
IEEE P802.1DP / SAE AS6675

IEEE 802.1 Dec 13, 2023 meeting

FTTM Contribution for 802.1DP

Andrew Loveless [NASA-JSC], Brendan Hall [NASA-JSC (Jacobs)], Richard

Tse [Microchip], Rob Donnelly [Jet Propulsion Laboratory, California Institute

of Technology], Paul Miner [NASA-LaRC]

Outline

1. Concepts

2. Functional description

3. Default algorithms

4. Future work for FTTM

FTTM

• FTTM sits between PTP End Instances and a ClockTarget

• ClockTarget application interfaces transfer time towards the ClockTarget

Fault-Tolerant Timing Module (FTTM)

Clock Time
Transmitter

Clock Time
Receiver

SiteSync

PortSync PortSync

Local
clk

Clock Time
Transmitter

Clock Time
Receiver

SiteSync

PortSync PortSync

Local
clk

Clock Time
Transmitter

Clock Time
Receiver

SiteSync

PortSync PortSync

Local
clk

ClockTarget
Local Oscillator

PTP Instance
(media independent portion)

PTP Instance
(media independent portion)

PTP Instance
(media independent portion)

for use by local
 Time Aware Shaper

timeReceiver Port timeReceiver Port timeReceiver Port

FTTM ClockTarget Interface

PTP Instance ClockTarget interface PTP Instance ClockTarget interface PTP Instance ClockTarget interface

OSC_CLK

Concepts

4

Concepts

• Time agreement generation and preservation

• “…the process by which multiple time source nodes (GMs) come
to an agreement on the time and maintain that agreement in the
presence of both faults and oscillator drift”

• This function is out of scope of P802.1DP

• Time agreement propagation

• “…the process of propagating the time established by time
agreement…”

• This function is performed using IEEE Std 802.1AS

Concepts

• Dependent domains

• Share a common influencer, which can cause a common mode fault

• Can improve availability of the time function

• Cannot (on their own) provide integrity for the time function

• Can be identified by:

• Sharing the same domainNumber value

• Sharing the same gmTimeBaseIndicator value

• Being defined as dependent by a management function (out of scope of the standard)

• Independent domains

• Do not share any common influencers

• Can improve availability of the time function

• Can provide integrity for the time function

Concepts

• Time error accumulation

• Time error components in PTP time agreement propagation path are used to
define thresholds that are used by FTTM algorithms

PTP Relay
Instx

PTP GMx
PTP Relay

Instx

Clock
Target

PTP Relay
Instx

F
T
T
M

TErlyx TErlyx TErlyx

TEendx

TElnkx TElnkx TElnkxTElnkx

TEgmx

PTP End
Instx

accumTEx

Clock
Sourcex

Functional Description

8

Functional Diagram

• FTTM selects between input
domains to produce an output
domain, where each domain is
represented by a ClockTarget
interface

• “NQ” represents an unqualified
domain

• DDSA selects between domains
that share a dependence

• Output feeds the IDSA as an
independent domain

• Multiple DDSAs can be present
in a FTTM

• IDSA selects between
independent domains

• Output becomes the FTTM’s
output

FTTM

domain 0

domain 2

domain 3

domain N

select

in
d

ep
en

d
en

t
d

o
m

ai
n

s

d
ep

en
d

en
t

d
o

m
ai

n
se

t
0

se
t

1

se
t

X

select

select

select

Independent Domain
Selection Algorithm

(IDSA)

OSC_CLK

FTTM_OUTPUT
ClockTarget
interfaces

C
lo

ck
T

a
rg

e
t

in
te

rf
a

ce
s

fr
o

m
 P

T
P

 E
n

d
 I

ns
ta

n
ce

s

.
 .

 .

.
 .

 .

NQ

Dependent Domain
Selection Algorithm

(DDSA)

NQ

NQ

NQ

..
.

..
.

..
.

ClockTarget Interfaces

• Timing application interface types that provide time to a ClockTarget
are defined in clause 9 of IEEE Std 802.1AS

• ClockTargetEventCapture “tell me the current time”

• ClockTargetTriggerGenerate “tell me when the time = T”

• ClockTargetClockGenerator “tell me the time periodically, starting at time = T”

• Other types are possible (per IEEE Std 802.1AS)

• Any one of the above interface types can be chosen for an input
domain to the FTTM and for the FTTM’s output domain

• ClockTargetPhaseDiscontinuity interface provides additional
information about discontinuities and can be included with the input
and output interfaces

Dependent Domain Selection Algorithm (DDSA)

• DDSA selects between input domains that have a
common dependence

• If no input domain can be determined to be trusted,
then the “not qualified” (NQ) domain is selected

• DDSA’s output domain is treated as an independent
domain by the Independent Domain Selection
Algorithm (IDSA)

Trusted: domain passes a specified criteria that is within a safe bound of a non-
faulty domain and is thus safe to use

Independent Domain Selection Algorithm (IDSA)

• IDSA selects between input domains that are
independent (have no common influencer)

• If no input domain can be determined to be trusted,
then the NQ domain is selected

• IDSA’s output domain is the FTTM’s output domain

Not qualified (NQ) domain

• NQ domain has its gmPresent and isSynced status set
to FALSE, indicating that the domain does not contain
a trusted time

Default Algorithms

14

Common parameters
• maxAccumTEx

• “…the maximum non-faulty accumulated time error magnitude for domain x, from its GM (TEgm),
through all intermediate PTP Relay Instances (TErly) and the corresponding links (TElnk), to the PTP End
Instance (TEend) that is connected to the FTTM”

maxAccumTEx = max(|TEgmx|) + ∑max(|TErlyx|) + ∑max(|TElnkx|) + max(|TEendx|)

• maxAgmsxy

• “…maximum accepted time skew magnitude between two non-faulty PTP GMs, GMx and GMy”

maxAgmsxy = max(|TEgmx|) + max(|TEgmy|)

• maxApsxy

• “…maximum accepted propagation skew magnitude between the time of two non-faulty domains, x
and y”

maxApsxy = ∑max(|TErlyx|) + ∑max(|TElnkx|) + max(|TEendx|) +
 ∑max(|TErlyy|) + ∑max(|TElnky|) + max(|TEendy|)

• maxAsxy

• “…maximum accepted skew magnitude between the time of two non-faulty domains, x and y”

maxAsxy = maxAgmsxy + maxApsxy
 = maxAccumTEx + maxAccumTEy

Illustration of common parameters

PTP Relay
Insty

PTP GMy
PTP Relay

Insty

PTP Relay
Insty

TErlyy TErlyy TErlyy

TEendy

TElnky TElnky TElnkyTElnky

TEgmy

PTP End
Insty

PTP Relay
Instx

PTP GMx
PTP Relay

Instx

Clock
Target

PTP Relay
Instx

F
T
T
M

TErlyx TErlyx TErlyx

TEendx

TElnkx TElnkx TElnkxTElnkx

TEgmx

PTP End
Instx

maxAgmsxy

maxAccumTEx of only the propagation path

maxApsxy

maxAccumTEx of the entire path

maxAsxy

maxAccumTEy of only the propagation path

maxAccumTEy of the entire path

Clock
Sourcex

Clock
Sourcey

fo
r

ti
m

e
 a

gr
ee

m
e

n
t

ge
n

er
at

io
n

an
d

pr
es

er
va

ti
o

n

Common parameters

• hystxy

• “…hysteresis magnitude for the time skew of two non-faulty domains, x and y”

• ToDx

• “…the time of domain x at a given instant”

• num_ind_domains

• “… equal to one less than the number of independent domains that the IDSA has to process”

• num_dep_domains

• “… unique to each dependent-pair selection algorithm instance and is equal to one less than
the number of dependent domains that the particular dependent-pair selection algorithm
has to process”

• dep_domain_sel

• “… identifies whether the algorithm is used for selecting between dependent domains or
independent domains”

Default DDSA algorithms

• DDSA can use the following default algorithms:

• closest-pair selection

• mid-value selection

Closest-pair selection algorithm

• “…compares all possible combinations of
domain pairs to determine which pairs have
times that match within their specified
maxAs threshold” and can be deemed to be
trusted

• gmPresent and isSynced = TRUE is required for
domain to participate in selection

• Hysteresis (hystxy) is included in the threshold
used to keep the trusted status

• “…selects the domain that has the highest
precedence amongst all the trusted
domains”

• Precedence could be based on maxAccumTEx,
GM quality, or some other criteria

• May be used by the DDSA and/or the IDSA

// save previous values
prev_selected = selected
a = selected_domain
b = selected_domain_pair

// clear status before new round of checking
selected = FALSE
select_state = NO_RTD
selected_domain = NQ
temp_gmPresent = FALSE
temp_isSynced = FALSE

// find trusted domain, if any, with highest precedence
// note: lower index = higher precedence
For (x = 0, x <= num_ind_domains - 1, x++) {
 if (selected == TRUE) {
 break
 }
 else {
 For (y = x + 1, y < num_domains, y++) {
 If ((ToD_Diffxy <= maxAsxy) &&

 (isSyncedx && gmPresentx) &&
 (isSyncedy && gmPresenty))

 {
 selected = TRUE
 select_state = RTD
 selected_domain = x

 selected_domain_pair = y
 temp_gmPresent = TRUE

 temp_isSynced = TRUE
 break
 }
 }
 }
 }

// if only untrusted domains found now
// see if previously selected pair is below threshold
// with hysteresis added
If (selected == FALSE && prev_selected == TRUE)
 {
 If ((ToD_Diffab <= maxAsab + hystab) &&
 (isSynceda && gmPresenta) &&
 (isSyncedb && gmPresentb))
 {
 selected = TRUE
 select_state = RTD
 selected_domain = a
 selected_domain_pair = b

 temp_gmPresent = TRUE
 temp_isSynced = TRUE
 }
 // no redundant time domain, if independent domains
 // send to RFD state to
 // check for frequency holdover
 elseif ((dep_domain_sel == FALSE) &&
 (isSynceda && gmPresenta) ||
 (isSyncedb && gmPresentb))
 {
 selected = FALSE
 select_state = RFD
 selected_domain = a
 selected_domain_pair = b

 sync_statusa = gmPresenta && isSynceda

 sync_statusb = gmPresentb && isSyncedb

 }
 }

For (x = 0; x <= num_domains – , x++) {
 For (y = x + 1, y <= num_domains, y++) {

 ToD_Diffxy = |ToDx – ToDy|

 }

 }

select_state == RFD?

FTTM_State = RTD

No

Yes

FTTM_State = RFD

RTD
cmpr

RFD

Output = ClockTarget interfaceselected_domain

gmPresent = temp_gmPresent
isSynced = temp_isSynced

RTD

dep_domain_sel == TRUE?

prev_selected = NQ
selected_domain = NQ

selected_domain_pair = NQ

num_domains = num_ind_domainsnum_domains = num_dep_domains

No

Yes

dep_domain_sel == TRUE?

Yes

No

.

select_state == RTD?

Yes

FTTM_State = NO_RTD
NO_
RTD

No

Mid-value selection algorithm

• “…compares all possible combinations
of domain pairs to determine which
pairs have times that match within
their specified maxAs threshold” and
can be deemed to be trusted

• gmPresent and isSynced = TRUE is
required for domain to participate in
selection

• Hysteresis (hystxy) is included in the
threshold used to keep the trusted status

• “…selects the domain that has the
median time amongst all the trusted
domains“

• May be used by the DDSA and/or the
IDSA

// find all trusted domains, considering hysteresis
For (x = 0, x <= num_domains - 1, x++) {
 For (y = x + 1, y <= num_domains, y++) {
 if ((ToD_Diffxy <= maxAsxy &&
 prev_domain_pairxy == UNTRUSTED) ||
 (ToD_Diffxy <= maxAsxy + hystxy &&
 prev_domain_pairxy == TRUSTED)) &&
 (isSyncedx && gmPresentx) &&
 (isSyncedy && gmPresenty))
 {
 select_state = RTD
 domain_pairxy = TRUSTED
 domain_statusx = TRUSTED
 domain_statusy = TRUSTED
 }
 }
}

For (x = 0; x <= num_domains – , x++) {
 For (y = x + 1, y <= num_domains, y++) {

 ToD_Diffxy = |ToDx – ToDy|
 }

 }

select_state == RFD?

FTTM_State = RTD

No

Yes

FTTM_State = RFD RFD

Output = ClockTarget interfacemedian_domain

gmPresent = TRUE
isSynced = TRUE

// save previous values
prev_select_state = select_state
prev_a = a
prev_b = b

// clear status before new round of checking
select_state = NO_RTD
domain_pairxy = UNTRUSTED for all x and y
domain_statusx = UNTRUSTED for all x
median_domain = NQ
median_adj_domain = NQ
num_sorted = 0
exclude_domain[x] = FALSE for all x

// Find domain with mid-value ToD if select_state = RTD
If {select_state == RTD)
{
 // sort all trusted domains in order of their ToD
 For (x = 0, x <= num_domains-1, x++) {
 min_value = 2^48 seconds // larger than any PTP ToD value

 // Iteratively find the min ToD value of the trusted domains in a loop.
 // After each loop, save the ordering of the domain # with
 // the next min ToD value, exclude the domain from the next iteration.
 For (y = 0, y <= num_domains-1, y++) {
 if (domain_statusy == TRUSTED &&
 exclude_domain[y] == FALSE &&
 ToDy <= min_value)
 {
 min_value = ToDy

 ordered_domain[num_sorted] = y
 }
 }
 exclude_domain[ordered_domain[num_sorted]] = TRUE
 num_sorted = num_sorted + 1
 }

 // get median trusted domain and the trusted domain with
 // the next higher adjacent ToD
 median_domain = ordered_domain[INT((num_sorted-1)/2)]
 median_adj_domain = ordered_domain[INT((num_sorted-1)/2)+1]
}

// Check for conditions to go to or stay in RFD state.
// if true, maintain conditions from previous
// RTD or RFD state.
If (dep_domain_sel == FALSE &&
 select_state == NO_RTD &&
 (prev_select_state == RTD ||
 prev_select_state == RFD))
 {
 select_state = RFD
 a = prev_a
 b = prev_b
 }
 else
 {
 a = median_domain
 b = median_adj_domain
 }

sync_statusa = isSynceda && gmPresenta

sync_statusb = isSyncedb && gmPresentb

RTD
cmpr

RTD

dep_domain_sel == TRUE?

domain_pairxy = UNTRUSTED for all x and y
prev_select_state = NO_RTD

selected_domain = NQ
selected_domain_pair = NQ

prev_selected = NQ
prev_a = NQ
prev_b = NQ

num_domains = num_ind_domainsnum_domains = num_dep_domains

No

Yes

dep_domain_sel == TRUE?

No

Yes

select_state == NO_RTD?

No

Yes
FTTM_State = NO_RTD

NO_
RTD

IDSA state machine

• NO_RTD: No redundant time domain found

• Potential availability but not integrity of the time function is achieved

• RTD: Redundant time domain found

• Availability and integrity of the time function is achieved

• RFD: Redundant frequency used to maintain time domain

• Availability and partial integrity of the time function is achieved

NO_RTD RTD RFD

At least one trusted
domain pair is

foundselected = NQ
(NO_RTD algorithm)

selected = domain
(closest-pair selection

or
mid-value selection

algorithm)

No trusted domain pairs
found

selected = domain
(RFD algorithm)

At least one trusted
domain pair is

found

No domain is incrementing at a historical
non-faulty rate relative to OSC_CLK

No valid domains found

Default NO_RTD algorithm

• “…algorithm compares the skew between all
combinations of independent domain pairs, x
and y”

• “If any pair of independent domains does not
exceed its pre-configured threshold, maxASxy,
then the two independent domains of the pair
are declared to be trusted.“

• gmPresent and isSynced = TRUE is required for
domain to participate in selection

• Hysteresis (hystxy) is included in the threshold
used to keep the trusted status

• If configured for only one domain, the single
domain is presented as the FTTM output

// clear status for new round of checking
selected = FALSE
select_state = NO_RTD
selected_domain = NQ
domain_pairxy = UNTRUSTED for all x and y
domain_statusx = UNTRUSTED for all x
temp_gmPresent = FALSE
temp_isSynced = FALSE

// find trusted domain, if any, with highest precedence
For (x = 0, x <= num_ind_domains - 1, x++) {
 if (selected == TRUE && closest_pair_sel_algo) {
 break
 }
 else {
 For (y = x + 1, y <= num_ind_domains, y++) {
 If ((ToD_Diffxy <= maxAsxy) &&

 (isSyncedx && gmPresentx) &&
 (isSyncedy && gmPresenty))

 {
 selected = TRUE
 select_state = RTD
 selected_domain = x // for closest pair sel algo
 selected_domain_pair = y // for closest pair sel algo
 domain_pairxy = TRUSTED // for mid-value sel algo
 domain_statusx = TRUSTED // for mid-value sel algo
 domain_statusy = TRUSTED // for mid-value sel algo
 if (selected == TRUE && closest_pair_sel_algo) {
 break
 }
 }
 }
 }
 }

Select_state == RTD?

For (x = 0; x <= num_ind_domains – , x++) {
 For (y = x + 1, y <= num_ind_domains, y++) {

 ToD_Diffxy = |ToDx – ToDy|
 }

 }

No

Yes

FTTM_State = NO_RTD

select_state = NO_RTD

RTDFTTM_State = RTD

NO_
RTD

num_ind_domains == 0?
Output = ClockTarget interface of the single

domain

No

Yes

Output = ClockTarget interfaceNQ

gmPresent = FALSE
isSynced = FALSE

Default RTD algorithms

• RTD state can use the following default
algorithms:

• closest-pair selection

• mid-value selection

Default RFD algorithm
• “…algorithm continuously checks for the presence

of trusted domain pairs. If any trusted domain pair
is found, then the FTTM moves back to the RTD
state.“

• “RFD algorithm checks the current and historical
qualities of the last selected domain and its partner
(when they were still a trusted domain pair) to
determine whether a valid time can still be
presented at the FTTM’s output interface.”

• “If at least one domain from that domain pair is
determined, by using the current and historical
rateRatio and rateRatioDrift qualities of the domain,
to still be within the required thresholds relative to
the frequency of OSC_CLK, then the algorithm
remains in the RFD state.”

• “If no domain from that domain pair remains within
the required thresholds, the FTTM moves to the
NO_RTD state”

• rateRatio and rateRatioDrift requirements from
IEC/IEEE 60802/D2.1 are used for thresholds

NO_
RTD

FTTM_State = NO_RTD

RFD

FTTM_State = RFD

RTD
cmpr

Output = ClockTarget interfaceNQ

gmPresent = FALSE
isSynced = FALSE

Output = ClockTarget interfacea

gmPresent = TRUE
isSynced = TRUE

Output = ClockTarget interfaceb

gmPresent = TRUE
isSynced = TRUE

|rateRatioa| <
|mean(rateRatioa)| +

0.1ppm?

No

Yes

Std_dev(rateRatioa) <
0.02ppm?

No

Yes

Std_dev(rateRatioDrifta) <
0.02ppm?

No

Yes

|rateRatioDrifta| <
|mean(rateRatioDrifta)| +

0.1ppm?

No

Yes

Std_dev(rateRatiob) <
0.02ppm?

No

Yes

|rateRatioDriftb| <
|mean(rateRatioDriftb)| +

0.1ppm?

No

Yes

Std_dev(rateRatioDriftb) <
0.02ppm?

No

Yes

|rateRatiob| <
|mean(rateRatiob)| +

0.1ppm?

No

Yes

sync_statusa == TRUE?
No

Yes

sync_statusb == TRUE?
No

Yes

Future Work for FTTM

25

Future work for FTTM

• Balancing integrity vs availability

• Correctness proofs

• What example network topologies with FTTM should be discussed?
• 2 or 3 point-to-point

• 2 independent domains + 1 set of dependent domains

• 3 independent domains

• Dual-homed

• 2 independent domains + 1 set of dependent domains

• Dual-star

• 2 independent domains + 1 set of dependent domains

• Bidirectional Ring

• 2 independent domains + 1 set of dependent domains

• Mesh

• 2 independent domains + 1 set of dependent domains

• 3 independent domains

27

Conclusions

Conclusions

This contribution discussed:

• FTTM functions

• dependent domains

• independent domains

• FTTM default algorithms

• Common parameters

• NO_RTD state

• RTD state and dependent domain selection

• Closest-pair selection

• Mid-value selection

• RFD state

• Future work for FTTM

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4: Concepts
	Slide 5
	Slide 6
	Slide 7
	Slide 8: Functional Description
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14: Default Algorithms
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25: Future Work for FTTM
	Slide 26
	Slide 27: Conclusions
	Slide 28
	Slide 29

