How Long to Propagate Synchronized Time Through a Network?
Propagation of Synchronized Time Through a Network

Tinst_sync_{Relay1A} depends on time recovery algorithm
Tinst_sync_{Relay1B} depends on time recovery algorithm
Tinst_sync_{EndInst} depends on time recovery algorithm

Tres_{Relay1A} max residence time can be estimated per 802.1Qch
Tres_{Relay1B} max residence time can be estimated per 802.1Qch
Tlink link delay
Propagation of Synchronized Time Through a Network

• **Components:**

 • Link delays (T_{link})

 • Time to send a Sync message through each Relay instance (T_{res}):
 • 802.1Qch cyclic-queuing and forwarding mechanism could be used to determine the maximum residence time per Relay Instance

 • Time for each PTP instance to synchronize (T_{inst_sync}):
 • If low-pass filtering is not used in time recovery algorithm:
 • T_{inst_sync} can be small (time for a few Sync messages and a few Pdelay message exchanges)
 • If low-pass filtering is used in time recovery algorithm:
 • T_{inst_sync} depends on the filter’s time constant
 • What effect does the ppm offset of local oscillators have?
 • Affects initial magnitude of error in rateRatio value
Propagation of Synchronized Time Through a Network

- Result:
 - Time to propagate Sync through a network of PTP Instances \((T_{sync}) \):
 - Is the result a linear sum of the components?
 \[T_{sync} = \sum T_{link} + \sum T_{res} + \sum T_{inst_sync} \]
 - Or would all PTP instances converge simultaneously?
 \[T_{sync} = \sum T_{link} + \sum T_{res} + \text{MAX}(T_{inst_sync}) \]