T1

1 2D
T

D
T 3 D

T
D
T1

T1’ T2’ T3’ T4’ T5’ T6’ T7’ T8’

2 2 3

Check cycle id

Use 3-buffer
CQF carrying
cycle id with
the smaller
cycle T

• Demand to have the restricted extension to traditional 2-buffer CQF usage

• Re-use traditional CQF as much as possible

• Nodes sync their cycles as usual, gate open/close controlled by sync’ed time

• Utilization gets worse as DT can not curve out the link delay

Restricted extension:

• Use 3 buffer rotation with the smaller buffer space each

• Set cycle T smaller, e.g. half of the original in pic above

• Cycle id based determination works well to solve the ambiguity in this case and improve the utilization effectively

Procedures when using frame 1st bit hardware
timestamping

13

Node B
(transmitter)

Node B
(processing,
With hardware
timestamp info)

T1 T2 T3 T4

Node A
(transmitter) DT

T1 T2 T3 T4

Cycle ambiguity time, but with
timestamp on each frame

timestamp timestamp
Node B
(receiver,
Hardware
timestamping)

D
T

T1 T2 T3 T4

t
t0 t1 t2 t3

t
t0 t1 t2 t3

t1<ts<t2

Check timestamp ts

• Time variation before hardware
timestamping has to be put into DT,
e.g. output delay, clock/timestamp
accuracy

• Time variation after hardware
timestamping has no more impact

• Check timestamp for each frame at
processing phase to determine the
output bin in order to remove cycle
ambiguity

• Requires:
• Native hardware support. Can not be

done in programmable NP.
• Time variation before timestamping has

to be negligible since it contributes to DT.
• DT here is always larger than the value

used in cycle-id case since it can not curve
out this part of variation.

DT

DT DT

D
T

DT Dead time imposed at each cycle

/
Time window for sending or receiving
frames (not a single frame)

