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Recap and Goal
• dv-yizhou-cycle-identification-0922-v02 in September meeting

• Showed the goal to improve the bandwidth utilization in small cycle
• Discussed the cycle ambiguity problem when making dead time (DT) minimum to 

improve the utilization
• Proposed to use implicit reception time indicated by cycle id to determine to which 

bin a frame goes in addition to direct hardware timestamp based one in 802.1Qdv
• Provided three options to carry cycle id

• Slides 4-8 recaps the basic concept of using cycle id. Please refer to the 
previous slides for more details if needed.

• Goal of this deck of slides is to answer the questions received:
• How to initialize the cycle id based system?
• How to compute cycle and buffer IDs as they have different ID spaces?
• How the mapping works when the #of bins(buffers) are different on two neighbor 

nodes?
• How large should the cycle ID space be? What are the considerations when choosing 

the field length of it? 
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https://www.ieee802.org/1/files/public/docs2022/dv-yizhou-cycle-identification-0922-v02.pdf


Change log

• dv-yizhou-cycle-identification-details-1122-v02：
• Added clarifications for checksum re-compute, multiple cycle time and computation delay.

• Added explanation on cycle id = implicit pivot reception time

• Editorial changes from -v01

• dv-yizhou-cycle-identification-details-1022-v01: 
• Early dv-yizhou-cycle-identification-0922-v02 showed why and how to use implicit reception time indicated by cycle 

id to determine to which bin a frame goes

• Provided further details on that cycle id based implicit time determination approach

• Focus on the initialization, especially how to establish the cycle id mapping relations for the port pairs. 
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Goal - Improve the utilization in small cycle T

• Why low utilization? DT is relatively too large to a cycle.

• A straightforward way to improve utilization: make DT minimum
• Absorb only the preemption delay instead of the full time variation, i.e. curve out output delay and processing delay

• A remaining problem: cycle ambiguity in software reception time based bin determination
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Propose to use the explicit cycle identification
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• Carry cycle id and change per hop

• Use cycle id as pivot reception time 
implicitly for output bin 
determination instead of use 
software reception time directly 

• Remove the ambiguity

• Achieve the good utilization in small 
cycles by making DT minimum

DT Dead time imposed at each cycle

/
Time window for sending or receiving 
frames (not a single frame) 



How to carry a cycle id
1. R-tag (defined in 802.1CB)

Define a subtype flag and use the last 4-bit in Reserved field for cycle id.
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Ethertype (F1-C1) Reserved (16-bit) Sequence number (16-bit)

Ethertype (F1-C1)
Reserved (16-bit)

Sequence number (16-bit)
flag(1) Rsvd (11) Cycle id (4)



How to carry a cycle id (cont’d)

2. Define a new cycle-tag
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How to carry a cycle id (cont’d)

3. Use vlan stacking + vlan mapping function 
• Inner vlan is used for cycle id, use ACL to map from ingress cycle id to 

egress cycle id 

• Outer vlan is used as normal vlan based mac learning and forwarding

• Used in a controlled domain, may not be compatible with some existing s-
vlan + c-vlan usage

ACL example: if-match cvlan-id cycle-id-in

remark cvlan-id cycle-id-out 

8

Ethertype (s-vlan) vlan-tag  (16-bit) Ethertype (c-vlan) Cycle id  (16-bit)



Further details on Cycle id 
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Conceptually cycle id = pivot reception time
• Conceptually Cycle id = pivot reception time of the frame.

• It is a direct timestamp for cycle start time of the frame’s transmission bin on upstream node’s 
output port 

• Consequently it indicates the pivot reception time of the frame with no/little time variation 
experienced on the downstream node’s input port
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Some assumptions in this deck to simplify the 
illustration
• Only one priority class uses Qdv mechanisms at a physical port.

• The configuration and calculation is for that priority.

• Cycle time Tc remains the same for the same priority in the domain.

• The slides provide a practical way in implementation as example, but 
it is not the only way.

• Try to reuse terms defined in new-finn-multiple-CQF-0921-v02 as 
much as possible
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Terms – buffer related
• n: the number of physical ports. Range: 0 ~ n-1 

• Bi,o: the number of buffers required for the input and output port pair 
(i, o)

• Bo：the number of physical output buffers on port o.

Bo = Max(Bi,o), i = 0 ~ n-1 on a given port o

• buf_id ：
• id assigned to the physical buffer in which a frame should be placed at output 

port o when the frame is processed. 

• buf_id  [0, Bo -1]
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Note: All values are integers



Terms – latency related
• TV: sum of the frame-based time variations 

• Include output delay variation, processing delay variation and link delay variation
• Link delay is the first-bit-out to last-bit-in delay that varies with packet size 

• TVi,o: TV value for the input and output port pair (i, o). 

• Calculate Bi,o as follows:
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Bi,o = floor(TVi,o / Tc) +4 --- baseline
• Max receiving window time interval Tc+TVio

• # of receiving buffer to accommodate the max 
receiving window time:
floor((Tc+TVi,o)/ Tc) + 2  = floor(TVi,o/ Tc) + 3

• # of sending buffer = 1
• Hence, Bi,o = receiving buffer + sending buffer 

= floor(TVi,o/ Tc) + 4
• Special cases:

• use one less buffer, i.e. Bi,o = floor(TVi,o / Tc) +3 
• rev window spans over 2 cycles in case of lucky or intentional cycle 

phase shift between A & B. We assume A&B independently run 
cycles here, hence always use at least the baseline calculation 

• Use more buffers, i.e. Bi,o = floor(TVi,o / Tc) +5/6/../n 
• Introduce intentional extra delay, e.g. to balance replicated frames 

over diff paths



Terms – cycle related
• cycle_id: cycle id assigned to a frame when the frame is placed to a 

buffer with buf_id at an output port o
• Max value of cycle_id C is limited by the field length, e.g. if length is 4, then C 

= 16, so that cycle_id [0, 15]
• C is the same for all ports on all nodes in a domain
• increments (modulo C) each cycle time

• N: the least common multiple over all Bo and C in a node. Value of N 
can be different on the nodes.

• Si: Each input port i assigns each received frame a logical buffer 
selector Si, which is an integer in the range 0 through N-1, and which 
increments (modulo N) each cycle. The value of Si is si.
• si is directly used by data frames, not for (cycle) mapping determination 

frames.
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4 steps in initialization and determination in 
the following slides
• Step 1: Base parameter provisioning

• Step 2: Initialization of buffer selector and output buffers

• Step 3: Determination of cycle id mapping relation for port pair (i,o)

• Step 4: Determination of output cycle id and buffer id for data frame
• This step is for real data traffic, not part of initialization and provisioning. 
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Example Step 1– base parameter provisioning
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• The node has n=8 port.
• Cycle time Tc is set and time variation TVi,o for port pair (i,o) is known.
• Calculate Bi,o = floor(TVi,o / Tc) +4 and Bo is the max(Bi,o) for a port o.
• Assume the calculation results of the number of physical buffers Bo on 

each port:
• B5 = B7 = 6, B6 = B8 = 4
• B1 – B4 not shown, assume all are 4

• Assume Max # of cycle_id C = 8, cycle_id [0, 7]
• i.e. length of cycle_id = 3 bit. (This is for picture simplicity. In reality, 

it should be larger)
• Then N = 24 (the least common multiple of 4,6,8)
• Logical buffer selector Si makes value si rotate between 0 – 23. 

• Note: It is the index assignment for calculation simplicity. No real 
buffer attached.
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0 1 2 3 4 5 … 2122 23
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s4



Example Step 2 – initialization of buffer 
selector and output buffers
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• All the ports of a node use the same system time T. T is the time elapsed 
(in nanosecond) from the latest system startup. All the components in 
the node can use T as a time source. 

• System Synchronized Initialization:
• Initialize the starting time for Si and buf_id on all ports to be 

multiple of N*Tc. 
• Logically make the position and shifting for all Si the same, thus a 

single selector S can be used to simplify the implementation. Let s 
be the value of the selector S.

• Facilitate halfway port enabling 
• Initialize s = 0 and the transmitting buffer id = 0 on all ports  
• increments (modulo N) each cycle

• At any time T, the following computations hold 
• s = (T mod (N*Tc)) / Tc   ---- “/” is floor division
• buffer id currently transmitting frames on port o:

Tx-buf-id = s mod Bo

• cycle id used by currently transmitting buffer:
Tx-cycle-id = s mod C
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Example Step 3 – Determination of cycle id mapping relation 
for port pair (i,o)
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Pre-requisite:
• Node A & B have run their cycles independently with cycle Tc

Purpose: For the input and output port pair (i, o) on B, determine mapping 
parameter Mi,o so that a stable cycle mapping equation cycle_id_out = 
(cycle_id_in + Mi,o) mod C can be used for future data frames over port pair (i,o) 
no matter what time variation are experienced by that frame.

Mapping determination frame: special frame to determine the cycle mapping 
relation between two neighbors during system initialization and auditing. It 
experiences the least time variation
• Shortest frame – 64B
• Highest priority

Cycle mapping relation computation example: 
• B receives the mapping determination frame from port 2
• Assume B’s system time is T. Compute the potential worst case s for the frame 

over each output port o as：
so = ((T + TV2,o) mod (N*Tc)) / Tc 

• Compute cycle_id_out for the potential worst case frame over each output 
port o as：

cycle_id_outo = (so + 1) mod C
• Compute Mi,o = (cycle_id_outo - cycle_id_ini + C) mod C

• Assume the frame carries cycle_id_in = 7 from the incoming port 2 and 
the computed cycle_id_out is 2 on output port 5, then
M2,5 = (2-7+8) mod 8 = 3

• Mi,o can be simplified to Mi for a port i if Mi takes Max(Mi,o) for a specific i. 
That will make the # of mapping parameters O(n) instead of O(n2), n=#of ports. 
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Example Step 4 – Data frames: determination of 
output cycle id and buffer id
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Output cycle id:
• cycle_id_outo = (cycle_id_ini + Mi,o) mod C
• e.g. as M2,5 = 3 for port pair (2,5), the cycle_id determination 

is defined as 
cycle_id_out = (cycle_id_in + 3) mod 8
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M2,5 = 3

Mapping table

Output buffer id:
• Cycle id used by currently transmitting buffer:

Tx-cycle-id = s mod C
• Compute the id offset between targeting placement buffer 

and current transmitting buffer as：
offset = (cycle_id_outo - Tx-cycle-id + C) mod C

• Compute the buf_id on port o to place the frame as:
buf_ido = (s + offset) mod Bo 

frame with 
cycle_id_out



Summary of calculations – on each node, for each 
priority 

1. Set cycle time Tc and time variation TVi,o for port pair (i,o)

2. Calculate number of physical buffers Bo on each port o as:

• Bi,o = floor(TVi,o / Tc) +4 

• Bo = max(Bi,o) for port o

3. Calculate N = the least common multiple of Bo and C

4. Start system synchronized initialization on every node for buffer selector S and ports

5. Use Mapping Determination Frame to calculate the mapping relation value Mi,o for port pair (i,o) 
as follows:

• so = [((T + TVi,o) mod (N*Tc)) / Tc]

• cycle_id_outo = (so + 1) mod C

• Mi,o = (cycle_id_outo - cycle_id_ini + C) mod C

6. For an incoming frame for port pair (i,o), calculate the output cycle id cycle_id_outo and output 
buffer id buf_ido

• output cycle id: cycle_id_outo = (cycle_id_ini + Mio) mod C

• output buffer id: 
• Tx-cycle-id = s mod C

• offset = (cycle_id_outo - Tx-cycle-id + C) mod C

• buf_ido = (s + offset) mod Bo 
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Choice of cycle id length

• Number of cycle id C = 2L where L is the length in bits of cycle id

• C should be larger than the number of physical buffer Bo on any port 
o in step 1 base parameter provisioning

• Discuss: L to be at least 5？
• C = 32 (L = 5)should be sufficiently large as it can support a 32-buffer port.

• If we make L=8, that would allow 256-buffer on any port.

• Preferred way of tagging (back to slide 6-8)?
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Checksum re-compute

Will Checksum be required to re-compute per hop? 
- Yes as the cycle id is changed every hop, but it does not introduce additional       
cost. 

- Checksum re-compute is always performed in normal forwarding at the 
intermediate nodes regardless of whether any header value changes. 

- Hence no additional checksum re-compute cost caused by cycle id change per 
hop.

- If VLAN variant tagging is used, it is equivalent to normal VLAN mapping 
procedures in switch implementation. 
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Support of multiple time cycles 
The slides showed the example for a single priority traffic class which has a 
single time cycle. It can also support multiple time cycles if CQF 
enhancement mechanisms are enabled on multiple priority traffic classes.

- Use the multiple cycle time picture in new-finn-multiple-CQF-0921-v02 as 
example.

- Each priority traffic class to establish the cycle mapping relations 
independently.
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Computation delay considerations

- Most computation is one-time thing at the initialization. Not 
contribute to the data plane delay.

- For each data frame, it is simply a mapping from cycle_id_in to 
cycle_id_out and determination of buffer id using add operations.

- Additional computation delay for each data frame is negligible. 
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Takeaways and Discussions
• Cycle id conceptually is an implicit pivot reception time of the frame. 

Not impacted by the time variation experienced by the frame. 

• It helps to remove the ambiguity of cycle identification and improve 
the bandwidth utilizations when software reception time is used. 

• The calculations for initialization and mapping relation establishment 
are feasible. 

• Per-frame data plane computation is simple.  

- Good or bad idea for inclusion in Qdv?
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