
Further Details on
Cycle Identification

dv-yizhou-cycle-identification-details-1122-v02

Nov, 2022 1

Yizhou Li (Huawei)

Guanhua Zhuang (Huawei)

Shoushou Ren (Huawei)

Jiang Li (Huawei)

Jeong-dong Ryoo (ETRI)

Peng Liu (CMCC)

Dong Li (Shenyang Institute of Automation)

Wenbin Dai (Shanghai Jiao Tong University)

Recap and Goal
• dv-yizhou-cycle-identification-0922-v02 in September meeting

• Showed the goal to improve the bandwidth utilization in small cycle
• Discussed the cycle ambiguity problem when making dead time (DT) minimum to

improve the utilization
• Proposed to use implicit reception time indicated by cycle id to determine to which

bin a frame goes in addition to direct hardware timestamp based one in 802.1Qdv
• Provided three options to carry cycle id

• Slides 4-8 recaps the basic concept of using cycle id. Please refer to the
previous slides for more details if needed.

• Goal of this deck of slides is to answer the questions received:
• How to initialize the cycle id based system?
• How to compute cycle and buffer IDs as they have different ID spaces?
• How the mapping works when the #of bins(buffers) are different on two neighbor

nodes?
• How large should the cycle ID space be? What are the considerations when choosing

the field length of it?

2

https://www.ieee802.org/1/files/public/docs2022/dv-yizhou-cycle-identification-0922-v02.pdf

Change log

• dv-yizhou-cycle-identification-details-1122-v02：
• Added clarifications for checksum re-compute, multiple cycle time and computation delay.

• Added explanation on cycle id = implicit pivot reception time

• Editorial changes from -v01

• dv-yizhou-cycle-identification-details-1022-v01:
• Early dv-yizhou-cycle-identification-0922-v02 showed why and how to use implicit reception time indicated by cycle

id to determine to which bin a frame goes

• Provided further details on that cycle id based implicit time determination approach

• Focus on the initialization, especially how to establish the cycle id mapping relations for the port pairs.

3

Goal - Improve the utilization in small cycle T

• Why low utilization? DT is relatively too large to a cycle.

• A straightforward way to improve utilization: make DT minimum
• Absorb only the preemption delay instead of the full time variation, i.e. curve out output delay and processing delay

• A remaining problem: cycle ambiguity in software reception time based bin determination

4

Node A
(transmitter)

Node B
(transmitter)

Node B
(software
reception
time)

T1 rcv
window

T2 rcv
window

time

T1 T2 T3 T4

DT DT

DT DT

Low utilization
with large DT

Cycle
ambiguity time

Node A
(transmitter)

Node B
(transmitter)

Node B
(software
reception
time)

D
T

T1 rcv window

T2 rcv window

D
T

D
T

D
T

time

T1 T2 T3 T4
High utilization
with small DT

Make DT
minimum

Propose to use the explicit cycle identification

5

1 2

1 2

Node A
(transmitter)

Node B
(transmitter)

Node B
(software
reception time)

D
T

D
T

T1 T2 T3 T4

D
T

D
T

time

T1 T2 T3 T4

21 1

Cycle ambiguity time

• Carry cycle id and change per hop

• Use cycle id as pivot reception time
implicitly for output bin
determination instead of use
software reception time directly

• Remove the ambiguity

• Achieve the good utilization in small
cycles by making DT minimum

DT Dead time imposed at each cycle

/
Time window for sending or receiving
frames (not a single frame)

How to carry a cycle id
1. R-tag (defined in 802.1CB)

Define a subtype flag and use the last 4-bit in Reserved field for cycle id.

6

Ethertype (F1-C1) Reserved (16-bit) Sequence number (16-bit)

Ethertype (F1-C1)
Reserved (16-bit)

Sequence number (16-bit)
flag(1) Rsvd (11) Cycle id (4)

How to carry a cycle id (cont’d)

2. Define a new cycle-tag

7

Ethertype
(cycle-tag)

Subtype
(4-bit)

Reserved
(4-bit)

Cycle ID
(8-bit)

How to carry a cycle id (cont’d)

3. Use vlan stacking + vlan mapping function
• Inner vlan is used for cycle id, use ACL to map from ingress cycle id to

egress cycle id

• Outer vlan is used as normal vlan based mac learning and forwarding

• Used in a controlled domain, may not be compatible with some existing s-
vlan + c-vlan usage

ACL example: if-match cvlan-id cycle-id-in

remark cvlan-id cycle-id-out

8

Ethertype (s-vlan) vlan-tag (16-bit) Ethertype (c-vlan) Cycle id (16-bit)

Further details on Cycle id

9

Conceptually cycle id = pivot reception time
• Conceptually Cycle id = pivot reception time of the frame.

• It is a direct timestamp for cycle start time of the frame’s transmission bin on upstream node’s
output port

• Consequently it indicates the pivot reception time of the frame with no/little time variation
experienced on the downstream node’s input port

10

Reception Time

A B

Pivot reception time.

Reception time ≠ Pivot reception time, directly
using reception time may cause ambiguity issue
- Output delay variation at the upstream
- No 1st bit hardware timestamp available
- Reception time determination happens at

processing
- Packet processing is system clock based

Reception Time

A B

Cycle id

Reception time on system clock ≠ Pivot reception
time
So use the implicit pivot reception time indicated
by cycle id instead of the direct reception time
here.

Cycle id indicates the
accurate cycle starting
time.

Cycle id

Cycle id = Pivot reception time conceptually
(As the propagation delay between A & B has
no variation).

Some assumptions in this deck to simplify the
illustration
• Only one priority class uses Qdv mechanisms at a physical port.

• The configuration and calculation is for that priority.

• Cycle time Tc remains the same for the same priority in the domain.

• The slides provide a practical way in implementation as example, but
it is not the only way.

• Try to reuse terms defined in new-finn-multiple-CQF-0921-v02 as
much as possible

11

Terms – buffer related
• n: the number of physical ports. Range: 0 ~ n-1

• Bi,o: the number of buffers required for the input and output port pair
(i, o)

• Bo：the number of physical output buffers on port o.

Bo = Max(Bi,o), i = 0 ~ n-1 on a given port o

• buf_id ：
• id assigned to the physical buffer in which a frame should be placed at output

port o when the frame is processed.

• buf_id [0, Bo -1]

12
Note: All values are integers

Terms – latency related
• TV: sum of the frame-based time variations

• Include output delay variation, processing delay variation and link delay variation
• Link delay is the first-bit-out to last-bit-in delay that varies with packet size

• TVi,o: TV value for the input and output port pair (i, o).

• Calculate Bi,o as follows:

13

Node A
(transmitter)

Node B
(transmitter)

Node B
(software
reception
time)

T1 rcv window
= Tc+TVio

time

T1 T2 T3 T4

Bi,o = floor(TVi,o / Tc) +4 --- baseline
• Max receiving window time interval Tc+TVio

• # of receiving buffer to accommodate the max
receiving window time:
floor((Tc+TVi,o)/ Tc) + 2 = floor(TVi,o/ Tc) + 3

• # of sending buffer = 1
• Hence, Bi,o = receiving buffer + sending buffer

= floor(TVi,o/ Tc) + 4
• Special cases:

• use one less buffer, i.e. Bi,o = floor(TVi,o / Tc) +3
• rev window spans over 2 cycles in case of lucky or intentional cycle

phase shift between A & B. We assume A&B independently run
cycles here, hence always use at least the baseline calculation

• Use more buffers, i.e. Bi,o = floor(TVi,o / Tc) +5/6/../n
• Introduce intentional extra delay, e.g. to balance replicated frames

over diff paths

Terms – cycle related
• cycle_id: cycle id assigned to a frame when the frame is placed to a

buffer with buf_id at an output port o
• Max value of cycle_id C is limited by the field length, e.g. if length is 4, then C

= 16, so that cycle_id [0, 15]
• C is the same for all ports on all nodes in a domain
• increments (modulo C) each cycle time

• N: the least common multiple over all Bo and C in a node. Value of N
can be different on the nodes.

• Si: Each input port i assigns each received frame a logical buffer
selector Si, which is an integer in the range 0 through N-1, and which
increments (modulo N) each cycle. The value of Si is si.
• si is directly used by data frames, not for (cycle) mapping determination

frames.

14
Note: All values are integers

4 steps in initialization and determination in
the following slides
• Step 1: Base parameter provisioning

• Step 2: Initialization of buffer selector and output buffers

• Step 3: Determination of cycle id mapping relation for port pair (i,o)

• Step 4: Determination of output cycle id and buffer id for data frame
• This step is for real data traffic, not part of initialization and provisioning.

15

One-time static
calculation and
provisioning

for each data frame

Example Step 1– base parameter provisioning

16

• The node has n=8 port.
• Cycle time Tc is set and time variation TVi,o for port pair (i,o) is known.
• Calculate Bi,o = floor(TVi,o / Tc) +4 and Bo is the max(Bi,o) for a port o.
• Assume the calculation results of the number of physical buffers Bo on

each port:
• B5 = B7 = 6, B6 = B8 = 4
• B1 – B4 not shown, assume all are 4

• Assume Max # of cycle_id C = 8, cycle_id [0, 7]
• i.e. length of cycle_id = 3 bit. (This is for picture simplicity. In reality,

it should be larger)
• Then N = 24 (the least common multiple of 4,6,8)
• Logical buffer selector Si makes value si rotate between 0 – 23.

• Note: It is the index assignment for calculation simplicity. No real
buffer attached.

1

2

3

4

5

6

7

8

Logical Buffer
Selector Si

Physical
Buffers

0 1 2 3 4 5 … 2122 23

s1

0 1 2 3 4 5 … 2122 23

s2

0 1 2 3 4 5 … 2122 23

s3

0 1 2 3 4 5 … 2122 23

s4

Example Step 2 – initialization of buffer
selector and output buffers

17

• All the ports of a node use the same system time T. T is the time elapsed
(in nanosecond) from the latest system startup. All the components in
the node can use T as a time source.

• System Synchronized Initialization:
• Initialize the starting time for Si and buf_id on all ports to be

multiple of N*Tc.
• Logically make the position and shifting for all Si the same, thus a

single selector S can be used to simplify the implementation. Let s
be the value of the selector S.

• Facilitate halfway port enabling
• Initialize s = 0 and the transmitting buffer id = 0 on all ports
• increments (modulo N) each cycle

• At any time T, the following computations hold
• s = (T mod (N*Tc)) / Tc ---- “/” is floor division
• buffer id currently transmitting frames on port o:

Tx-buf-id = s mod Bo

• cycle id used by currently transmitting buffer:
Tx-cycle-id = s mod C

1

2

3

4

5

6

7

8

Logical Buffer
Selector S

Physical
Buffers

System Clock T

Synchronized
initialization

Example Step 3 – Determination of cycle id mapping relation
for port pair (i,o)

18

Pre-requisite:
• Node A & B have run their cycles independently with cycle Tc

Purpose: For the input and output port pair (i, o) on B, determine mapping
parameter Mi,o so that a stable cycle mapping equation cycle_id_out =
(cycle_id_in + Mi,o) mod C can be used for future data frames over port pair (i,o)
no matter what time variation are experienced by that frame.

Mapping determination frame: special frame to determine the cycle mapping
relation between two neighbors during system initialization and auditing. It
experiences the least time variation
• Shortest frame – 64B
• Highest priority

Cycle mapping relation computation example:
• B receives the mapping determination frame from port 2
• Assume B’s system time is T. Compute the potential worst case s for the frame

over each output port o as：
so = ((T + TV2,o) mod (N*Tc)) / Tc

• Compute cycle_id_out for the potential worst case frame over each output
port o as：

cycle_id_outo = (so + 1) mod C
• Compute Mi,o = (cycle_id_outo - cycle_id_ini + C) mod C

• Assume the frame carries cycle_id_in = 7 from the incoming port 2 and
the computed cycle_id_out is 2 on output port 5, then
M2,5 = (2-7+8) mod 8 = 3

• Mi,o can be simplified to Mi for a port i if Mi takes Max(Mi,o) for a specific i.
That will make the # of mapping parameters O(n) instead of O(n2), n=#of ports.

1

2

3

4

5

6

7

8

Logical Buffer
Selector S

Physical
Buffers

System Clock T

1

2

3

4

5

6

7

8

Logical Buffer
Selector S

Physical
Buffers

System Clock T

A B

Worst case
cycle_id_out5

Worst case
cycle_id_out6

Worst case
cycle_id_out7

Worst case
cycle_id_out8

Compute
mapping
relation

Example Step 4 – Data frames: determination of
output cycle id and buffer id

19

Output cycle id:
• cycle_id_outo = (cycle_id_ini + Mi,o) mod C
• e.g. as M2,5 = 3 for port pair (2,5), the cycle_id determination

is defined as
cycle_id_out = (cycle_id_in + 3) mod 8

1

2

3

4

5

6

7

8

Physical
Buffers

System Clock T

1

2

3

4

5

6

7

8

Logical Buffer
Selector S

Physical
Buffers

System Clock T

A B

M2,5 = 3

Mapping table

Output buffer id:
• Cycle id used by currently transmitting buffer:

Tx-cycle-id = s mod C
• Compute the id offset between targeting placement buffer

and current transmitting buffer as：
offset = (cycle_id_outo - Tx-cycle-id + C) mod C

• Compute the buf_id on port o to place the frame as:
buf_ido = (s + offset) mod Bo

frame with
cycle_id_out

Summary of calculations – on each node, for each
priority

1. Set cycle time Tc and time variation TVi,o for port pair (i,o)

2. Calculate number of physical buffers Bo on each port o as:

• Bi,o = floor(TVi,o / Tc) +4

• Bo = max(Bi,o) for port o

3. Calculate N = the least common multiple of Bo and C

4. Start system synchronized initialization on every node for buffer selector S and ports

5. Use Mapping Determination Frame to calculate the mapping relation value Mi,o for port pair (i,o)
as follows:

• so = [((T + TVi,o) mod (N*Tc)) / Tc]

• cycle_id_outo = (so + 1) mod C

• Mi,o = (cycle_id_outo - cycle_id_ini + C) mod C

6. For an incoming frame for port pair (i,o), calculate the output cycle id cycle_id_outo and output
buffer id buf_ido

• output cycle id: cycle_id_outo = (cycle_id_ini + Mio) mod C

• output buffer id:
• Tx-cycle-id = s mod C

• offset = (cycle_id_outo - Tx-cycle-id + C) mod C

• buf_ido = (s + offset) mod Bo

20

Step 1: Base parameter
provisioning

Step 2: Initialization of
buffer selector and
output buffers

Step 3: Determination of
cycle id mapping relation

Step 4: Data frame
mapping

One-time static
calculation and
provisioning

for each data frame

Choice of cycle id length

• Number of cycle id C = 2L where L is the length in bits of cycle id

• C should be larger than the number of physical buffer Bo on any port
o in step 1 base parameter provisioning

• Discuss: L to be at least 5？
• C = 32 (L = 5)should be sufficiently large as it can support a 32-buffer port.

• If we make L=8, that would allow 256-buffer on any port.

• Preferred way of tagging (back to slide 6-8)?

21

Checksum re-compute

Will Checksum be required to re-compute per hop?
- Yes as the cycle id is changed every hop, but it does not introduce additional
cost.

- Checksum re-compute is always performed in normal forwarding at the
intermediate nodes regardless of whether any header value changes.

- Hence no additional checksum re-compute cost caused by cycle id change per
hop.

- If VLAN variant tagging is used, it is equivalent to normal VLAN mapping
procedures in switch implementation.

22

Support of multiple time cycles
The slides showed the example for a single priority traffic class which has a
single time cycle. It can also support multiple time cycles if CQF
enhancement mechanisms are enabled on multiple priority traffic classes.

- Use the multiple cycle time picture in new-finn-multiple-CQF-0921-v02 as
example.

- Each priority traffic class to establish the cycle mapping relations
independently.

23

Compute the cycle
mapping relations for
each class independently

Computation delay considerations

- Most computation is one-time thing at the initialization. Not
contribute to the data plane delay.

- For each data frame, it is simply a mapping from cycle_id_in to
cycle_id_out and determination of buffer id using add operations.

- Additional computation delay for each data frame is negligible.

24

Takeaways and Discussions
• Cycle id conceptually is an implicit pivot reception time of the frame.

Not impacted by the time variation experienced by the frame.

• It helps to remove the ambiguity of cycle identification and improve
the bandwidth utilizations when software reception time is used.

• The calculations for initialization and mapping relation establishment
are feasible.

• Per-frame data plane computation is simple.

- Good or bad idea for inclusion in Qdv?

25

