Headroom Measurement Protocol Design

Lily Lv (Huawei) Fei Chen (Huawei) Liang Guo (CAICT) Jie Li (CAICT)

To-Do List

Timestamp point clarification

- > Will (t3-t2) be impacted (variably) by queue delay?
- Further specify t1, t4

• Timestamp accuracy

What is the accuracy of t1, t4?

Protocol design of request-response measurement

- > After DCBX or could be before DCBX?
- Request-> request + response -> response ?
- Managed objects
 - The effort, implementation cost, and purpose of statistic gathering and retention requires careful consideration

DONE:

✓ Ethertype for Qdt

- ➢ Reuse Qcz (CI) Ethertype 89-A2
- ✓ DCBX: PFC Configuration TLV format design
 - PFC configuration TLV defines Capability (round-trip, PTP-based)
 - PFC informational TLV defines compensation value of PTP-based

method

Done: Ethertype for Qdt

Reuse Qcz (CI) Ethertype 89-A2

Subtype:

This field, 4 bits in length, shall be transmitted with the value 0 to indicate an encapsulated CIM PDU. The Subtype field occupies the least significant 4 bits of the first octet of the layer-2 CIM Encapsulation.

			Qdt proposal
PDU Ethertype(89-A2) Version Subtype	Octet 1 3 3	Length 2 4 bits 4 bits	Subtype 0, CIM Subtype 1, Headroom Measurement Message
Headroom Measurement PDU	4	65-529	Question: Is "65-529" too big for headroom measurement PDU?

Done: PFC Configuration TLV format design

- Proposal :
 - PFC configuration TLV only includes 'capability'

If non-PTP and PTP-based are supported on both sides, each node choose its own preference.

> 'PTP comp' for PTP-based measurement passes to peer separately.

Define a new informational TLV - **PFC informational TLV**

Each bit indicates one

capability.

Timestamp Point Clarification (1/2)

t1: last bit of measurement request message passed to MAC servicet4: last bit of measurement response message passed from MAC service

t2: last bit of measurement request message passed from MAC servicet3: last bit of measurement response message passed to MAC service

Roundtrip delay = t4 - (t1 - (MAC control processing time))

- (t3 - (t2 + (MAC control processing time))

+ (PFC reaction time)

 $\approx t4 - t1 - (t3 - t2)$

Modified model based on 802.1Q Figure N-2—Delay model

Without MACsec

Timestamp Point Clarification (2/2)

t1: last bit of measurement request message passed to MAC servicet4: last bit of measurement response message passed from MAC service

t2: last bit of measurement request message passed from MAC servicet3: last bit of measurement response message passed to MAC service

Roundtrip delay = t4 - (t1 - (shim processing time))

- (t3 - (t2 + (shim processing time))

+ (PFC reaction time)

 \approx t4 - t1 - (t3 - t2)

Modified model based on 802.1Q Figure N-2—Delay model

Timestamp Accuracy

- We do not require peer nodes to be synchronized.
- The longer the cable length is, the higher tolerance of timestamp inaccuracy is.

	Fixed Delay	Internal Processing Delay (802.3, no MACsec)	Medium Delay	Headroom (t4-t1)	t4-t1 mismatch		
100G,500m	500m 32992 203776 50000 92	92KB	10 ns	0.125KB	0.1%		
					100 ns	1.25KB	1%
100G,100m	32992	203776	100000	42KB	10 ns	0.125KB	0.3%
					100 ns	1.25KB	3%
100G,20m	32992	203776	20000	32KB	10 ns	0.125KB	0.4%
					100 ns	1.25KB	4%

- The factors impacting timestamp accuracy
 - Local clock frequency drift
 - Captured timestamp point

Timestamp Accuracy

Local clock frequency drift analysis

Assume 5ppm oscillator, fiber cable 100Gbps and 10km link distance: (t4-t1) is no more than 200us : 100us link delay plus internal processing delay 1ns time offset in 200us, can be ignored.

• Captured timestamp point analysis

Protocol design consideration:

- Avoid to design a complex new protocol
- Keep the fixed and same size of all measurement messages to increase accuracy
- Add less state on switch to decrease implementation complexity

Option 1:

•		Octet	Length
	PDU Ethertype(89-A2)	1	2
	Version	3	4 bits
Headroom Measurement PDU	Subtype (0001)	3	4 bits
	Version	4	4 bits
	Reserved	4	2 bits
	Req/Resp	4	2 bits
	Timestamp 1 (t1)	5	8
	Timestamp 2 (t2)	13	8
	Timestamp 3 (t3)	21	8
	Timestamp 4 (t4)	29	8

Switch A Switch B

Packet design

• Req/Resp: 2 types of measurement message, request and response.

Procedure:

- Switch A sends Request message.
 - Triggering condition could be port status/configuration changes.
 - Request packet includes t1. Other timestamp fields are NULL.
- Switch B generate Response packet after receiving request packet.
 - Response packet includes t1,t2 and t3. t4 field is NULL.
- Switch B sends response message back to switch A.
- Switch A receives response message, capturing timestamp t4
- Switch A calculates roundtrip measurement by t4 t1 (t3 t2)

Procedure:

- The difference from option 1 is that, switch B send back a new generated measurement packet with t2A,t3A as well as t1B.
- After switch A receiving the measurement packet, it generates another packet filling in t2B and t3B.

* There might be smarter design to make the procedure work with smaller size measurement packet, but that will add on complexity of implementation.

	Pros	Cons
Option 1 (preferred)	Simple logic, easy to implement	Potential waste of bandwidth
Option 2 (not preferred)	Potential benefit on saving bandwidth	Complex state machine design

Thanks

Timestamp Accuracy

• Local clock frequency drift analysis

Assume 5ppm oscillator, fiber cable 100Gbps and 10km link distance: (t4-t1) is no more than 200us : 100us link delay plus internal processing delay 1ns time offset in 200us, **can be ignored**.

• Captured timestamp point analysis

