How Long to Propagate Synchronized Time Through a Network?

A Leading Provider of Smart, Connected and Secure Embedded Control Solutions

Richard Tse April 12, 2023

Propagation of Synchronized Time Through a Network

Propagation of Synchronized Time Through a Network

Components:

- Link delays (Tlink)
- Time to send a Sync message through each Relay instance (Tres):
 - 802.1Qch cyclic-queuing and forwarding mechanism could be used to determine the maximum residence time per Relay Instance
- Time for each PTP instance to synchronize (Tinst_sync):
 - If low-pass filtering is not used in time recovery algorithm:
 - Tinst_sync can be small (time for a few Sync messages and a few Pdelay message exchanges)
 - If low-pass filtering is used in time recovery algorithm:
 - Tinst_sync depends on the filter's time constant
 - What effect does the ppm offset of local oscillators have?
 - Affects initial magnitude of error in rateRatio value

Propagation of Synchronized Time Through a Network

Result:

- Time to propagate Sync through a network of PTP Instances (Tsync):
 - Is the result a linear sum of the components?

Tsync =
$$\Sigma$$
Tlink + Σ Tres + Σ Tinst_sync

Or would all PTP instances converge simultaneously?

Tsync =
$$\sum Tlink + \sum Tres + MAX(Tinst_sync)$$

