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Fault Tolerant Module (FTM) for P802.1DP

The goal of this 
contribution is to 
fulfill this note.



Desirements, Properties  & Basic Assumptions  

• Desirements 
• Open and works with current COTS 

hardware and software stacks
• Scalable and supports different degrees 

of fault tolerance and graceful 
degradation

• Network topology agnostic 
• Conceptually simple with 

• Minimal impact on existing COTS 
software and hardware

• Minimal additional hardware overhead
• Not require self-checking inter-stages** 

• Minimal software support for PTP Relay 
Instances

• Basic Assumptions 
• All non-faulty Grandmaster PTP 

Instance (GM) clocks are agreed 
within a bounded accuracy and 
precision

• End-station and bridge hardware may 
fail-arbitrarily  

• May manifest consistent & inconsistent 
value and temporal signal corruption 

• Properties
• Time at all end-stations and bridges 

will be within a bounded offset of a 
non-faulty GM’s time

** Although additional robustness may be gained with more relaxed fault models justified by such hardware 



Focus and Scope 

• Time Synchronization for P802.1DP requires: 
• Agreement on time generation among all GMs

• Out of scope for this contribution and, likely, of P802.1DP
Note:  The eventual solution will need to address system start up, and potential  GM-clique 
resolution. This is considered to be future work, perhaps for an informative annex of P802.1DP.  

• Propagation of agreed time to all synchronous end stations and bridges
• In scope of this contribution

• Under justifiable failure assumptions local masking and selection is sufficient to support 
bounded accuracy of sync-clients and time-aware shaping bridges   

 

• Clock diagnosis is out of scope of this contribution
• There is no expectation or need for synchronous end stations and bridges to 

agree on the best clock, nor isolate bad clocks
• This would introduce a requirement for global consensus and increase the system 

vulnerability to Byzantine failure [1][2]



Time Propagation Model

Plane 1

Plane 2

GM 1

GM 3

GM 2

time domain 1

time domain 2

time domain 3

Time is propagated using PTP

PTP Instance 1

PTP Instance 2

PTP Instance 3

Synch 

End 

Station 1

PTP Instance 1

PTP Instance 2

PTP Instance 3

Synch

End 

Station 2

Any two non-faulty GMs 
are sync’d within Δ

N = 3 PTP Instances is shown in this 
exampleEach plane is a set of PTP communication paths between a 

GM and a PTP End Instance at an end station that has no 
common mode failures with other PTP End Instances at the 

same end station

F
T

M
F

T
M

Plane 3



• From 
https://www.ieee802.org/1/files/public/docs2022/dp-tse-
donnelly-fault-tolerant-time-prop-1122-v06.pdf 

• From 
https://www.ieee802.org/1/files/public/docs2023/dp-
Lie-fault-tolerant-time-sync-dual-transport-0423-v02.pdf 

3 planes highlighted 2 planes highlighted

“Planes” from Previous Contributions

• The term “planes” is new, but the concept is not, as shown below.

https://www.ieee802.org/1/files/public/docs2022/dp-tse-donnelly-fault-tolerant-time-prop-1122-v06.pdf
https://www.ieee802.org/1/files/public/docs2022/dp-tse-donnelly-fault-tolerant-time-prop-1122-v06.pdf
https://www.ieee802.org/1/files/public/docs2023/dp-Lie-fault-tolerant-time-sync-dual-transport-0423-v02.pdf
https://www.ieee802.org/1/files/public/docs2023/dp-Lie-fault-tolerant-time-sync-dual-transport-0423-v02.pdf


Fault Hypothesis – Recap

• Plane-based concept enables treatment of each GM and its forwarding network as an 
independent fault containment region (FCR) and simplifies the analysis

• The GM and the bridges within a plane could still fail independently

• Considering two failure modes:

• Omission – The GM(s)/plane(s) fail to propagate time to the PTP End Instances of one or more end 
stations

• Arbitrary Temporal and/or Value Corruption - The GM(s)/plane(s) propagate a time to one or more end 
stations that deviates from a non-faulty GM/plane by more than (Δ + 
max_accepted_propagation_skew)

• Why? There is no distinction between non-faulty behavior and faulty behavior
resulting in time propagation within (Δ + max_accepted_propagation_skew)

• Tolerating such faults is necessary per crewed space flight standards

Note: In both cases, faults:

• May manifest symmetrically or asymmetrically (no difference for propagation)

• May be permanent, transient, or intermittent



Scope for FTM

• No attempt by FTM to globally diagnose or ignore faulty lanes

• Why? FTM functions may not be high-integrity and may lie; would require Byzantine 
exchange

• Don’t want fault FTM from affecting FTMs of other end stations

• No attempt by FTM to locally ignore previously faulty lanes in
future synchronization intervals

• Why? Allows transparent recovery if faulty lane is repaired/replaced or faults are 
transient

• Downside: Comes at expense of some robustness under permanent faults



Detailed Assumptions

• N time domains (N=3 for this contribution)

• Non-faulty GMs generate time with a max skew of Δ

• Max non-faulty time skew between PTP End Instances = (Δ + max_accepted_propagation_skew)

• N independent planes (1 time domain per plane)

• Each GM propagates its time to each end station/bridge via one plane

• Each synchronous end station/bridge contains: 

• N PTP End Instances to recover time for N time domains

• The ToD for each time domain is available to the FTM (see interfaces 
defined in 9.1 of IEEE 802.1AS)

• A synchronous bridge requires PTP End Instances to recover ToD for its 
time aware shapers

• A local oscillator

• A FTM

• Produces FTM_clk,  based on the ToD from its PTP End Instances and, in 
some scenarios, the local oscillator

• FTM_clk = f(ToDs from PTP End Instances, local oscillator)

• At startup, FTM_clk is undefined (e.g., arbitrarily free-running)



• The simplification of the system requirements to limit concerns to  
propagation of time without global best clock/worst clock consensus 
enables simpler algorithmic choices

• Two default algorithms are proposed:

• Hybrid Mid-Value selection

• The fault tolerant FTM clock is selected from the mid-value of incoming 
non-faulty time domain clocks

• Closest-pair selection

• The fault tolerant FTM clock is selected from one of the two clocks in a 
clock pair that is deemed to be non-faulty

FTM Algorithmic Choices 



FTM States

• Each FTM has (at least) three states:

• Unsynchronized – The FTM is not synchronized, increasing its reliance on the validity of 
the incoming timing information.

• The FTM is more vulnerable to faults causing system failure.

• Synchronized – The FTM is synchronized, meaning that it can filter out arbitrary values 
from a faulty GM or plane.

• Relies on knowledge that non-faulty time domains are aligned to within (Δ + 
max_accepted_propagation_skew).

• Degraded Synchronized – The FTM has lost redundancy on the incoming timing 
information but uses its local frequency reference and historical rate information to 
determine which one, if any, of its incoming time domains is non-faulty.

• Uses historical relationship of local oscillator to non-faulty time domains



Definitions Used by the FTM Algorithms

• FTM_clk
• Time clock produced by the FTM

• Osc_clk
• Local oscillator clock at the end station or bridge

• clockTimeReceiverTime
• Synchronized time maintained at the timeReceiver of a PTP End Instance

• Configured hierarchy of time domains
• A time domain, TDi, with a lower numbered label i has a higher precedence than one 

with a higher numbered label i
• Time domain pairs, TDij:

• With a lower numbered label i has a higher precedence than one with a higher numbered 
label i

• If i is equal, with a lower numbered label j has a higher precedence than one with a higher 
numbered label j



Closest-Paired Selection – Concept

• This algorithm selects the clock from the non-faulty time domain with the 
highest precedence from the non-faulty time domain pair with the highest 
precedence

UNSYNC SYNC DGRD_SYNC

Non-faulty time 
domain pair 

foundFTM_clk = 
free-running

FTM_clk = 
clockTimeReceiverTime 
of highest precedence 
time domain of highest 
precedence non-faulty 

time domain pair

No non-faulty time domain 
pairs found.

At least one clock from 
previously deemed non-

faulty pair incrementing at 
historical non-faulty rate 

(wrt Osc_clk).

FTM_clk = 
clockTimeReceiverTime 

of time domain of 
previously non-faulty 

pair that is still 
incrementing at 

historical non-faulty 
rate (wrt Osc_clk)

Non-faulty time 
domain pair 

found

No non-faulty time domain 
pairs.

No clock from previously 
non-faulty pair 

incrementing at historical 
non-faulty rate (wrt 

Osc_clk).

Selected clock no longer 
incrementing at historical 

non-faulty rate (wrt Osc_clk).



Closest-Paired Selection – Example

• Time domains 0, 1, and 2 and configured precedence:
• Time domain 0 has highest precedence
• Time domain 1 has 2nd precedence
• Time domain 2 has lowest precedence

• Compare difference magnitudes:
• |ToD0 – ToD1|
• |ToD0 – ToD2|
• |ToD1 – ToD2|

• Select best clock:
• clockTimeReceiverTime0 if either of first two difference magnitudes ≤ (Δ + 

max_accepted_propagation_skew(
• clockTimeReceiverTime1 if only the last difference magnitude ≤ (Δ + 

max_accepted_propagation_skew)

• For simplicity, DGRD_SYNC functions not shown



Closest-Paired Selection – Algorithm

select_sync = 0
select_clk = free_running

For (i = 0; i < NUM_MASTERS –  , i++) { 
    if (select_sync == 1) {
        break
        }
    else {
        For (j = i + 1, j < NUM_MASTERS, j++) { 

            If (ToD_Diffij    Δ + max_accepted_propagation_skewij) {

                select_clk = clockTimeReceiverTimei

                select_sync = 1
                break
                }
            else {
                select_clk = free_running
                select_sync = 0
                }
            }
        }

    }

Goto_sync = 1?

For (i = 0; i < NUM_MASTERS –  , i++) { 
    For (j = i + 1, j < NUM_MASTERS, j++) { 

        ToD_Diffij = |ToDi – ToDj| 
        }

    }

No

Yes

FTM_State = UNSYNC

FTM_State = SYNC

Goto_sync = 0
FTM_clk = free_running

FTM_clk = select_clk
Goto_sync = select_sync

select_sync = 0

For (i = 0; i < NUM_MASTERS –  , i++) { 
    if (select_sync == 1) {
        break
        }
    else {
        For (j = i + 1, j < NUM_MASTERS, j++) { 

            If (ToD_Diffij    Δ + max_accepted_propagation_skewij) {

                select_clk = clockTimeReceiverTimei

                select_sync = 1
                best_pair[1:0] = [i,j]
                break
                }
            else {
                select_sync = 2
                }
            }
        }

    }

For (i = 0; i < NUM_MASTERS –  , i++) { 
    For (j = i + 1, j < NUM_MASTERS, j++) { 

        ToD_Diffij = |ToDi – ToDj| 

        }

    }

Goto_sync = 1?

FTM_State = SYNC
Yes

FTM_clk = select_clk
Goto_sync = select_sync

No Drift_rate[clockTimeReceiverT

imebest_pair[1]]     

Yes
FTM_clk = clockTimeReceiverTimebest_pair[1]

Drift_rate[clockTimeReceiverT

imebest_pair[0]]     

No

FTM_clk = clockTimeReceiverTimebest_pair[0]

Yes

FTM_State = DGRD_SYNC

No

FTM_clk = free_running



Mid-Value Selection – Concept

• FTM selects the median of all the clocks that are available and that are deemed to 
be non-faulty

UNSYNC SYNC DGRD_SYNC

Non-faulty time 
domain pairs 

foundFTM_clk = 
free-running

FTM_clk = 
clockTimeReceiverTime 

of median non-faulty 
time domain

No non-faulty time domain 
pairs found.

At least one clock from 
previously deemed non-

faulty clocks incrementing 
at historical non-faulty rate 

(wrt Osc_clk).

FTM_clk = 
clockTimeReceiverTime 

of time domain of 
previously deemed non-
faulty clocks that is still 

incrementing at 
historical non-faulty 

rate (wrt Osc_clk)

Non-faulty time 
domain pair 

found

No non-faulty time domain 
pairs.

No clock from previously 
deemed non-faulty clocks 
incrementing at historical 

non-faulty rate (wrt 
Osc_clk).

Selected clock no longer 
incrementing at historical 

non-faulty rate (wrt Osc_clk).



Mid-Value Selection – Example

• Time domains 0, 1, and 2 and configured precedence:
• Time domain 0 has highest precedence
• Time domain 1 has 2nd precedence
• Time domain 2 has lowest precedence

• Compares difference magnitudes:
• |ToD0 – ToD1|
• |ToD0 – ToD2|
• |ToD1 – ToD2|

• Validate clocks:
• clockTimeReceiverTime0 non-faulty if either of first two difference magnitudes ≤ (Δ + 

max_accepted_propagation_skew)
• clockTimeReceiverTime1 non-faulty if either the first or the last difference magnitude ≤ (Δ + 

max_accepted_propagation_skew)
• clockTimeReceiverTime2 non-faulty if either of the last two difference magnitudes ≤ (Δ + 

max_accepted_propagation_skew)

• Select best clock:
• Select median of non-faulty clockTimeReceiverTimes if odd number of non-faulty clocks
• Select the first of the middle two non-faulty clockTimeReceiverTimes if even number of non-faulty clocks

• For simplicity, DGRD_SYNC functions not shown



Mid-Value Selection – Algorithm

Tod_status[NUM_MASTERS-1:0] = 0
for (i = 0; i < NUM_MASTERS –  , i++) { 
    for (j = i + 1, j < NUM_MASTERS, j++) { 

        If (ToD_Diffij    Δ + max_accepted_propagation_skewij) {

            Tod_status[i] = 1
            Tod_status[j] = 1
            }
        }

    }

Goto_sync = 1?

For (i = 0; i < NUM_MASTERS –  , i++) { 
    For (j = i + 1, j < NUM_MASTERS, j++) { 

        ToD_Diffij = |ToDi – ToDj| 
        }

    }

No

Yes

FTM_State = UNSYNC

Goto_sync = 0
FTM_clk = free_running

Select_sync = 0

FTM_clk = select_clk
Goto_sync = select_sync

for (i = 0; i < NUM_MASTERS, i++) {
    For all ToDi with ToD_status = 1, k = value of i that is the median

   }

If Tod_status[NUM_MASTERS-1:0] > 0 {

   select_clk = clockTimeReceiverTimek

   select_sync = 1
   }
else if ((select_sync ==1 || select_sync == 2) &&

             (Drift_rate[clockTimeReceiverTimek]        

   select_clk = clockTimeReceiverTimek

   select_sync = 2
  }
else {
   select_clk = free_running
   select_sync = 0
   }

FTM_State= SYNC

Goto_sync = 2?

Yes

No

FTM_State = DGRD_SYNC



Algorithm Mapping

• Possible to apply either algorithm at end station or bridge
• For example

• End-station may perform FT-Mid-Value Selection

• Bridge may perform Closest-Pair Selection
• May reduce software complexity on relay node

• Effect of FTM algorithm on time is local to the end station or to the 
bridge 

• FTMs in different end stations and bridges do not need to use the same 
algorithm

• FTMs can use proprietary algorithms instead of the default algorithm



What’s Next?

• Clean-up the FTM algorithms:

• Improve clarity and fix bugs

• Propose options for determining max_accepted_propagation_skew

• Write clause 7.1.4 of P802.1DP 

• Potential enhancements for FTM algorithms:

• Time domain merging (e.g., averaging)?

• Potential informative material for annexes of P802.1DP:

• Time agreement generation (i.e., synchronizing the GMs)?

• Example network topologies?

• New network topologies?



Summary

• Fault tolerant time propagation without fault tolerant time 
generation agreement is not terribly complicated

• Not a Byzantine problem

• FTM only affects local End Station/Bridge

• No changes needed for IEEE 802.1AS

•  Two FTM algorithms proposed

• Closest Pair Selection

• Mid-Value Selection
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Questions?
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