Secure Device Identity’ Profile for TSN-IA: DevID Signature Suites

IEEE 802 Wireless Interim Session; January 19, 2023

Kai Fischer, Andreas Furch, Oliver Pfaff
Problem Statement

• During the Sept. 2022 Interim Session, we presented the digest of the IEC/IEEE 60802 text contribution “Secure Device Identity Profile” (see 60802-Pfaff-et-al-Secure-Device-Identity-Profile-0922-v04.pdf)

• Remaining task from this session was to find a consensus for the number and choice of IEC/IEEE 60802 supported DevID signature suites

• Goal of this presentation: Propose the DevID signature suite selection/definition for IEC/IEEE 60802 as part of the secure device identity profile of IEC/IEEE 60802

• Note: the secure device identity profile of IEC/IEEE 60802 shall be IEEE802.1AR-2018 compliant
Given Things

- IEEE 802.1AR uses the concept of “DevID Signature Suites” to specify cryptographic algorithms used for signing use cases in an interoperable manner
- IEEE 802.1AR-2018 specifies 3 instances of “DevID Signature Suites”
 - RSA-2048/SHA-256
 - ECDSA P-256/SHA-256
 - ECDSA P-384/SHA-384
- IEC/IEEE 60802 aims at using IDevIDs according IEEE 802.1AR-2018 to
 i. Protect the initial NETCONF/YANG exchange(s) with IA stations that are in factory default state
 ii. Safeguard identity claims made (via NETCONF/YANG) by IA stations that are in factory default state
- IEC/IEEE 60802 needs to profile its “DevID Signature Suites” instances to achieve objectives i. and ii. in an interoperable manner
Key Questions for IEC/IEEE 60802

Q1: **number** of **required** “DevID Signature Suite(s)”
 - n=1
 - n>1

Q2: **name and description** of the **required** “DevID Signature Suite(s)”

Q3: **number** of **optional** “DevID Signature Suite(s)”
 - m=0
 - m>0

Q4: **name and description** of the **optional** “DevID Signature Suite(s)”
IEC/IEEE 60802 Impact of these Questions

Specification impact: minor
- No conceptual impact on informative text in 4.8 (Security for TSN-IA)
- No conceptual impact on normative text in 6.3 (Security model)
- They matter for the following normative text (in a very obvious way)
 - 5.5.6 (IA-station requirements for security)
 - 5.6.3 (IA-station options for security)

Implementation impact: major
- They matter for the realization of IEC/IEEE 60802-compliant and interoperable products
How to Interpret Required and Optional According to IEEE 802.1AR-2018

• Goal: achieve **interoperability** on the one hand, do not prohibit **variety** on the other hand

• Proposal:

 • DevID signature suite x is **required**:
 a) IA-station **has** a DevID module that supports the DevID signature suite x
 b) IA-station **has** an IDevID credential with certification path plus trust anchor information issued under DevID signature suite x as part of its factory default state
 c) IA-station **may** have additional IDevID credential(s) with certification path plus trust anchor information issued under a combination of any required or any optional DevID signature suites

 • DevID signature suite y is **optional**:
 a) IA-station **may** have a DevID module that supports the DevID signature suite y
 b) IA-station **has** an IDevID credential with certification path plus trust anchor information issued under DevID signature suite y as part of its factory default state
 c) IA-station **may** have additional IDevID credential(s) with certification path plus trust anchor information issued under a combination of any required or any optional DevID signature suites
DevID Signature Suite: Fundamental Difference Items b) and c)

b)

Trust Anchor Information
 └── Verify using DevID Signature Suite X

Intermediate CA Certificate
 └── Verify using DevID Signature Suite X

 Shall be identical

EE Certificate

c)

Trust Anchor Information
 └── Verify using DevID Signature Suite X

Intermediate CA Certificate
 └── Verify using DevID Signature Suite Y

 May be different

EE Certificate
A1: Number of Required “DevID Signature Suite(s)”

- **Facts:**
 - Pro $n=1$: clear focus and minimal complexity
 - Pro $n>1$: choice for users e.g. desired security strength for protecting the initial security setup
- **Suggestion:** $n=1$
- **Argument:** IEC/IEEE 60802-compliant products still have to be created, ‘choice’ is a concern that will matter for subsequent editions of the standard
A2: Names and Description of the Required “DevID Signature Suite(s)”

- **Plan A: ECDSA P-256/SHA-256**
 - **Reason:**
 - Covered by IEEE 802.1AR-2018
 - Tentative requirement for NETCONF-over-TLS for v1.3 (draft-ietf-netconf-over-tls13-01)
 - **Handicap:** supports 128 bit security strength only, this limitation applies for EE certificates, intermediate CA certificates and trust anchors under the interoperability clause b)

- **Plan B: ECDSA P-521/SHA-512**
 - **Reason:** mitigate the plan A handicap
 - **Handicap:** ECDSA P-521/SHA-512 is not yet covered by IEEE 802.1AR
 - **Approach:** temporarily document this DevID Signature Suite in IEC/IEEE 60802; text (ca. 1 page) shall be created in cooperation with IEEE 802.1 Security Taskgroup and moved into an 802.1AR update asap
A3: Number of Optional “DevID Signature Suites”

- **Facts:**
 - Pro \(m=0 \): clear focus and minimal complexity
 - Pro \(m>0 \): support manufacturers that worry about cryptographic agility (at their own discretion)

- **Suggestion:** \(m>0 \)

- **Argument:** do not prohibit variety especially allow to address cryptographic agility
A4: Names of the Optional “DevID Signature Suite(s)”

- **Plan A**: ECDSA P-521/SHA-512, EdDSA instance Ed25519**, EdDSA instance Ed448**
 - **Reason**:
 - Do not prohibit variety, facilitate cryptographic agility
 - Support of 128, 224 and 256 bit security strengths
 - **Handicap**:
 - ECDSA P-521/SHA-512, EdDSA instance Ed25519, EdDSA instance Ed448 are not yet covered by IEEE 802.1AR
 - EdDSA instance Ed448 introduces a new hash algorithm family (SHAKE)
 - **Approach**: temporarily document this DevID Signature Suite in IEC/IEEE 60802; text (ca. 1 page) shall be created in cooperation with IEEE 802.1 Security Taskgroup and moved into an 802.1AR update asap
- **Plan B**: anything else

*: this plan A suggestion assumes that Plan A is chosen in A2
**: notation according IETF RFC 8032
Concluding Remarks

• RSA was not included in this proposal because of excessive key lengths (3072 bits or more) as well as to reduce the complexity for implementation and testing.

• Implications for TLS cipher suites are (in the Plan A/A case):
 • TLSv1.2 according IEC/IEEE 60802 D1.4 profile: no impact; all combinations are feasible
 • TLSv1.3 according draft-ietf-netconf-over-tls13-01: no impact; TLS cipher suite is separated from the digital signature algorithms*

*: TLSv1.3 changed the cipher suite concept to separate the authentication and key exchange mechanisms from the record protection algorithm, which also resulted in a different naming concept for cipher suites.
Contacts

Kai Fischer, Siemens AG, T CST SES-DE, kai.fischer@siemens.com

Andreas Furch, Siemens AG, T CST SES-DE, andreas.furch@siemens.com

Oliver Pfaff, Siemens AG, DI FA CTR ICO PO, oliver.pfaff@siemens.com
Intermediate CA-level (0..n certificates per 1 path)

(issuer, ... subject, subjectPublicKeyInfo, ... signatureAlgorithm, signatureValue)

Instance match

Type match

Verifies

(issuer, ... subject, subjectPublicKeyInfo, ... signatureAlgorithm, signatureValue)

Instance match

Type match

Verifies

(issuer, ... subject, subjectPublicKeyInfo, ... signatureAlgorithm, signatureValue)

EE-level (1 certificate per 1 path)

(issuer, ... subject, subjectPublicKeyInfo, ... signatureAlgorithm, signatureValue)

Instance match

Type match

Verifies

(issuer, ... subject, subjectPublicKeyInfo, ... signatureAlgorithm, signatureValue)
Trust Anchor Information: IETF RFC 5280, 6.1.1 (d)

Trust anchor information (1..n objects per certification path validation algorithm instantiation)

- Certificate object

 (....issuer,... subject, subjectPublicKeyInfo...signatureAlgorithm, signatureValue)

 or

- Raw public key

 (subjectPublicKeyInfo)

 or

- Fingerprint value for certificate object

 Hash (certificate object)

 or

- Fingerprint value for raw public key

 Hash (subjectPublicKeyInfo)

 or

 ...
