
GrandMaster Frequency-Drift and its
influence on the RR and MasterTime

estimation at Slave Elements

Dragan Obradovic, Siemens AG

1IEEE 802.1AS / 60802 Dragan Obradovic

Line Topology

Oszil-
ator

+1

+/-1

Clock
(Tick Counter)

PCIe PTM

ClockSource

Oszil-
ator

+1

+/-1

Clock
(Tick Counter)

ClockMaster

Oszil-
ator +1

Clock
(Tick Counter)

LocalClock

MAC

PHY

Time stamping MAC

PHY

Time stamping MAC

PHY

Time stamping

Oszil-
ator

+1

+/-1

Clock
(Tick Counter)

PCIe PTM

ClockTarget

Oszil-
ator

+1

+/-1

Clock
(Tick Counter)

ClockSlave

Oszil-
ator +1

Clock
(Tick Counter)

LocalClock

Oszil-
ator

+1

+/-1

Clock
(Tick Counter)

PCIe PTM

ClockTarget

Oszil-
ator

+1

+/-1

Clock
(Tick Counter)

ClockSlave

Oszil-
ator +1

Clock
(Tick Counter)

LocalClock

MAC

PHY

Time stamping

2IEEE 802.1AS / 60802 Dragan Obradovic

Propagation Delays of Sync Messages: Frequency Drift
at GM only

3

GM S(1)

Sync(k-1)

Sync(k)

time

ResTime(@S(1),Sync(k-1))

ResTime(@S(1),Sync(k))

Assumptions:

• ClockMaster is equivalent with the
LocalClock at GM.

• At S(1) we are looking at the calculation of
RR and the MasterTime_Estimate of the
Residence Time which will be forwarded to
the next Slave element (S(1) is a relay
element)

• LocalClock at GM drifts linearly with the
rate “a”

• LocalClocks of S(1) and all other Slave
elements have constant frequencies

• All nominal frequencies of LocalClocks in all
elements are the same

→ Since the frequency of GM is changing
(linearly drifting), the RR(GM,S(1)) is a
function of time (this obviously holds for NRR
too)!

pDelay(GMtoS(1),Sync(k-1))

pDelay(GMtoS(1),Sync(k))

IEEE 802.1AS / 60802 Dragan Obradovic

Propagation Delays of Sync Messages: Frequency Drift
at GM only

4

Some facts about linearly drifting frequencies and the calculation of RR and its usage:

1) 𝑅𝑅 @𝑆 1 , 𝑡 =
𝑓𝑟𝑒𝑞𝐺𝑀(𝑡)

𝑓𝑟𝑒𝑞𝑆 1 𝑡
=

𝑓𝑟𝑒𝑞𝐺𝑀 𝑡0 +𝑎𝐺𝑀∗(𝑡−𝑡0)

𝑓𝑟𝑒𝑞𝑆(1) 𝑡0 +𝑎𝑆(1)∗(𝑡−𝑡0)

➔ The true RR is a function of time “t”! We always have to specify the time “t”
RR refers to when we estimate it

2) Let us estimate RR at S(1) using the Sync messages (k-1) and k.

𝑅𝑅𝑒𝑠𝑡 @𝑆 1 , 𝑘 − 1, 𝑘 =

=
𝑓𝑟𝑒𝑞𝐺𝑀 𝑇𝑠𝑒𝑛𝑑 @𝐺𝑀, 𝑘 − 1 + 𝑎𝐺𝑀 ∗

(𝑇𝑠𝑒𝑛𝑑(@𝐺𝑀, 𝑘) − 𝑇𝑠𝑒𝑛𝑑(@𝐺𝑀, 𝑘 − 1)
2 ∗ (𝑇𝑠𝑒𝑛𝑑 @𝐺𝑀, 𝑘 − 𝑇𝑠𝑒𝑛𝑑 @𝐺𝑀, 𝑘 − 1)

𝑓𝑟𝑒𝑞𝑆(1) 𝑇𝑎𝑟𝑟𝑖𝑣𝑎𝑙 @𝑆 1 , 𝑘 − 1 + 𝑎𝑆(1) ∗
(𝑇𝑎𝑟𝑟𝑖𝑣𝑎𝑙(@𝑆(1), 𝑘) − 𝑇𝑎𝑟𝑟𝑖𝑣𝑎𝑙(@𝑆(1), 𝑘 − 1)

2 ∗ (𝑇𝑎𝑟𝑟𝑖𝑣𝑎𝑙 @𝑆 1 , 𝑘 − 𝑇𝑎𝑟𝑟𝑖𝑣𝑎𝑙 @𝑆 1 , 𝑘 − 1)

≈
𝑓𝑟𝑒𝑞𝐺𝑀(𝑇𝑚𝑖𝑑𝑑𝑙𝑒(@𝐺𝑀, 𝑘 − 1, 𝑘))

𝑓𝑟𝑒𝑞𝑆 1 (𝑇𝑚𝑖𝑑𝑑𝑙𝑒(@𝑆(1), 𝑘 − 1, 𝑘))

➔ The estimate RRest really corresponds to the true RR in the middle of the (absolute) time interval between sending at GM and receiving Sync
messages at S(1). But since we have only the local timeframes, we use them to find the middle points.

GM S(1)

Sync(k-1)

Sync(k)

time

ResTime(@S(1),Sync(k-1))

ResTime(@S(1),Sync(k))

pDelay(GMtoS(1),Sync(k-1))

pDelay(GMtoS(1),Sync(k))

Tmiddle(@S(1),k-1,k)

Tmiddle(@GM,k-1,k)

Tarrival(@S(1),k)

Tarrival(@S(1),k-1)

Tsend(@GM,k-1)

Tsend(@GM,k)

IEEE 802.1AS / 60802 Dragan Obradovic

Propagation Delays of Sync Messages: Frequency Drift
at GM only

5

Question:

Given a time interval ResTime(@S(1),Sync(k)) in the LocalClock at S(1) timeframe,
define the “best” RRest(@S1, Tbest) to convert this ResTime to the Master-Time
timeframe

→ The solution is the RRest corresponding to the middle of that Residence-Time
interval at S(1)

𝑅𝑅𝑒𝑠𝑡 @𝑆 1 , 𝑇𝑏𝑒𝑠𝑡 ≈ 𝑅𝑅𝑒𝑠𝑡 @𝑆 1 ,
𝑅𝑒𝑠𝑡𝑖𝑚𝑒(@𝑆 1 ,𝑆𝑦𝑛𝑐 𝑘)

2

➔ If we could calculate RR(@S(1)) at any time, we should calculate in the middle
of the Residence-Time in the LocalClock timeframe, in order to optimally
convert the ResTime interval into the Master-Time timeframe.

➔ But we can calculate RR only at the arrival-instance of a Sync message, and at
that point it has already “aged” for the half of the last Tsync interval. We need
a prediction mechanism to map it to the middle of the Residence-Time
interval!

GM S(1)

Sync(k-1)

Sync(k)

time

ResTime(@S(1),Sync(k-1))

ResTime(@S(1),Sync(k))

pDelay(GMtoS(1),Sync(k-1))

pDelay(GMtoS(1),Sync(k))

Tmiddle(@S(1),k-1,k)

Tmiddle(@GM,k-1,k)

Tarrival(@S(1),k)

Tarrival(@S(1),k-1)

Tsend(@GM,k-1)

Tsend(@GM,k)

IEEE 802.1AS / 60802 Dragan Obradovic

Propagation Delays of Sync Messages: Frequency Drift
at GM only

6

Estimated RR (and NRR) at S(1) using Sync
messages (k-1) and (k) corresponds in the case of
linear frequency drift pretty much to the ratio of
the frequencies at the middle time point between
sending and arriving of these two Sync messages

→ At the time instant Tarrival(@S(1),k) the
estimate of RR (and NRR) at S(1) is already old by
time interval ≈(Tsync/2 + pDelay(GMtoS(1))

GM S(1)

Sync(k-1)

Sync(k)

time

ResTime(@S(1),Sync(k-1))

ResTime(@S(1),Sync(k))

pDelay(GMtoS(1),Sync(k-1))

pDelay(GMtoS(1),Sync(k))

Tmiddle(@S(1),k-1,k)

Tmiddle(@GM,k-1,k)

Tarrival(@S(1),k)

Tarrival(@S(1),k-1)
Tsend(@GM,k-1)

Tsend(@GM,k)

𝑅𝑅𝑒𝑠𝑡 @𝑆 1 , 𝑘 − 1, 𝑘 =
𝑇𝑠𝑒𝑛𝑑 @𝐺𝑀, 𝑘 − 𝑇𝑠𝑒𝑛𝑑 @𝐺𝑀, 𝑘 − 1

𝑇𝑎𝑟𝑟𝑖𝑣𝑒 @𝑆(1), 𝑘 − 𝑇𝑎𝑟𝑟𝑖𝑣𝑒 @𝑆(1), 𝑘 − 1
≈

≈
𝑓𝑟𝑒𝑞𝐺𝑀 𝑇𝑚𝑖𝑑𝑑𝑙𝑒 @𝐺𝑀, 𝑘 − 1, 𝑘

𝑓𝑟𝑒𝑞𝑆 1 𝑇𝑚𝑖𝑑𝑑𝑙𝑒 @𝑆(1), 𝑘 − 1, 𝑘
= 𝑅𝑅(𝑇𝑚𝑖𝑑𝑑𝑙𝑒)

Question: when will 𝑅𝑅𝑒𝑠𝑡 @𝑆 1 , 𝑘 − 1, 𝑘 be used?

IEEE 802.1AS / 60802 Dragan Obradovic

Propagation Delays of Sync Messages: Frequency Drift
at GM only

7

→ At the time instant Tarrival(@S(1),k) the estimate of RR
(and NRR) at S(1) is already old by time interval ≈
Tsync/2 + pDelay(GMtoS(1))

→ But when will it be needed?

𝑹𝑹𝒆𝒔𝒕 @𝑆 1 , 𝑘 − 1, 𝑘

GM S(1)

Sync(k-1)

Sync(k)

time

ResTime(@S(1),Sync(k-1))

ResTime(@S(1),Sync(k))

pDelay(GMtoS(1),Sync(k-1))

pDelay(GMtoS(1),Sync(k))

Tmiddle(@S(1),k-1,k)

Tmiddle(@GM,k-1,k)

Tarrival(@S(1),k)

Tarrival(@S(1),k-1)

Tsend(@GM,k-1)

Tsend(@GM,k)

Tsend(@S(1),k)

IEEE 802.1AS / 60802 Dragan Obradovic

Propagation Delays of Sync Messages: Frequency Drift
at GM only

8

Question: when will
𝑅𝑅𝑒𝑠𝑡 @𝑆 1 , 𝑘 − 1, 𝑘 be
used?

Answer:
• To scale the ResidenceTime

at S(1) of Sync(k), which is in
the LocalClock time frame,
into the GM-Time frame.
Optimally, we need RRest in
the middle of the
ResTime(@S(1), Sync(k))

• To forward it with a Sync
message going from S(1) to
S(2); Optimally, we need
RRest at the time instant
Tsend(@S1,k).

BUT: our RRest corresponds to
Tmiddle(@S(1),k-1,k)

➔ If drift compensation is applied, it
should predict the RR at these two time
instances!

𝑹𝑹𝒆𝒔𝒕 @𝑆 1 , 𝑘 − 1, 𝑘

GM S(1)

Sync(k-1)

Sync(k)

time

ResTime(@S(1),Sync(k-1))

ResTime(@S(1),Sync(k))

pDelay(GMtoS(1),Sync(k-1))

pDelay(GMtoS(1),Sync(k))

Tmiddle(@S(1),k-1,k)

Tmiddle(@GM,k-1,k)

Tarrival(@S(1),k)

Tarrival(@S(1),k-1)

Tsend(@GM,k-1)

Tsend(@GM,k)

Tsend(@S(1),k)

IEEE 802.1AS / 60802 Dragan Obradovic

Propagation Delays of Sync Messages: Frequency Drift
at GM only

9

Question: What happens
between two Slave elements?

Answer: At Tarrival(@S(N),k):
• 𝑹𝑹𝒆𝒔𝒕 @𝑆 𝑁 − 1 , 𝑘 − 1, 𝑘 is

delivered by the Sync(k). If the
drift compensation was done at
S(N-1), its “age” is only the
pDelay, which can be ignored in
most cases.

• NRRest @𝑆 𝑁 , 𝑘 − 1, 𝑘 is
calculated, but its age
correspond to Tmiddle(@S(N),k-
1,k). It should be drift-
compensated for the time
interval (Tarrival(@S(N),k)-
Tmiddle(@S(N),k-1,k)), so that it
corresponds to the same time as
the 𝑹𝑹𝒆𝒔𝒕(

)
@𝑆 𝑁 − 1 , 𝑘 −

1, 𝑘 .

𝑹𝑹𝒆𝒔𝒕 @𝑆 𝑁 , 𝑘 − 1, 𝑘 =
𝑹𝑹𝒆𝒔𝒕 @𝑆 𝑁 − 1 , 𝑘 − 1, 𝑘 *
NRRest @𝑆 𝑁 , 𝑘 − 1, 𝑘

S(N-1) S(N)

Sync(k-1)

Sync(k)

time

ResTime(@S(N),Sync(k-1))

ResTime(@S(N),Sync(k))

pDelay(S(N-1)toS(N),Sync(k-1))

pDelay(GMtoS(N-1),Sync(k))

Tmiddle(@S(N),k-1,k)

Tmiddle(@GM,k-1,k)

Tarrival(@S(N),k)

Tarrival(@S(N),k-1)

Tsend(@S(N-1),k-1)

Tsend(@S(N-1),k)

Tsend(@S(N),k)

NRRest @𝑆 𝑁 , 𝑘 − 1, 𝑘

IEEE 802.1AS / 60802 Dragan Obradovic

Propagation Delays of Sync Messages: Frequency Drift
at GM only

10

Question: What happens
between two Slave elements?

Drift-Compensation steps:

1) Drift-compensate NRRest
@𝑆 𝑁 , 𝑘 − 1, 𝑘 so that it

corresponds to Tarrival(@S(N),k). This
requires an estimate of the drift rate
of NRRest after receiving Sync(k).
.
2) Calculate 𝑹𝑹𝒆𝒔𝒕 @𝑆 𝑁 , 𝑘 − 1, 𝑘
by using the above compensated
NRRest and the RRest received by
Sync(k).

3) Use the above calculated
𝑹𝑹𝒆𝒔𝒕 @𝑆 𝑁 , 𝑘 − 1, 𝑘 to estimate
its drift rate. Use the latter to predict
RRest values at time points and
.

𝑹𝑹𝒆𝒔𝒕 @𝑆 𝑁 , 𝑘 − 1, 𝑘 =
𝑹𝑹𝒆𝒔𝒕 @𝑆 𝑁 − 1 , 𝑘 − 1, 𝑘 *
NRRest @𝑆 𝑁 , 𝑘 − 1, 𝑘

S(N-1) S(N)

Sync(k-1)

Sync(k)

time

ResTime(@S(N),Sync(k-1))

ResTime(@S(N),Sync(k))

pDelay(S(N-1)toS(N),Sync(k-1))

pDelay(GMtoS(N-1),Sync(k))

Tmiddle(@S(N),k-1,k)

Tmiddle(@GM,k-1,k)

Tarrival(@S(N),k)

Tarrival(@S(N),k-1)

Tsend(@S(N-1),k-1)

Tsend(@S(N-1),k)

Tsend(@S(N),k)

NRRest @𝑆 𝑁 , 𝑘 − 1, 𝑘

IEEE 802.1AS / 60802 Dragan Obradovic

Propagation Delays of Sync Messages: Frequency Drift
at GM only

Compensation steps at S(N):

1) At arbitrary Slave element „N“, after receiving a new Sync message, we need to:

• Estimate the “raw” NRRest

• Estimate the drift rate of NRRest (by using their raw values)

• Compensate the age of the current NRRest so that it corresponds to the time instant Tarrival (Sync(k))

2) Calculate the RRest(@N) by multiplying the RRest(@N-1) with the above compensated NRRest

3) Estimate the drift of the RRest calculated in 2)

4) Use the above estimated drift of RRest to calculate its compensated (predicted) values needed for:

• Converting the ResidenceTime interval in LocalClock to the Master-Time with the RRest corresponding to the „middle“ of this interval

• Providing RRest(@N) which will be sent by the Sync message Sync(k) to the next element S(N+1). This RRest(@N) should correspond
to the time of forwarding Sync(k) to „N+1“ element.

11IEEE 802.1AS / 60802 Dragan Obradovic

Propagation Delays of Sync Messages: Frequency Drift
at GM only

What is gained and at which price:

1) If drifts remain linear with the constant rate over the time that is needed for Sync(k) to reach the last element, and if the estimates of all
drifts (of NRRest and RRest at all intermediate elements) are accurate enough (t.b.d.), then the estimates of the RR and ResidenceTime in
the Master-Time timeframe at the element N is (“significantly”) more accurate than without the compensation

2) BUT, the influence of delays (Residence Times, pDelays and also Tsync) up to the element “N” is actually moved from RRest to the
estimates of the drifts of RRest! The delay (age) of a drift-estimate at the element “N” is equal to the total delay a Sync message needs to
get to “N” (plus an extra delay depending on the estimation algorithm)

3) Every error in the drift estimate is amplified by the prediction horizon length “dt”: RRest_compensated(t+dt) = RRest(t)+RRdrift_est*dt.
The noise in the system plays an important role too.

4) The drift estimate of RR at “N” depends on the drift estimates at all previous elements. Hence, we have a situation that could lead to “gain
peaking” if the filters used for the drift estimation are not appropriately chosen. This should be investigated.

12IEEE 802.1AS / 60802 Dragan Obradovic

NRR as a mean for calculating RR

• Rate Ratio RR at the element “N” is a product of
NRRs between pairs of elements between the GM
and N

• The estimate of RR at the element “N” by receiving
of the Sync-Message “j” (the same can be defined
at times of sending this Sync message) is equal to:

• 𝑅𝑅𝑒𝑠𝑡(𝐺𝑀,𝑁,@𝑇𝑖𝑚𝑒 = 𝑅𝑒𝑐𝑒𝑖𝑣𝑖𝑛𝑔 𝑜𝑓 𝑆𝑦𝑛𝑐(𝑘)) =
ς𝑗=2
𝑁 𝑚𝑁𝑅𝑅(𝑘, 𝑘 − 1,@𝑇𝑖𝑚𝑒 = 𝑅𝑒𝑐𝑒𝑖𝑣𝑖𝑛𝑔 𝑜𝑓 𝑆𝑦𝑛𝑐 𝑘 𝑎𝑡 𝐸𝑙𝑒𝑚𝑒𝑛𝑡 𝑗)

GM S(1) S(2) S(3) S(N)S(N-1)

Sync(k-1)

Sync(k)

Sync(k)

time

Sync(k-1)

13

Age of the original
information about
the GM frequency
the element N sees
after receiving the
Sync(k) message

→ The drift rate of
GM LocalClock
should not change in
this period!

IEEE 802.1AS / 60802 Dragan Obradovic

	Folie 1: GrandMaster Frequency-Drift and its influence on the RR and MasterTime estimation at Slave Elements
	Folie 2: Line Topology
	Folie 3: Propagation Delays of Sync Messages: Frequency Drift at GM only
	Folie 4: Propagation Delays of Sync Messages: Frequency Drift at GM only
	Folie 5: Propagation Delays of Sync Messages: Frequency Drift at GM only
	Folie 6: Propagation Delays of Sync Messages: Frequency Drift at GM only
	Folie 7: Propagation Delays of Sync Messages: Frequency Drift at GM only
	Folie 8: Propagation Delays of Sync Messages: Frequency Drift at GM only
	Folie 9: Propagation Delays of Sync Messages: Frequency Drift at GM only
	Folie 10: Propagation Delays of Sync Messages: Frequency Drift at GM only
	Folie 11: Propagation Delays of Sync Messages: Frequency Drift at GM only
	Folie 12: Propagation Delays of Sync Messages: Frequency Drift at GM only
	Folie 13: NRR as a mean for calculating RR

