

Latency Model and Example Reservation Flow in RAP

IEEE 802.1 Meeting, January 2023

Alexej Grigorjew

University of Wuerzburg alexej.grigorjew@uni-wuerzburg.de

Feng Chen

Siemens AG chen.feng@siemens.com

Overview for this Presentation

- ► Recap: last presentation (measurement points for latency models)
 - cf. dd-grigorjew-measurement-points-0522-v02.pdf
 - What are the measurement points (and resulting delay segments)?
 - What are the reasons for this change?
 - Some implications

▶ More implications

- Visualization of delay segments
- What happens at the Listener?
 - Suggestion: merge two configurations per delay segment
- What happens with different Shapers?
 - Suggestion: communicate the behavior at the Priority Transmission Selection Queue

Example reservation flow

- Very simple scenario (2 switches, 2 streams)
- Clarify general procedure
- Clarify the implications of delay segments

Recap: Last Presentation

MEASUREMENT POINTS FOR LATENCY MODELS

Organical Presentation

- ► Split "queuing" latency of formal latency models into...
 - Transmission Selection Algorithm (TSA)
 - Priority-Queuing, where only the eligible frames interfere

Previous model:

Extended model:

TSA- Priority-Queuing Queuing

- Add measurement point during queuing when frame becomes eligible for transmission
 - SP: Immediately after enqueuing
 - CBSA: When credits >= 0, the head of the queue becomes eligible for transmission
 - ATS: When the defined eligibility time for that frame is reached (cf. Qcr)
 - CQF: When queues swap roles (receive → send), all frames in the send queue become eligible

Suggestion: Use ATS measurement points for all shapers in RAP

- Suggestion: Use the ATS measurement points for all TSAs & latency models in RAP
- Per-hop latency is given by...
 - Queuing after eligibility time was reached (upstream) // queuing for priority transmission selection
 - Propagation
 - Store-and-Forward (downstream)
 - Processing (downstream)
 - Queuing until eligibility time is reached (downstream) // queuing for transmission selection algorithm
- Comment during presentation: PHY can often introduce a delay after priority queuing. The simple suggestion is to account for it as part of the upstream processing delay, even if it technically occurs after the measurement point.

Why is shaper-to-shaper latency beneficial?

Distributed latency model:

CQF (edge to edge measurement):

CQF (shaper to shaper):

dd-grigorjew-strict-priority-latency-0320-v02.pdf

Generally:

- Minimum delay and maximum delay accumulated per hop
- Accumulating bursts are calculated based on (accMaxD - accMinD)
- A lower latency variance is better for downstream delay computation

Fully-received to fully-received:

upstream priority queue is a major source of jitter

but only after the measurement point

Shaper to shaper:

All sources of jitter can be removed;
Well-defined traffic pattern, as
intended by the TSA, is measured
directly after the TSA.

Visualization and new Suggestions

MORE IMPLICATIONS

Full End-to-end Path with Delay Segments

- One delay segment includes
 - TX of upstream bridge (SW 1)
 - RX of downstream bridge (SW 2)
 - TX of downstream bridge (SW 2)
- Downstream bridge (SW 2) performs the bounds check during reservation
- ▶ But where does the configuration (delay threshold) come from? SW 1 or SW 2?
- ► General problem: on any path with **n bridges** (2 bridges), we have **n+1 delay segments** (3 delay segments)

Bounds Check vs. Configuration

Ingress Port	Egress Port	Traffic Class	Delay Threshold		
1	2	7	150 μs		
1	2	6	500 μs		

- ▶ Initial suggestion: SW 2 performs bounds check and contains the delay threshold config
 - But: we don't really like the fact that SW 1 has no say, although it is involved in the delay segment

In addition: what happens at the Listener?

- It can perform bounds checks
- But we don't really want to configure that aspect in our end devices
- (Config sources can be: default configuration, profile, CLI, Network Management System)

Suggestion: Both Devices Suggest a Delay Threshold

Outgoing Delay Segments				ı	Incoming Delay Segments			
Egress Port	Traffic Class	Delay Threshold	delay threshold δ1	delay threshold δ2	Ingress Port	Egress Port	Traffic Class	Delay Threshold
2	7	150 μs			1	2	7	150 μs
2	6	500 μs			1	2	6	500 μs
	T	SV	W 1	SW 2	ds check: cur	rent delay	d <= min(δ	51, δ2)

- Suggestion: split threshold configuration for each delay segment into two configs
 - Upstream bridge (SW 1) has one config for each egress port and traffic class
 - Downstream bridge (SW 2) has one config for each in ingress/egress port pair and traffic class
- ► Each bridge will have two delay config tables: one for outgoing delay segments, one for incoming segments
- \triangleright Upstream (SW 1) communicates the outgoing δ1 with the downstream neighbor (SW 2)
 - Downstream aggregates both configurations and selects the minimum of both for bounds checking

Implications of Having two Delay Threshold Tables

- ► The listener no longer needs a delay threshold configuration
 - It can simply use $\delta 1$ of upstream (SW 2 in that case)
 - It can still specify its own $\delta 2$ where necessary (e.g., routers are listeners from layer 2 RAP point of view)
- \blacktriangleright When optimizing a network's configuration (e.g., via NMS), simply use the same value for δ1 and δ2
 - It is the same delay segment after all
- Upstream (SW 1) could specify "don't care" in order to prevent unnecessary resource constraints
 - Technically, it still **needs** a valid outgoing $\delta 1$ config in case an end device connects to that port

A Closer Look at Delay Segments with Different Shapers

CQF (shaper to shaper):

- ► Recap old presentation: delay segments begin when the frame "becomes eligible for transmission"
- More specifically, we want delay segments to be tied to the events that change the shaper's state
- This ensures that the shaper has the intended effect on the latency model
- This is simple for ATS and CQF:

Not All Shapers Use All Delay Segments

Suggestion: Communicate Whether the Last Queue is Part of the Delay Segment

- Suggestion: Instead of fixed, shaper-specific behavior, introduce a variable that indicates whether the (pure) priority transmission selection is part of the next delay segment
- ► For heterogeneous networks, this creates four scenarios:

- ► Each device can now specify which delay segment the last transmission queue belongs to
 - ATS and CQF do not include it
 - CBS does always include it
 - SP can now decide! (this can help with the vast zoo of end devices)

This includes the bounds check and the accMaxLatency field

TAs, LAs, Bounds Checks, Example Values

EXAMPLE RESERVATION PROCESS

Disclaimer

- Just a simple example!
- Many things are simplified
- Some things are only suggestions
- Some things are subject to change in the standard
- See this as a means for easy introduction
- Please do not cling to the details

Example Topology Overview

Configuration

only this is

Stream 1

Bounds Check on SW 1 (EgressPort: SW 2)

Adjusted TA is Propagated to other Ports

Bounds Check on SW 2 (EgressPort: Listener 2)

Bounds Check on SW 2 (EgressPort: Listener 1)

Adjusted TA is Propagated to other Ports

Bounds Check on Listener 1

Listener 2 is not Attaching

Listener 1 sends LA

Bounds Check on SW 2 (EgressPort: Listener 1)

Reservation on SW 2 Successful

SW 2 Forwards the LA to SW 1

Bounds Check on SW 1 (EgressPort: SW 2)

Reservation on SW 1 Successful

SW 1 Forwards the LA to the Talker

Talker Received Successful LA and Starts to Transmit

Stream 2

Bounds Check on SW 1 (EgressPort: SW 2)

Adjusted TA is Propagated to other Ports

Bounds Check on SW 2 (EgressPort: Listener 2)

Bounds Check on SW 2 (EgressPort: Listener 1)

Adjusted TA is Propagated to other Ports

Bounds Check on Listener 1

Bounds Check on Listener 2

Listener 1 sends LA

Bounds Check on SW 2 (EgressPort: Listener 1)

Reservation on SW 2 (Port 1) Successful

SW 2 Forwards the LA to SW 1

Listener 2 sends LA

Bounds Check on SW 2 (EgressPort: Listener 2)

Reservation on SW 2 (Port 2) Successful

SW 2 does Nothing, Existing LA for this Stream Unchanged

Bounds Check on SW 1 (EgressPort: SW 2)

Reservation on SW 1 Successful

Alexej Grigorjew

SW 1 Forwards the LA to the Talker

Talker Received Successful LA and Starts to Transmit


```
topo = Topology()
   switches = [topo.add node(Switch("sw1"))]
   switches.append(topo.create_and_add_links(switches[-1], Switch("sw2"), 1e9))
   talkers = [topo.create_and_add_links(switches[0], Host("talker1"), 1e9),
               topo.create and add links(switches[0], Host("talker2"), 1e9)]
   listeners = [topo.create and add links(switches[-1], Host("listener1"), 1e9),
                 topo.create and add links(switches[-1], Host("listener2"), 1e9)]
   # Config
                  prio = (0, 1, 2, 3, 4, 5, 6, 7)
   per hop guarantees = (inf, inf, inf, inf, 50e6, 10e6, 500e3, 150e3)
   topo.update guarantees all links(per hop guarantees)
   # Streams
   streams = []
   stream2 = Stream(label="s1",
                      path=topo.shortest path(talkers[0], listeners[0]),
                      priority=7,
                      rate=220e3, # in bits / s
                      burst=1020 * 8, # bits
                      minFrameSize=64 * 8, # bits
                      maxFrameSize=1000 * 8) # bits
   streams.append([stream2])
   # TODO: temporary
   topo.add stream(stream2)
   for link, tup in apply_model_to_topology(topo, "sp_simple").items():
        print(f"{link.name}: \t {tup}")
   stream1 = Stream(label="s0",
                      path=topo.shortest_path(talkers[0], listeners[0]),
                      priority=7,
                      rate=10e6, # in bits / s
                      burst=250 * 8, # bits
                      minFrameSize=100 * 8, # bits
                      maxFrameSize=230 * 8) # bits
   streams.append([stream1])
   # Dirty hack for multicast streams
UNISTREAM1 2 = same stream different listener(topo, stream1, listeners[1])
| IEEE 802.1 Meeting — January 30th 2023 — Latency Model and Example Reservation Flow in RAP
| WUSTREAMS[-1].append(stream1_2)
```

```
def main()
   topo = Topology()
   switches = [topo.add_node(Switch("sw1"))]
   switches.append(topo.create_and_add_links(switches[-1], Switch("sw2"), 1e9))
   talkers = [topo.create_and_add_links(switches[0], Host("talker1"), 1e9),
              topo.create_and_add_links(switches[0], Host("talker2"), 1e9)]
   listeners = [topo.create_and_add_links(switches[-1], Host("listener1"), 1e9),
                topo.create_and_add_links(switches[-1], Host("listener2"), 1e9)]
   per_hop_guarantees = (inf, inf, inf, inf, 50e6, 10e6, 500e3, 150e3)
   topo.update_quarantees_all_links(per_hop_quarantees)
   streams = []
   stream2 = Stream(label="s1",
                    path=topo.shortest_path(talkers[0], listeners[0]),
                    rate=220e3, # in bits / s
   streams.append([stream2])
   # TODO: temporary
   topo.add_stream(stream2)
   for link, tup in apply_model_to_topology(topo, "sp_simple").items()
       print(f"{link.name}: \t {tup}")
   stream1 = Stream(label="s0",
                    path=topo.shortest_path(talkers[0], listeners[0]),
   streams.append([stream1])
   stream1_2 = same_stream_different_listener(topo, stream1, listeners[1])
   streams[-1].append(stream1_2)
   # TODO: temporary
   print("-")
   topo.add_stream(stream1)
   topo.add_stream(stream1_2)
   for link, tup in apply_model_to_topology(topo, "sp_simple").items(): 55
       print(f"{link.name}: \t {tup}")
```

Stream 1:

listener2-sw2: (inf, inf, inf, inf, 12336, 12336, 12336) talker1-sw1: (inf, inf, inf, inf, 31527, 22727, 20637, 20527) (inf, inf, inf, 12336, 12336, 12336, 12336) sw1-talker2: sw1-sw2: (inf, inf, inf, inf, 31558, 22758, 20668, 20558) (inf, inf, inf, 12336, 12336, 12336) talker2-sw1: sw2-listener1: (inf, inf, inf, inf, 31589, 22789, 20699, 20589) listener1-sw2: (inf, inf, inf, inf, 12336, 12336, 12336) sw2-listener2: (inf, inf, inf, 12336, 12336, 12336, 12336) sw2-sw1: (inf, inf, inf, inf, 12336, 12336, 12336) (inf, inf, inf, 12336, 12336, 12336, 12336) sw1-talker1:

_

Stream 2:

listener2-sw2: (inf, inf, inf, inf, 12336, 12336, 12336) talker1-sw1: (inf, inf, inf, inf, 534927, 126127, 29037, 23927) (inf, inf, inf, 12336, 12336, 12336, 12336) sw1-talker2: sw1-sw2: (inf, inf, inf, 536350, 127550, 30460, 25350) talker2-sw1: (inf, inf, inf, 12336, 12336, 12336, 12336) (inf, inf, inf, 537773, 128973, 31883, 26773) sw2-listener1: listener1-sw2: (inf, inf, inf, inf, 12336, 12336, 12336) (inf, inf, inf, 518520, 118520, 23520, 18520) sw2-listener2: sw2-sw1: (inf, inf, inf, inf, 12336, 12336, 12336) (inf, inf, inf, inf, 12336, 12336, 12336) sw1-talker1:

THANK YOU!

Questions, comments, suggestions?

Alexej Grigorjew

University of Wuerzburg

Chair of Communication Networks

Email: alexej.grigorjew@uni-wuerzburg.de