Latency Model and Example Reservation Flow in RAP
IEEE 802.1 Meeting, January 2023

Alexej Grigorjew
University of Wuerzburg
alexej.grigorjew@uni-wuerzburg.de

Feng Chen
Siemens AG
chen.feng@siemens.com
Overview for this Presentation

Recap: last presentation (measurement points for latency models)
- cf. dd-grigorjew-measurement-points-0522-v02.pdf
- What are the measurement points (and resulting delay segments)?
- What are the reasons for this change?
- Some implications

More implications
- Visualization of delay segments
- What happens at the Listener?
 - Suggestion: merge two configurations per delay segment
- What happens with different Shapers?
 - Suggestion: communicate the behavior at the Priority Transmission Selection Queue

Example reservation flow
- Very simple scenario (2 switches, 2 streams)
- Clarify general procedure
- Clarify the implications of delay segments

if we have time
Recap: Last Presentation

MEASUREMENT POINTS FOR LATENCY MODELS
Extended delay model, including transmission selection algorithm

- Split “queuing” latency of formal latency models into...
 - Transmission Selection Algorithm (TSA)
 - Priority-Queuing, where only the eligible frames interfere

Previous model:

- Queuing (including TSA)

Extended model:

- Add measurement point during queuing when frame becomes eligible for transmission
 - SP: Immediately after enqueuing
 - CBSA: When credits >= 0, the head of the queue becomes eligible for transmission
 - ATS: When the defined eligibility time for that frame is reached (cf. Qcr)
 - CQF: When queues swap roles (receive → send), all frames in the send queue become eligible
Suggestion: Use ATS measurement points for all shapers in RAP

Per-hop latency is given by...

- Queuing after eligibility time was reached (upstream) // queuing for priority transmission selection
- Propagation
- Store-and-Forward (downstream)
- Processing (downstream)
- Queuing until eligibility time is reached (downstream) // queuing for transmission selection algorithm

Comment during presentation: PHY can often introduce a delay after priority queuing. The simple suggestion is to account for it as part of the upstream processing delay, even if it technically occurs after the measurement point.

IEEE 802.1 Meeting – January 30th, 2023 – Latency Model and Example Reservation Flow in RAP

Alexej Grigorjew
Why is shaper-to-shaper latency beneficial?

Distributed latency model:

<table>
<thead>
<tr>
<th>Listener</th>
<th>accMinD</th>
<th>accMaxD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bridge n</td>
<td></td>
<td></td>
</tr>
<tr>
<td>…</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bridge 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Talker</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CQF (edge to edge measurement):

<table>
<thead>
<tr>
<th>accMinD</th>
<th>accMaxD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CQF (shaper to shaper):

<table>
<thead>
<tr>
<th>accMinD</th>
<th>accMaxD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fully-received to fully-received:

- Minimum delay and maximum delay accumulated per hop
- Accumulating bursts are calculated based on \((accMaxD - accMinD)\)
- A lower latency variance is better for downstream delay computation

Shaper to shaper:

- All sources of jitter can be removed; **Well-defined traffic pattern, as intended by the TSA, is measured directly after the TSA.**

dd-grigorjew-strict-priority-latency-0320-v02.pdf

Generally:

- Minimum delay and maximum delay accumulated per hop
- Accumulating bursts are calculated based on \((accMaxD - accMinD)\)
- A lower latency variance is better for downstream delay computation
Visualization and new Suggestions

MORE IMPLICATIONS
One delay segment includes:
- TX of upstream bridge (SW 1)
- RX of downstream bridge (SW 2)
- TX of downstream bridge (SW 2)

Downstream bridge (SW 2) performs the bounds check during reservation.

But where does the configuration (delay threshold) come from? SW 1 or SW 2?

General problem: on any path with \text{n} bridges (2 bridges), we have \text{n+1 delay segments} (3 delay segments)
Initial suggestion: SW 2 performs bounds check \textbf{and} contains the delay threshold config
- But: we don’t really like the fact that SW 1 has no say, although it is involved in the delay segment

In addition: what happens at the Listener?
- It can perform bounds checks
- But we don’t really want to \textbf{configure} that aspect in our end devices
- (Config sources can be: default configuration, profile, CLI, Network Management System)
Suggestion: Both Devices Suggest a Delay Threshold

- Suggestion: split threshold configuration for each delay segment into two configs
 - Upstream bridge (SW 1) has one config for each egress port and traffic class
 - Downstream bridge (SW 2) has one config for each in ingress/egress port pair and traffic class
- Each bridge will have two delay config tables: one for outgoing delay segments, one for incoming segments
- Upstream (SW 1) communicates the outgoing δ_1 with the downstream neighbor (SW 2)
 - Downstream aggregates both configurations and selects the minimum of both for bounds checking

<table>
<thead>
<tr>
<th>Egress Port</th>
<th>Traffic Class</th>
<th>Delay Threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>7</td>
<td>150 µs</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>500 µs</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ingress Port</th>
<th>Egress Port</th>
<th>Traffic Class</th>
<th>Delay Threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>7</td>
<td>150 µs</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>6</td>
<td>500 µs</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Outgoing Delay Segments

Incoming Delay Segments

(bounds check: current delay $d \leq \min(\delta_1, \delta_2)$
Implications of Having two Delay Threshold Tables

The listener no longer needs a delay threshold configuration

- It can simply use δ_1 of upstream (SW 2 in that case)
- It can still specify its own δ_2 where necessary (e.g., routers are listeners from layer 2 RAP point of view)

When optimizing a network’s configuration (e.g., via NMS), simply use the same value for δ_1 and δ_2

- It is the same delay segment after all

Upstream (SW 1) could specify “don’t care“ in order to prevent unnecessary resource constraints

- Technically, it still needs a valid outgoing δ_1 config in case an end device connects to that port

<table>
<thead>
<tr>
<th>Outgoing Delay Segments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egress Port</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>...</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Incoming Delay Segments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ingress Port</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>...</td>
</tr>
</tbody>
</table>

bounds check: current delay $d \leq \min(\delta_1, \delta_2)$
A Closer Look at Delay Segments with Different Shapers

- Recap old presentation: delay segments begin when the frame “becomes eligible for transmission”
- More specifically, we want delay segments to be tied to the events that change the shaper’s state
- This ensures that the shaper has the intended effect on the latency model
- This is simple for ATS and CQF:

ATS:

CQF (shaper to shaper):

CQF (shaper to shaper):

when the eligibility time of that group is reached

when the gate of that class is opened

ACC Min D

ACC Max D
Not All Shapers Use All Delay Segments

ATS: when the eligibility time of that group is reached

CQF: when the gate of that class is opened

SP: immediately after enqueuing

CBS: immediately after dequeuing

There is no shaping with Strict Priority!

Credit decreases only during frame transmissions!
Suggestion: Communicate Whether the Last Queue is Part of the Delay Segment

- Suggestion: Instead of fixed, shaper-specific behavior, introduce a variable that indicates whether the (pure) priority transmission selection is part of the next delay segment.

- For heterogeneous networks, this creates four scenarios:

- Each device can now specify which delay segment the last transmission queue belongs to:
 - ATS and CQF do not include it
 - CBS does always include it
 - SP can now decide! (this can help with the vast zoo of end devices)

This includes the bounds check and the accMaxLatency field.
TAs, LAs, Bounds Checks, Example Values

EXAMPLE RESERVATION PROCESS
Disclaimer

- Just a simple example!
- Many things are simplified
- Some things are only suggestions
- Some things are subject to change in the standard

- See this as a means for easy introduction
- Please do not cling to the details
Example Topology Overview

Stream 1

Stream 2
RA Classes:
- ID=7, Priority=7, RTID=00-80-C2-01 (TSA=SP, TSpec=TokenBucket)
- ID=6, Priority=6, RTID=00-80-C2-01 (TSA=SP, TSpec=TokenBucket)
- ID=5, Priority=5, RTID=00-80-C2-01 (TSA=SP, TSpec=TokenBucket)
- ID=4, Priority=4, RTID=00-80-C2-01 (TSA=SP, TSpec=TokenBucket)

Max delays (every port pair):
- Class 7: max 150 µs
- Class 6: max 500 µs
- Class 5: max 10 ms
- Class 4: max 50 ms

Max data rates (every port):
- Class 7: max 50 Mbits/s
- Class 6: max 100 Mbits/s
- Class 5: max 100 Mbits/s
- Class 4: max 200 Mbits/s
Stream 1

TalkerAnnounce:
StreamId: "B7:77:19:07:B4:18:00:01"
StreamRank: 1
AccMaxLatency: 0 ns
AccMinLatency: 0 ns
DataFrameParams:
 DestinationMacAddress: "01:00:5E:00:00:01"
 Priority: 7
 VID: 5
TSpec:
 MaxTransmittedFrameLength: 1000 Bytes
 MinTransmittedFrameLength: 64 Bytes
 CommittedBurstSize: 8160 bits
 CommittedInformationRate: 220000 bits/s
FailureInfo:
 None

These values depend on the talker and are not specified in RAP yet.
Bounds Check on SW 1 (EgressPort: SW 2)

Max delays (every port pair):
- Class 7: max 150 μs
- Class 6: max 500 μs
- Class 5: max 10 ms
- Class 4: max 50 ms

DelayBoundsCheck:

<table>
<thead>
<tr>
<th>Traffic Class</th>
<th>MaxHopLatency</th>
<th>ComputedDelay</th>
<th>Success</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>50000000 ns</td>
<td>31497 ns</td>
<td>True</td>
</tr>
<tr>
<td>5</td>
<td>10000000 ns</td>
<td>22697 ns</td>
<td>True</td>
</tr>
<tr>
<td>6</td>
<td>500000 ns</td>
<td>20607 ns</td>
<td>True</td>
</tr>
<tr>
<td>7</td>
<td>150000 ns</td>
<td>20497 ns</td>
<td>True</td>
</tr>
</tbody>
</table>

BandwidthBoundsCheck (not shown here) → Success: True

InternalResourcesCheck (not shown here) → Success: True

current delay bound for all reserved streams plus the new stream
(latency math/model)
TalkerAnnounce:
StreamId: "B7:77:19:07:B4:18:00:01"
StreamRank: 1
AccMaxLatency: 150000 ns
AccMinLatency: 10512 ns
DataFrameParams:
 DestinationMacAddress: "01:00:5E:00:00:01"
 Priority: 7
 VID: 5
TSpec:
 MaxTransmittedFrameLength: 1000 Bytes
 MinTransmittedFrameLength: 64 Bytes
 CommittedBurstSize: 8160 bits
 CommittedInformationRate: 220000 bits/s
FailureInfo:
 None
Bounds Check on SW 2 (EgressPort: Listener 2)

<table>
<thead>
<tr>
<th>Traffic Class</th>
<th>MaxHopLatency</th>
<th>ComputedDelay</th>
<th>Success</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>50000000 ns</td>
<td>31529 ns</td>
<td>True</td>
</tr>
<tr>
<td>5</td>
<td>10000000 ns</td>
<td>22729 ns</td>
<td>True</td>
</tr>
<tr>
<td>6</td>
<td>500000 ns</td>
<td>20639 ns</td>
<td>True</td>
</tr>
<tr>
<td>7</td>
<td>1500000 ns</td>
<td>20529 ns</td>
<td>True</td>
</tr>
</tbody>
</table>
Bounds Check on SW 2 (EgressPort: Listener 1)

<table>
<thead>
<tr>
<th>Traffic Class</th>
<th>MaxHopLatency</th>
<th>ComputedDelay</th>
<th>Success</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>50000000 ns</td>
<td>31529 ns</td>
<td>True</td>
</tr>
<tr>
<td>5</td>
<td>100000000 ns</td>
<td>22729 ns</td>
<td>True</td>
</tr>
<tr>
<td>6</td>
<td>500000 ns</td>
<td>20639 ns</td>
<td>True</td>
</tr>
<tr>
<td>7</td>
<td>15000000 ns</td>
<td>20529 ns</td>
<td>True</td>
</tr>
</tbody>
</table>
TalkerAnnounce:
 StreamId: "B7:77:19:07:B4:18:00:01"
 StreamRank: 1
 AccMaxLatency: 300000 ns
 AccMinLatency: 21024 ns
 DataFrameParams:
 DestinationMacAddress: "01:00:5E:00:00:01"
 Priority: 7
 VID: 5
 TSpec:
 MaxTransmittedFrameLength: 1000 Bytes
 MinTransmittedFrameLength: 64 Bytes
 CommittedBurstSize: 8160 bits
 CommittedInformationRate: 220000 bits/s
 FailureInfo:
 None
Bounds Check on Listener 1

![Diagram of network traffic flow](image)

DelayBoundsCheck:

<table>
<thead>
<tr>
<th>Traffic Class</th>
<th>MaxHopLatency</th>
<th>ComputedDelay</th>
<th>Success</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>50000000 ns</td>
<td>31562 ns</td>
<td>True</td>
</tr>
<tr>
<td>5</td>
<td>10000000 ns</td>
<td>22762 ns</td>
<td>True</td>
</tr>
<tr>
<td>6</td>
<td>500000 ns</td>
<td>20672 ns</td>
<td>True</td>
</tr>
<tr>
<td>7</td>
<td>1500000 ns</td>
<td>20562 ns</td>
<td>True</td>
</tr>
</tbody>
</table>

(not specified for end devices in RAP yet)
Listener 2 is not Attaching

(Listener not interested in this stream)
Listener 1 sends LA

ListenerAttach:
StreamId: "B7:77:19:07:B4:18:00:01"
VID: 5
Status: AttachReady
Bounds Check on SW 2 (EgressPort: Listener 1)

<table>
<thead>
<tr>
<th>Traffic Class</th>
<th>MaxHopLatency</th>
<th>ComputedDelay</th>
<th>Success</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>50000000 ns</td>
<td>31529 ns</td>
<td>True</td>
</tr>
<tr>
<td>5</td>
<td>100000000 ns</td>
<td>22729 ns</td>
<td>True</td>
</tr>
<tr>
<td>6</td>
<td>500000 ns</td>
<td>20639 ns</td>
<td>True</td>
</tr>
<tr>
<td>7</td>
<td>15000000 ns</td>
<td>20529 ns</td>
<td>True</td>
</tr>
</tbody>
</table>

DelayBoundsCheck:

(same as before)
Reservation on SW 2 Successful

Allocate Resources for StreamId "B7:77:19:07:B4:18:00:01":

Add stream to list of reserved streams

Bandwidth?
Internal queuing resources?
Internal TCAM resources?
...
Depends on switch architecture!
SW 2 Forwards the LA to SW 1

ListenerAttach:
StreamId: "B7:77:19:07:B4:18:00:01"
VID: 5
Status: AttachReady
Bounds Check on SW 1 (EgressPort: SW 2)

<table>
<thead>
<tr>
<th>Traffic Class</th>
<th>MaxHopLatency</th>
<th>ComputedDelay</th>
<th>Success</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>50000000 ns</td>
<td>31497 ns</td>
<td>True</td>
</tr>
<tr>
<td>5</td>
<td>10000000 ns</td>
<td>22697 ns</td>
<td>True</td>
</tr>
<tr>
<td>6</td>
<td>500000 ns</td>
<td>20607 ns</td>
<td>True</td>
</tr>
<tr>
<td>7</td>
<td>15000000 ns</td>
<td>20497 ns</td>
<td>True</td>
</tr>
</tbody>
</table>

DelayBoundsCheck:

(same as before)
Reservation on SW 1 Successful

Allocate Resources for StreamId "B7:77:19:07:B4:18:00:01":

- Add stream to list of reserved streams
- Bandwidth?
- Internal queuing resources?
- Internal TCAM resources?
- Depends on switch architecture!

Talkers

Listeners

SW 1

SW 2
SW 1 Forwards the LA to the Talker

ListenerAttach:
StreamId: "B7:77:19:07:B4:18:00:01"
VID: 5
Status: AttachReady
Talker Received Successful LA and Starts to Transmit

Talker starts to transmit stream 87:77:19:07:84:18:00:01
Stream 2

TalkerAnnounce:
StreamId: "55:BB:FD:68:07:10:00:00"
StreamRank: 1
AccMaxLatency: 0 ns
AccMinLatency: 0 ns
DataFrameParams:
 DestinationMacAddress: "01:00:5E:00:00:00"
 Priority: 7
 VID: 5
TSpec:
 MaxTransmittedFrameLength: 230 Bytes
 MinTransmittedFrameLength: 100 Bytes
 CommittedBurstSize: 2000 bits
 CommittedInformationRate: 10000000 bits/s
FailureInfo:
 None
Bounds Check on SW 1 (EgressPort: SW 2)

<table>
<thead>
<tr>
<th>Traffic Class</th>
<th>MaxHopLatency</th>
<th>ComputedDelay</th>
<th>Success</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>50000000 ns</td>
<td>533505 ns</td>
<td>True</td>
</tr>
<tr>
<td>5</td>
<td>10000000 ns</td>
<td>124705 ns</td>
<td>True</td>
</tr>
<tr>
<td>6</td>
<td>500000 ns</td>
<td>27615 ns</td>
<td>True</td>
</tr>
<tr>
<td>7</td>
<td>150000 ns</td>
<td>22505 ns</td>
<td>True</td>
</tr>
</tbody>
</table>

DelayBoundsCheck:

- **Bounds Check on SW 1 (EgressPort: SW 2)**
 - **SW 1**
 - **SW 2**
Adjusted TA is Propagated to other Ports

TalkerAnnounce:
- StreamId: "55:BB:FD:68:07:10:00:00"
- StreamRank: 1
- AccMaxLatency: 150000 ns
- AccMinLatency: 10800 ns
- DataFrameParams:
 - DestinationMacAddress: "01:00:5E:00:00:00"
 - Priority: 7
 - VID: 5
- TSpec:
 - MaxTransmittedFrameLength: 230 Bytes
 - MinTransmittedFrameLength: 100 Bytes
 - CommittedBurstSize: 2000 bits
 - CommittedInformationRate: 10000000 bits/s
- FailureInfo:
 - None
Bounds Check on SW 2 (EgressPort: Listener 2)

<table>
<thead>
<tr>
<th>Traffic Class</th>
<th>MaxHopLatency</th>
<th>ComputedDelay</th>
<th>Success</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>50000000 ns</td>
<td>535029 ns</td>
<td>True</td>
</tr>
<tr>
<td>5</td>
<td>10000000 ns</td>
<td>126229 ns</td>
<td>True</td>
</tr>
<tr>
<td>6</td>
<td>500000 ns</td>
<td>29139 ns</td>
<td>True</td>
</tr>
<tr>
<td>7</td>
<td>1500000 ns</td>
<td>24029 ns</td>
<td>True</td>
</tr>
</tbody>
</table>

DelayBoundsCheck:

Talkers

SW 1

SW 2

Listeners
 Bounds Check on SW 2 (EgressPort: Listener 1)

DelayBoundsCheck:

<table>
<thead>
<tr>
<th>Traffic Class</th>
<th>MaxHopLatency</th>
<th>ComputedDelay</th>
<th>Success</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>50000000 ns</td>
<td>535029 ns</td>
<td>True</td>
</tr>
<tr>
<td>5</td>
<td>100000000 ns</td>
<td>126229 ns</td>
<td>True</td>
</tr>
<tr>
<td>6</td>
<td>5000000 ns</td>
<td>29139 ns</td>
<td>True</td>
</tr>
<tr>
<td>7</td>
<td>150000000 ns</td>
<td>24029 ns</td>
<td>True</td>
</tr>
</tbody>
</table>
Adjusted TA is Propagated to other Ports

TalkerAnnounce:
- StreamId: "55:BB:FD:68:07:10:00:00"
- StreamRank: 1
- AccMaxLatency: 300000 ns
- AccMinLatency: 21600 ns
- DataFrameParams:
 - DestinationMacAddress: "01:00:5E:00:00:00"
 - Priority: 7
 - VID: 5
- TSpec:
 - MaxTransmittedFrameLength: 230 Bytes
 - MinTransmittedFrameLength: 100 Bytes
 - CommittedBurstSize: 2000 bits
 - CommittedInformationRate: 1000000 bits/s
- FailureInfo:
 - None
Bounds Check on Listener 1

<table>
<thead>
<tr>
<th>Traffic Class</th>
<th>MaxHopLatency</th>
<th>ComputedDelay</th>
<th>Success</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>50000000 ns</td>
<td>536554 ns</td>
<td>True</td>
</tr>
<tr>
<td>5</td>
<td>10000000 ns</td>
<td>127754 ns</td>
<td>True</td>
</tr>
<tr>
<td>6</td>
<td>500000 ns</td>
<td>30664 ns</td>
<td>True</td>
</tr>
<tr>
<td>7</td>
<td>150000 ns</td>
<td>25554 ns</td>
<td>True</td>
</tr>
</tbody>
</table>

(not specified for end devices in RAP yet)
Bounds Check on Listener 2

<table>
<thead>
<tr>
<th>Traffic Class</th>
<th>MaxHopLatency</th>
<th>ComputedDelay</th>
<th>Success</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>50000000 ns</td>
<td>517328 ns</td>
<td>True</td>
</tr>
<tr>
<td>5</td>
<td>100000000 ns</td>
<td>117328 ns</td>
<td>True</td>
</tr>
<tr>
<td>6</td>
<td>500000 ns</td>
<td>22328 ns</td>
<td>True</td>
</tr>
<tr>
<td>7</td>
<td>15000000 ns</td>
<td>17328 ns</td>
<td>True</td>
</tr>
</tbody>
</table>

DelayBoundsCheck: (not specified for end devices in RAP yet)
Listener 1 sends LA

ListenerAttach:
StreamId: "55:BB:FD:68:07:10:00:00"
VID: 5
Status: AttachReady
Bounds Check on SW 2 (EgressPort: Listener 1)

<table>
<thead>
<tr>
<th>Traffic Class</th>
<th>MaxHopLatency</th>
<th>ComputedDelay</th>
<th>Success</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>50000000 ns</td>
<td>535029 ns</td>
<td>True</td>
</tr>
<tr>
<td>5</td>
<td>100000000 ns</td>
<td>126229 ns</td>
<td>True</td>
</tr>
<tr>
<td>6</td>
<td>500000 ns</td>
<td>29139 ns</td>
<td>True</td>
</tr>
<tr>
<td>7</td>
<td>1500000 ns</td>
<td>24029 ns</td>
<td>True</td>
</tr>
</tbody>
</table>

DelayBoundsCheck:

(same as before)
Reservation on SW 2 (Port 1) Successful

Allocate Resources for StreamId "55:BB:FD:68:07:10:00:00":

Add stream to list of reserved streams

Bandwidth?
Internal queuing resources?
Internal TCAM resources?
...
Depends on switch architecture!
SW 2 Forwards the LA to SW 1

ListenerAttach:
StreamId: "55:BB:FD:68:07:10:00:00"
VID: 5
Status: AttachReady
Listener 2 sends LA

ListenerAttach:
- StreamId: "55:BB:FD:68:07:10:00:00"
- VID: 5
- Status: AttachReady
Bounds Check on SW 2 (EgressPort: Listener 2)

<table>
<thead>
<tr>
<th>Traffic Class</th>
<th>MaxHopLatency</th>
<th>ComputedDelay</th>
<th>Success</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>500000000 ns</td>
<td>535029 ns</td>
<td>True</td>
</tr>
<tr>
<td>5</td>
<td>1000000000 ns</td>
<td>126229 ns</td>
<td>True</td>
</tr>
<tr>
<td>6</td>
<td>500000 ns</td>
<td>29139 ns</td>
<td>True</td>
</tr>
<tr>
<td>7</td>
<td>1500000 ns</td>
<td>24029 ns</td>
<td>True</td>
</tr>
</tbody>
</table>

(same as before)
Allocate Resources for StreamId "55:BB:FD:68:07:10:00:00":

Add stream to list of reserved streams

Bandwidth?
Internal queuing resources?
Internal TCAM resources?
...
Depends on switch architecture!
SW 2 does Nothing, Existing LA for this Stream Unchanged

ListenerAttach:
(LA already issued, status unchanged)
Bounds Check on SW 1 (EgressPort: SW 2)

<table>
<thead>
<tr>
<th>Traffic Class</th>
<th>MaxHopLatency</th>
<th>ComputedDelay</th>
<th>Success</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>50000000 ns</td>
<td>533505 ns</td>
<td>True</td>
</tr>
<tr>
<td>5</td>
<td>100000000 ns</td>
<td>124705 ns</td>
<td>True</td>
</tr>
<tr>
<td>6</td>
<td>50000 ns</td>
<td>27615 ns</td>
<td>True</td>
</tr>
<tr>
<td>7</td>
<td>1500000 ns</td>
<td>22505 ns</td>
<td>True</td>
</tr>
</tbody>
</table>

DelayBoundsCheck:
(same as before)
Reservation on SW 1 Successful

Allocate Resources for StreamId "55:BB:FD:68:07:10:00:00":

Add stream to list of reserved streams

Bandwidth?
Internal queuing resources?
Internal TCAM resources?
...
Depends on switch architecture!
SW 1 Forwards the LA to the Talker

ListenerAttach:
StreamId: "55:BB:FD:68:07:10:00:00"
VID: 5
Status: AttachReady
Talker Received Successful LA and Starts to Transmit

Talker starts to transmit stream 55:BB:FD:68:07:10:00:00
```python
topo = Topology()
switches = [topo.add_node(Switch("sw1"))]
switches.append(topo.create_and_add_links(switches[-1], Switch("sw2"), 1e9))
talkers = [topo.create_and_add_links(switches[0], Host("talker1"), 1e9),
           topo.create_and_add_links(switches[0], Host("talker2"), 1e9)]
listeners = [topo.create_and_add_links(switches[-1], Host("listener1"), 1e9),
             topo.create_and_add_links(switches[-1], Host("listener2"), 1e9)]

# Config
prio = (0, 1, 2, 3, 4, 5, 6, 7)
per_hop_guarantees = (inf, inf, inf, inf, 50e6, 10e6, 500e3, 150e3)
topo.update_guarantees_all_links(per_hop_guarantees)

# Streams
streams = []

stream2 = Stream(
    label="s1",
    path=topo.shortest_path(talkers[0], listeners[0]),
    priority=7,
    rate=220e3,  # in bits / s
    burst=1020 * 8,  # in bits
    minFrameSize=64 * 8,  # in bits
    maxFrameSize=1000 * 8)  # in bits
streams.append([stream2])

# TODO: temporary
topo.add_stream(stream2)
for link, tup in apply_model_to_topology(topo, "sp_simple").items():
    print(f"{link.name}: \t {tup}"

stream1 = Stream(
    label="s0",
    path=topo.shortest_path(talkers[0], listeners[0]),
    priority=7,
    rate=10e6,  # in bits / s
    burst=250 * 8,  # in bits
    minFrameSize=100 * 8,  # in bits
    maxFrameSize=230 * 8)  # in bits
streams.append([stream1])

# Dirty hack for multicast streams
stream1_2 = same_stream_different_listener(topo, stream1, listeners[1])
streams[1].append(stream1_2)
```

Stream 1:

<table>
<thead>
<tr>
<th>Source/Target</th>
<th>latencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>listener2-sw2</td>
<td>(inf, inf, inf, inf, 12336, 12336, 12336, 12336)</td>
</tr>
<tr>
<td>talker1-sw1</td>
<td>(inf, inf, inf, inf, 31527, 22727, 20637, 20527)</td>
</tr>
<tr>
<td>sw1-talker2</td>
<td>(inf, inf, inf, inf, 12336, 12336, 12336, 12336)</td>
</tr>
<tr>
<td>sw1-sw2</td>
<td>(inf, inf, inf, inf, 31558, 22758, 20668, 20558)</td>
</tr>
<tr>
<td>talker2-sw1</td>
<td>(inf, inf, inf, inf, 12336, 12336, 12336, 12336)</td>
</tr>
<tr>
<td>sw2-listener1</td>
<td>(inf, inf, inf, inf, 31589, 22789, 20699, 20589)</td>
</tr>
<tr>
<td>listener1-sw2</td>
<td>(inf, inf, inf, inf, 12336, 12336, 12336, 12336)</td>
</tr>
<tr>
<td>sw2-listener2</td>
<td>(inf, inf, inf, inf, 12336, 12336, 12336, 12336)</td>
</tr>
<tr>
<td>sw2-sw1</td>
<td>(inf, inf, inf, inf, 12336, 12336, 12336, 12336)</td>
</tr>
<tr>
<td>sw1-talker1</td>
<td>(inf, inf, inf, inf, 12336, 12336, 12336, 12336)</td>
</tr>
</tbody>
</table>

Stream 2:

<table>
<thead>
<tr>
<th>Source/Target</th>
<th>latencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>listener2-sw2</td>
<td>(inf, inf, inf, inf, 12336, 12336, 12336, 12336)</td>
</tr>
<tr>
<td>talker1-sw1</td>
<td>(inf, inf, inf, inf, 534927, 126127, 29037, 23927)</td>
</tr>
<tr>
<td>sw1-talker2</td>
<td>(inf, inf, inf, inf, 12336, 12336, 12336, 12336)</td>
</tr>
<tr>
<td>sw1-sw2</td>
<td>(inf, inf, inf, inf, 536350, 127550, 30460, 25350)</td>
</tr>
<tr>
<td>talker2-sw1</td>
<td>(inf, inf, inf, inf, 12336, 12336, 12336, 12336)</td>
</tr>
<tr>
<td>sw2-listener1</td>
<td>(inf, inf, inf, inf, 537773, 128973, 31883, 26773)</td>
</tr>
<tr>
<td>listener1-sw2</td>
<td>(inf, inf, inf, inf, 12336, 12336, 12336, 12336)</td>
</tr>
<tr>
<td>sw2-listener2</td>
<td>(inf, inf, inf, inf, 518520, 118520, 23520, 18520)</td>
</tr>
<tr>
<td>sw2-sw1</td>
<td>(inf, inf, inf, inf, 12336, 12336, 12336, 12336)</td>
</tr>
<tr>
<td>sw1-talker1</td>
<td>(inf, inf, inf, inf, 12336, 12336, 12336, 12336)</td>
</tr>
</tbody>
</table>
THANK YOU!

Questions, comments, suggestions?

Alexej Grigorjew

University of Wuerzburg
Chair of Communication Networks
Email: alexej.grigorjew@uni-wuerzburg.de