Headroom Measurement Protocol Design

Lily Lv

To-Do List

- Ethertype for Qdt
 - > What EtherType should be used for the round trip delay?
- DCBX TLV format design
 - > Important not to let packet formats and perceived encoding efficiencies to drive the protocol design.
- Managed objects
 - The effort, implementation cost, and purpose of statistic gathering and retention requires careful consideration
- Timestamp point clarification
 - Will (t3-t2) be impacted (variably) by queue delay?
 - further specify t1, t4
- Timestamp accuracy
 - What is the accuracy of t1, t4?

Ethertype for Qdt

Reuse Qcz (CI) Ethertype 89-A2

Subtype:

This field, 4 bits in length, shall be transmitted with the value 0 to indicate an encapsulated CIM PDU. The Subtype field occupies the least significant 4 bits of the first octet of the layer-2 CIM Encapsulation.

			Qdt proposal
PDU Ethertype(89-A2) Version	Octet 1 3	Length 2 4 bits	Subtype 0, CIM Subtype 1, Headroom Measurement Message
Subtype	3	4 bits	
Headroom Measurement PDU	4	65-529	Question: Is "65-529" too big for headroom measurement PDU?

• This is relevant to headroom measurement protocol design

Phase 1: Capability notification

-- If both sides support PFC HDRM, initiate PFC HDRM Measurement Request, otherwise, stop the procedure.

Non-PTP and PTP-based options add on complexity of phase 1.

- Which option(s) of measurement is supported?
- > Which option of measurement will be used?

- DCBX mechanism
 - DCBX has 3 types of attributes:
 - Informational attributes
 - Asymmetric attributes
 - □ Symmetric attributes
 - PFC configuration TLV is sent using symmetric attributes passing.
 - Symmetric attributes: "the passing of a attribute from one port to its peer port with objective of both ports utilizing the same attribute value."
 - 'Willing' is important in symmetric attribute passing.
 - A Willing port shall set its operational attribute to that indicated in the received TLV if the received TLV has the W bit set to zero. If both the local port and remote port are willing, then the attribute values of the port with the lower numerical MAC address shall take precedence."

PFC configuration TLV "Shall be sent using Symmetric attribute passing"

PFC configuration TLV-

- Non-PTP measurement required information from phase 1
 - Non-PTP capability and preference of remote

Only capability is included in PFC configuration TLV. Compensation value will be included in request-response procedure.

- PTP-based measurement required information from phase 1
 - PTP-based capability and preference of remote
 - Compensation value (internal processing delay) of remote

PTP comp > 0, PTP-based measurement is capable, compensation value equals to 'PTP comp' PTP comp = 0, PTP-based measurement is incapable.

• PTP-based measurement required information from phase 1

Does it contradict the symmetric attribute passing rule?

Assuming below case.

Local para: W=0, PTP comp = 'a' (>0) Remote para: W=1, PTP comp = 'b' (>0)

According to symmetric attribute passing rule, local operation parameter of PTP comp will still be 'a'. However, what local system really needs to calculate headroom is 'b'.

PTP-based capability and PTP comp cannot be combined together in PFC configuration TLV.

- PTP-based capability is symmetric attribute
- PTP comp is informational attribute

- Proposal :
 - PFC configuration TLV only includes 'capability'

'PTP comp' for PTP-based measurement passes to peer separately.
□ Alternative 1: Define a new TLV - PFC informational TLV

TLV type = 127	TLV information string length = 12	802.1 OUI 00-80-C2	802.1 subtype =xx	PTP comp		
7 bits	9 bits	3 octets	1 octets	8 octets		
TLV header TLV information string = 12 octets						

DCBX informational attributes: "Informational attributes are exchanged via LLDP without any participation in a DCBX state machine."

Alternative 2: Do not specify it in Qdt.

Mention the internal processing delay impact, but allow vendor specific way to implement.

Thanks