
git use in IEEE 802.1
yangsters-smansfield-git-examples-1122-v03

1



Executive Summary

• Desire is to use git the git was intended
• Leverage git to make merging easier

• Decisions to make
• Keep what we currently do

• All Editors fork and clone the IETF’s YangModels/yang github repository
• Create a single IEEE 802 repository for YANGsters, that is used by the IEEE project 

editors
• Have designated YANGster “yang leaders” interact with the IETF’s YangModels/yang github

• YANGsters needs to decide if we want to have our own “common 
repository” or if we want to continue to have the editors interact with the 
IETF’s github repository directly

2



Overview

• Most SDO including IEEE 802.1 use git for Yang
• git is an industry standard way to update files
• Models are published here: https://github.com/YangModels/yang

3

IETF IEEE IANA MEF BBF

Ultimately a copy of Published YANG goes here 

We need a low overhead process for IEEE 
802.1 authors to write, validate and publish 
YANG



Options for interacting with git repos

• Option 1: Fork of a common repository
• This is known as the “Fork and Pull model”

• See https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/getting-
started/about-collaborative-development-models#fork-and-pull-model

• Option 2: Local clone only of a common repository
• This is known as the “Shared repository model”

• See https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/getting-
started/about-collaborative-development-models#shared-repository-model

4

https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/getting-started/about-collaborative-development-models#fork-and-pull-model
https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/getting-started/about-collaborative-development-models#shared-repository-model


This tutorial discusses the shared model

5

repo

repo

https://github.com/
YangModels/yang

Editor 1’s  
Clone of 
their fork

Editor 1’s 
Personal 
Fork

Today’s mode of operation (fork and pull)

repo

reporepo

https://github.com/
YangModels/yang

IEEE 802.1
Shared Fork

Possible mode of operation (shared)

gi
th

ub
ho

st
ed

Local PC

repo

repo

Editor N’s  
Clone of 
their fork

Editor N’s 
Personal 
Fork

repo

… repo

Editor 1’s  
Clone of the 
shared fork

…

Editor N’s  
Clone of the 
shared fork



High Level Description of Lifecycle

• What we do now (Fork and Pull style)
• Each editor creates a fork of IETF’s YangModels/yang repository in the editor’s personal github
• Each editor then clones the fork to their local development environment
• Develops their changes in a branch on their local development environment
• Commits locally, then pushes to their remote
• Goes to their github and requests a pull request to the IETF’s Yang/YangModel

• Alternative (Shared style)
• IEEE YANGster “yang leader” forks the IETF’s YangModels/yang repository
• The “yang leader” enables access to the shared repository for all IEEE yang editors
• Each editor clones the shared repository to their local development environment
• Develops their changes in a branch on their local development environment
• Commits locally, then pushes their branch to the shared repository, then creates a pull request to 

merge their branch into the main branch of the shared repository
• The “yang leader” will review and approve the pull request
• If merged, the “yang leader” can submit the pull request to the IETF’s YangModels/yang repository

6

Focus of the 
rest of this 

presentation

Presenter Notes
Presentation Notes
Different styles of development in git:  https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/getting-started/about-collaborative-development-models

Example of “fork and pull” style:  https://gist.github.com/Chaser324/ce0505fbed06b947d962  

https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/getting-started/about-collaborative-development-models#fork-and-pull-model
https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/getting-started/about-collaborative-development-models#shared-repository-model


Benefits of the Shared Approach

• There is only one Fork of the IETF’s YangModels/yang repository
• Easier to keep the IEEE’s share repository synced

• The IEEE editors are only interacting with IEEE yang people
• Validation can be more IEEE focused
• Merging is handled by people that understand the IEEE Yang Models and structure
• Should be more responsive than waiting for YangCatalog people to merge
• Editors can assist one another easily.  The “yang leader” can update editors branches 

if needed to resolve conflicts.
• Easier for all editors to stay in sync with IEEE Yang Models and dependencies

• Number of commands and amount of syncing is reduced for the IEEE Yang 
Editors

7



Setup of Tutorial (Shared Example)

8

github.com/samans/ieee-test
(cloud - github)

Clone of github.com/samans/ieee-test
(samans-ncc75567’s local computer)

Github user: samans-ncc75567

… Editor n… (all have clones)

gi
th

ub
ho

st
ed

Local PC

Fork

Clone

Github user: samans

github.com/YangModels/yang
(cloud - github)

Github user: yang

This is the IETF’s Repository

This is the IEEE’s Shared Repository

Clone of github.com/samans/ieee-test
(someotheruser’s local computer)

Github user: someotheruser Clone



Clone locally
• For this example, here is a clone of samans/ieee-test:main

• git clone https://github.com/samans/ieee-test.git
• The pointer back to samans/ieee-test is called “origin”

• git remote -v
• If you haven’t done this, you need to

• Creating a personal access token - GitHub Docs

9

samans-ncc75567’s local computer

https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/creating-a-personal-access-token


High Level Process
1. Local Repo Synced with samans/ieee-test:main

• Make sure your local repository is up to date with the common repository
• Make sure your “github id” is a collaborator of samans/ieee-test:main

2. Make a Change Locally
1. Use branches
2. Fix revision dates of YANG files (See discussion of date conflicts)
3. Validate etc. (pretty print, pyang and yanglint)
4. Commit your changes locally

3. Resync the local repo with samans/ieee-test:main again and merge any changes into your 
branch
• Resolve any conflicts
• Revalidate using the yang tooling (like check.sh or equiv.)

4. Push branch to samans/ieee-test
5. Pull request to merge your branch into samans/ieee-test:main
6. “yang leaders” take it from here

10



STEP 1: Local Repo Synced 

• This step syncs your local main with samans/ieee-test:main (origin)

• Command line
• git checkout main
• git pull

• This ensures you have the latest files when you create your branch

11

samans-ncc75567’s local computer



STEP 2: Make a Change Locally
• git checkout –b foobar-04
• Edit the file(s)
• git status
• git commit –am “some commit message”
• If you want to save you branch into the 

repo
• git push origin foobar-04

• (using the “editors” github login)

12

samans-ncc75567’s local computer



STEP 3:  Resync and merge locally
• This step is needed to ensure you have the latest main in your branch

• This is important if ready to publish a draft with these new files, do this before you 
do the pull request

• This will make the “yang leaders” job easier by resolving any conflicts that arise from 
merges that other branches have done

13

• git checkout main
• git pull

if changes come down then…
• git checkout foobar-04
• git merge main foobar-04

• In rare cases you will need 
to resolve any conflicts 
(none in this example)

samans-ncc75567’s local computer



STEP 4: Push branch to samans/ieee-test 

• git checkout foobar-04

• git push origin foobar-04
• (using the “editors” github login)

14

github user:
samans-ncc75567



STEP 5: Pull request 

• Pull request to merge your branch into samans/ieee-test:main
• This is done on the github website logged in using the editor’s github

id (in the example samans-ncc75567)

15

github user:
samans-ncc75567



STEP 6:  Merge into samans/ieee-test (“yang leader”)

• The IEEE “yang leader” can merge the pull 
request, comment on it, etc. (In the 
example, logged into “samans” github id

• Then delete the branch

16

github user:
samans

A good idea



STEP 7: Pull request for IETF YangModels/yang (“yang leader”)

• If the pull request is merged into the common repository (samans/ieee-test)
• Then the “yang leader” can to a pull request to the IETF’s YangModels/yang repository

• This follows the same “fork and pull” procedure we do now
• Except only a small number of people need to worry about this

17



Things To Do

• High Level
• Setup repository
• Secure the repository
• Automated validation and testing support

• Create a github id for the IEEE “yang leader” called <<what???>>
• Create a github repository called:  <<what???>>
• Assign the collaborators (IEEE YANG editors github ids) to the new github
• Identify a few allowed to merge pull requests
• Lock down the main branch
• Update check scripts and enable automation

18



Summary of steps
• Step 1 (sync local)

• git checkout main
• git pull

• Step 2 (make local changes)
• git checkout -b foobar-04
• (make some changes to a file)
• git status
• git commit -am "some commit message"

• Step 3 (resync) (note: in the tutorial I introduced a change to the origin main, to illustrate what happens)
• git checkout main
• git pull
• git checkout foobar-04
• git merge main foobar-04 (this is the command that would show conflicts that need to be resolved -- none in this example)

• Step 4 (push branch to origin)
• git checkout foobar-04
• git push origin foobar-04

• Step 5 (pull request to suggest your branch to origin)
• This is done at https://github.com/samans/ieee-test while logged in as samans-ncc75567 (or whatever the editors github id is)

• Step 6
• The "yang leader" logs in to https://github.com/samans/ieee-test (in this example as samans) and clicks the "Merge pull request" 

button
• The branch can be deleted after it is successfully merged

• Step 7
• The "yang leader" then follows the existing process to do a pull request of the changes to the IETF's YangModels/yang repository

19

https://github.com/samans/ieee-test
https://github.com/samans/ieee-test


Backup Material

20



Date Conflicts
• Because of the way pyang and yanglint process imports

• If there are multiple revisions of the same module in the search 
path, the tooling will always use the module with the most 
recent revision date.

• In the IEEE directory structure there is the following structure 
(not exhaustive)

• YangModels
• yang

• ieee
• draft

• 802.1
• Qrev
• Qcw
• Qcz

• Published
• 802.1

• We have a situation where (for example)
• Ieee802-dot1q-types.yang is found in

• yang/ieee/draft/802.1/Qrev
• yang/ieee/draft/802.1/Qcw
• yang/ieee/draft/802.1/Qcz
• yang/ieee/published/802.1

• So it can tricky to ensure each project is including the correct 
module to validate

• The revision date of a module in published should always be 
older than any module found in a draft directory

21



Options

• Option 1: Fork of a common repository
• This is known as the “Fork and Pull model”

• See https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/getting-
started/about-collaborative-development-models#fork-and-pull-model

• Option 2: Local clone only of a common repository
• This is known as the “Shared repository model”

• See https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/getting-
started/about-collaborative-development-models#shared-repository-model

22

https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/getting-started/about-collaborative-development-models#fork-and-pull-model
https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/getting-started/about-collaborative-development-models#shared-repository-model


Notes
• If you have the permission, you can commit directly to the main branch
• If you don’t, you can propose a new file/changes or create a new branch and start a pull request.
• Keep in mind the branch is called “main” in both samans:ieee-test and in samans-ncc75567:ieee-test

• So when it says “Commit directly to the main branch” you need to be aware of which user you are logged-in as, and which 
repository you trying to modify.

23


	git use in IEEE 802.1
	Executive Summary
	Overview
	Options for interacting with git repos
	This tutorial discusses the shared model
	High Level Description of Lifecycle
	Benefits of the Shared Approach
	Setup of Tutorial (Shared Example)
	Clone locally
	High Level Process
	STEP 1: Local Repo Synced 
	STEP 2: Make a Change Locally
	STEP 3:  Resync and merge locally
	STEP 4: Push branch to samans/ieee-test 
	STEP 5: Pull request 
	STEP 6:  Merge into samans/ieee-test (“yang leader”)
	STEP 7: Pull request for IETF YangModels/yang (“yang leader”)
	Things To Do
	Summary of steps
	Backup Material
	Date Conflicts
	Options
	Notes

