
IEEE P802.1DP / SAE AS6675

IEEE 802.1 Sept 2023 Interim Session

Default Algorithm(s) for the

Fault Tolerant Module

Andrew Loveless [NASA-JSC], Brendan Hall [NASA-JSC (Jacobs)], Richard

Tse [Microchip], Rob Donnelly [Jet Propulsion Laboratory, California Institute

of Technology], Paul Miner [NASA-LaRC]

Fault Tolerant Module (FTM) for P802.1DP

The goal of this
contribution is to
fulfill this note.

Desirements, Properties & Basic Assumptions

• Desirements
• Open and works with current COTS

hardware and software stacks
• Scalable and supports different degrees

of fault tolerance and graceful
degradation

• Network topology agnostic
• Conceptually simple with

• Minimal impact on existing COTS
software and hardware

• Minimal additional hardware overhead
• Not require self-checking inter-stages**

• Minimal software support for PTP Relay
Instances

• Basic Assumptions
• All non-faulty Grandmaster PTP

Instance (GM) clocks are agreed
within a bounded accuracy and
precision

• End-station and bridge hardware may
fail-arbitrarily

• May manifest consistent & inconsistent
value and temporal signal corruption

• Properties
• Time at all end-stations and bridges

will be within a bounded offset of a
non-faulty GM’s time

** Although additional robustness may be gained with more relaxed fault models justified by such hardware

Focus and Scope

• Time Synchronization for P802.1DP requires:
• Agreement on time generation among all GMs

• Out of scope for this contribution and, likely, of P802.1DP
Note: The eventual solution will need to address system start up, and potential GM-clique
resolution. This is considered to be future work, perhaps for an informative annex of P802.1DP.

• Propagation of agreed time to all synchronous end stations and bridges
• In scope of this contribution

• Under justifiable failure assumptions local masking and selection is sufficient to support
bounded accuracy of sync-clients and time-aware shaping bridges

• Clock diagnosis is out of scope of this contribution
• There is no expectation or need for synchronous end stations and bridges to

agree on the best clock, nor isolate bad clocks
• This would introduce a requirement for global consensus and increase the system

vulnerability to Byzantine failure [1][2]

Time Propagation Model

Plane 1

Plane 2

GM 1

GM 3

GM 2

time domain 1

time domain 2

time domain 3

Time is propagated using PTP

PTP Instance 1

PTP Instance 2

PTP Instance 3

Synch

End

Station 1

PTP Instance 1

PTP Instance 2

PTP Instance 3

Synch

End

Station 2

Any two non-faulty GMs
are sync’d within Δ

N = 3 PTP Instances is shown in this
exampleEach plane is a set of PTP communication paths between a

GM and a PTP End Instance at an end station that has no
common mode failures with other PTP End Instances at the

same end station

F
T

M
F

T
M

Plane 3

• From
https://www.ieee802.org/1/files/public/docs2022/dp-tse-
donnelly-fault-tolerant-time-prop-1122-v06.pdf

• From
https://www.ieee802.org/1/files/public/docs2023/dp-
Lie-fault-tolerant-time-sync-dual-transport-0423-v02.pdf

3 planes highlighted 2 planes highlighted

“Planes” from Previous Contributions

• The term “planes” is new, but the concept is not, as shown below.

https://www.ieee802.org/1/files/public/docs2022/dp-tse-donnelly-fault-tolerant-time-prop-1122-v06.pdf
https://www.ieee802.org/1/files/public/docs2022/dp-tse-donnelly-fault-tolerant-time-prop-1122-v06.pdf
https://www.ieee802.org/1/files/public/docs2023/dp-Lie-fault-tolerant-time-sync-dual-transport-0423-v02.pdf
https://www.ieee802.org/1/files/public/docs2023/dp-Lie-fault-tolerant-time-sync-dual-transport-0423-v02.pdf

Fault Hypothesis – Recap

• Plane-based concept enables treatment of each GM and its forwarding network as an
independent fault containment region (FCR) and simplifies the analysis

• The GM and the bridges within a plane could still fail independently

• Considering two failure modes:

• Omission – The GM(s)/plane(s) fail to propagate time to the PTP End Instances of one or more end
stations

• Arbitrary Temporal and/or Value Corruption - The GM(s)/plane(s) propagate a time to one or more end
stations that deviates from a non-faulty GM/plane by more than (Δ +
max_accepted_propagation_skew)

• Why? There is no distinction between non-faulty behavior and faulty behavior
resulting in time propagation within (Δ + max_accepted_propagation_skew)

• Tolerating such faults is necessary per crewed space flight standards

Note: In both cases, faults:

• May manifest symmetrically or asymmetrically (no difference for propagation)

• May be permanent, transient, or intermittent

Scope for FTM

• No attempt by FTM to globally diagnose or ignore faulty lanes

• Why? FTM functions may not be high-integrity and may lie; would require Byzantine
exchange

• Don’t want fault FTM from affecting FTMs of other end stations

• No attempt by FTM to locally ignore previously faulty lanes in
future synchronization intervals

• Why? Allows transparent recovery if faulty lane is repaired/replaced or faults are
transient

• Downside: Comes at expense of some robustness under permanent faults

Detailed Assumptions

• N time domains (N=3 for this contribution)

• Non-faulty GMs generate time with a max skew of Δ

• Max non-faulty time skew between PTP End Instances = (Δ + max_accepted_propagation_skew)

• N independent planes (1 time domain per plane)

• Each GM propagates its time to each end station/bridge via one plane

• Each synchronous end station/bridge contains:

• N PTP End Instances to recover time for N time domains

• The ToD for each time domain is available to the FTM (see interfaces
defined in 9.1 of IEEE 802.1AS)

• A synchronous bridge requires PTP End Instances to recover ToD for its
time aware shapers

• A local oscillator

• A FTM

• Produces FTM_clk, based on the ToD from its PTP End Instances and, in
some scenarios, the local oscillator

• FTM_clk = f(ToDs from PTP End Instances, local oscillator)

• At startup, FTM_clk is undefined (e.g., arbitrarily free-running)

• The simplification of the system requirements to limit concerns to
propagation of time without global best clock/worst clock consensus
enables simpler algorithmic choices

• Two default algorithms are proposed:

• Hybrid Mid-Value selection

• The fault tolerant FTM clock is selected from the mid-value of incoming
non-faulty time domain clocks

• Closest-pair selection

• The fault tolerant FTM clock is selected from one of the two clocks in a
clock pair that is deemed to be non-faulty

FTM Algorithmic Choices

FTM States

• Each FTM has (at least) three states:

• Unsynchronized – The FTM is not synchronized, increasing its reliance on the validity of
the incoming timing information.

• The FTM is more vulnerable to faults causing system failure.

• Synchronized – The FTM is synchronized, meaning that it can filter out arbitrary values
from a faulty GM or plane.

• Relies on knowledge that non-faulty time domains are aligned to within (Δ +
max_accepted_propagation_skew).

• Degraded Synchronized – The FTM has lost redundancy on the incoming timing
information but uses its local frequency reference and historical rate information to
determine which one, if any, of its incoming time domains is non-faulty.

• Uses historical relationship of local oscillator to non-faulty time domains

Definitions Used by the FTM Algorithms

• FTM_clk
• Time clock produced by the FTM

• Osc_clk
• Local oscillator clock at the end station or bridge

• clockTimeReceiverTime
• Synchronized time maintained at the timeReceiver of a PTP End Instance

• Configured hierarchy of time domains
• A time domain, TDi, with a lower numbered label i has a higher precedence than one

with a higher numbered label i
• Time domain pairs, TDij:

• With a lower numbered label i has a higher precedence than one with a higher numbered
label i

• If i is equal, with a lower numbered label j has a higher precedence than one with a higher
numbered label j

Closest-Paired Selection – Concept

• This algorithm selects the clock from the non-faulty time domain with the
highest precedence from the non-faulty time domain pair with the highest
precedence

UNSYNC SYNC DGRD_SYNC

Non-faulty time
domain pair

foundFTM_clk =
free-running

FTM_clk =
clockTimeReceiverTime
of highest precedence
time domain of highest
precedence non-faulty

time domain pair

No non-faulty time domain
pairs found.

At least one clock from
previously deemed non-

faulty pair incrementing at
historical non-faulty rate

(wrt Osc_clk).

FTM_clk =
clockTimeReceiverTime

of time domain of
previously non-faulty

pair that is still
incrementing at

historical non-faulty
rate (wrt Osc_clk)

Non-faulty time
domain pair

found

No non-faulty time domain
pairs.

No clock from previously
non-faulty pair

incrementing at historical
non-faulty rate (wrt

Osc_clk).

Selected clock no longer
incrementing at historical

non-faulty rate (wrt Osc_clk).

Closest-Paired Selection – Example

• Time domains 0, 1, and 2 and configured precedence:
• Time domain 0 has highest precedence
• Time domain 1 has 2nd precedence
• Time domain 2 has lowest precedence

• Compare difference magnitudes:
• |ToD0 – ToD1|
• |ToD0 – ToD2|
• |ToD1 – ToD2|

• Select best clock:
• clockTimeReceiverTime0 if either of first two difference magnitudes ≤ (Δ +

max_accepted_propagation_skew(
• clockTimeReceiverTime1 if only the last difference magnitude ≤ (Δ +

max_accepted_propagation_skew)

• For simplicity, DGRD_SYNC functions not shown

Closest-Paired Selection – Algorithm

select_sync = 0
select_clk = free_running

For (i = 0; i < NUM_MASTERS – , i++) {
 if (select_sync == 1) {
 break
 }
 else {
 For (j = i + 1, j < NUM_MASTERS, j++) {

 If (ToD_Diffij Δ + max_accepted_propagation_skewij) {

 select_clk = clockTimeReceiverTimei

 select_sync = 1
 break
 }
 else {
 select_clk = free_running
 select_sync = 0
 }
 }
 }

 }

Goto_sync = 1?

For (i = 0; i < NUM_MASTERS – , i++) {
 For (j = i + 1, j < NUM_MASTERS, j++) {

 ToD_Diffij = |ToDi – ToDj|
 }

 }

No

Yes

FTM_State = UNSYNC

FTM_State = SYNC

Goto_sync = 0
FTM_clk = free_running

FTM_clk = select_clk
Goto_sync = select_sync

select_sync = 0

For (i = 0; i < NUM_MASTERS – , i++) {
 if (select_sync == 1) {
 break
 }
 else {
 For (j = i + 1, j < NUM_MASTERS, j++) {

 If (ToD_Diffij Δ + max_accepted_propagation_skewij) {

 select_clk = clockTimeReceiverTimei

 select_sync = 1
 best_pair[1:0] = [i,j]
 break
 }
 else {
 select_sync = 2
 }
 }
 }

 }

For (i = 0; i < NUM_MASTERS – , i++) {
 For (j = i + 1, j < NUM_MASTERS, j++) {

 ToD_Diffij = |ToDi – ToDj|

 }

 }

Goto_sync = 1?

FTM_State = SYNC
Yes

FTM_clk = select_clk
Goto_sync = select_sync

No Drift_rate[clockTimeReceiverT

imebest_pair[1]]

Yes
FTM_clk = clockTimeReceiverTimebest_pair[1]

Drift_rate[clockTimeReceiverT

imebest_pair[0]]

No

FTM_clk = clockTimeReceiverTimebest_pair[0]

Yes

FTM_State = DGRD_SYNC

No

FTM_clk = free_running

Mid-Value Selection – Concept

• FTM selects the median of all the clocks that are available and that are deemed to
be non-faulty

UNSYNC SYNC DGRD_SYNC

Non-faulty time
domain pairs

foundFTM_clk =
free-running

FTM_clk =
clockTimeReceiverTime

of median non-faulty
time domain

No non-faulty time domain
pairs found.

At least one clock from
previously deemed non-

faulty clocks incrementing
at historical non-faulty rate

(wrt Osc_clk).

FTM_clk =
clockTimeReceiverTime

of time domain of
previously deemed non-
faulty clocks that is still

incrementing at
historical non-faulty

rate (wrt Osc_clk)

Non-faulty time
domain pair

found

No non-faulty time domain
pairs.

No clock from previously
deemed non-faulty clocks
incrementing at historical

non-faulty rate (wrt
Osc_clk).

Selected clock no longer
incrementing at historical

non-faulty rate (wrt Osc_clk).

Mid-Value Selection – Example

• Time domains 0, 1, and 2 and configured precedence:
• Time domain 0 has highest precedence
• Time domain 1 has 2nd precedence
• Time domain 2 has lowest precedence

• Compares difference magnitudes:
• |ToD0 – ToD1|
• |ToD0 – ToD2|
• |ToD1 – ToD2|

• Validate clocks:
• clockTimeReceiverTime0 non-faulty if either of first two difference magnitudes ≤ (Δ +

max_accepted_propagation_skew)
• clockTimeReceiverTime1 non-faulty if either the first or the last difference magnitude ≤ (Δ +

max_accepted_propagation_skew)
• clockTimeReceiverTime2 non-faulty if either of the last two difference magnitudes ≤ (Δ +

max_accepted_propagation_skew)

• Select best clock:
• Select median of non-faulty clockTimeReceiverTimes if odd number of non-faulty clocks
• Select the first of the middle two non-faulty clockTimeReceiverTimes if even number of non-faulty clocks

• For simplicity, DGRD_SYNC functions not shown

Mid-Value Selection – Algorithm

Tod_status[NUM_MASTERS-1:0] = 0
for (i = 0; i < NUM_MASTERS – , i++) {
 for (j = i + 1, j < NUM_MASTERS, j++) {

 If (ToD_Diffij Δ + max_accepted_propagation_skewij) {

 Tod_status[i] = 1
 Tod_status[j] = 1
 }
 }

 }

Goto_sync = 1?

For (i = 0; i < NUM_MASTERS – , i++) {
 For (j = i + 1, j < NUM_MASTERS, j++) {

 ToD_Diffij = |ToDi – ToDj|
 }

 }

No

Yes

FTM_State = UNSYNC

Goto_sync = 0
FTM_clk = free_running

Select_sync = 0

FTM_clk = select_clk
Goto_sync = select_sync

for (i = 0; i < NUM_MASTERS, i++) {
 For all ToDi with ToD_status = 1, k = value of i that is the median

 }

If Tod_status[NUM_MASTERS-1:0] > 0 {

 select_clk = clockTimeReceiverTimek

 select_sync = 1
 }
else if ((select_sync ==1 || select_sync == 2) &&

 (Drift_rate[clockTimeReceiverTimek]

 select_clk = clockTimeReceiverTimek

 select_sync = 2
 }
else {
 select_clk = free_running
 select_sync = 0
 }

FTM_State= SYNC

Goto_sync = 2?

Yes

No

FTM_State = DGRD_SYNC

Algorithm Mapping

• Possible to apply either algorithm at end station or bridge
• For example

• End-station may perform FT-Mid-Value Selection

• Bridge may perform Closest-Pair Selection
• May reduce software complexity on relay node

• Effect of FTM algorithm on time is local to the end station or to the
bridge

• FTMs in different end stations and bridges do not need to use the same
algorithm

• FTMs can use proprietary algorithms instead of the default algorithm

What’s Next?

• Clean-up the FTM algorithms:

• Improve clarity and fix bugs

• Propose options for determining max_accepted_propagation_skew

• Write clause 7.1.4 of P802.1DP

• Potential enhancements for FTM algorithms:

• Time domain merging (e.g., averaging)?

• Potential informative material for annexes of P802.1DP:

• Time agreement generation (i.e., synchronizing the GMs)?

• Example network topologies?

• New network topologies?

Summary

• Fault tolerant time propagation without fault tolerant time
generation agreement is not terribly complicated

• Not a Byzantine problem

• FTM only affects local End Station/Bridge

• No changes needed for IEEE 802.1AS

• Two FTM algorithms proposed

• Closest Pair Selection

• Mid-Value Selection

References

1. Driscoll K, Hall B, et al., Byzantine Fault Tolerance, from Theory to
Reality, SpringerLink.

2. Osder S, Generic faults and design solutions for flight-critical systems,
ARC Aerospace Research Central (arc.aiaa.org).

3. Minor P, et al., A Unified Fault-Tolerance Protocol, NASA Technical
Reports

https://link.springer.com/chapter/10.1007/978-3-540-39878-3_19
https://link.springer.com/chapter/10.1007/978-3-540-39878-3_19
https://arc.aiaa.org/doi/10.2514/6.1982-1595
https://ntrs.nasa.gov/citations/20040139869

Questions?

	Slide 1
	Slide 2: Fault Tolerant Module (FTM) for P802.1DP
	Slide 3: Desirements, Properties & Basic Assumptions
	Slide 4: Focus and Scope
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12: Definitions Used by the FTM Algorithms
	Slide 13: Closest-Paired Selection – Concept
	Slide 14: Closest-Paired Selection – Example
	Slide 15: Closest-Paired Selection – Algorithm
	Slide 16: Mid-Value Selection – Concept
	Slide 17: Mid-Value Selection – Example
	Slide 18: Mid-Value Selection – Algorithm
	Slide 19: Algorithm Mapping
	Slide 20
	Slide 21
	Slide 22: References
	Slide 23

