References

Content

• Background & Baseline Assumptions
• Description of Simulation
• $mPathDelay$ Measurements and $meanLinkDelay$ Errors
 • DTSE then TSGE (matching implementations)
 • Effect of Clock Offsets & $Pdelay$ Turnaround
• Simulations to match Time Series Simulations in [1] & [2]
 • TSGE then DTSE

Note: In previous contributions I’ve often looked at modelling errors. In this contribution, I’m looking at the behaviour of implementations as a result of errors. The simulation models timestamps, not just errors.
Background

• Mean Link Delay (meanLinkDelay) measurements in [1] and [2] demonstrated some unexpected behaviour, with step changes between two values either side of the actual value.
 • See slides 22 to 27

• This contribution is a detailed breakdown of the way timestamp errors, clock offsets and errors due to clock drift can contribute to errors in the individual Path Delay measurements (mPathDelay). It investigates how these errors, combined with the meanLinkDelay filtering (averaging) algorithm might produce the observed (simulated) behaviour.
Baseline Assumptions

• Unless mentioned, the “usual” 60802 configuration applies...
 • Same timestamp and clock drift errors as [1]
 • Timestamp Granularity: 8 ns
 • Dynamic Timestamp Error: ±6 ns
 • Same parameters and configuration as [1]
 • Pdelay Interval: uniform distribution, -119 ms to 131 ms (note: different from Time Series, but does not have an effect on the end results)
 • Pdelay Turnaround: normal distribution, mean 10 ms, standard deviation 1.8 ms
 • Truncated to 1 ms and 15 ms (values outside range are rounded up or down respectively)

• $mPathDelay$ means raw measurements of Path Delay, before input to the Mean Link Delay filter

• $meanLinkDelay$ means output from Mean Link Delay filter
 • Filter is as described in clause D.5.7 of 60802 and is the same as used in [1]
• Note: Clock Drift is not currently simulated (but constant Clock Offsets are)
Description of Simulation
Path Delay Measurement

\[\text{PathDelay} = \frac{(t_4(x) - t_1(x)) - \frac{(t_3(x) - t_2(x))}{\text{Neighbor Rate Ratio}(x)}}{2} \]
Description of Simulation – 1

• RStudio script for R

• 1 Vector (1 dimensional array) per variable, of length **runs**, where **runs** is the number of Pdelay_Req / _Resp message exchanges being simulated.
 • **runs** is typically 10,000

• Simulation has a concept of an “ideal” clock against which two “real” clocks are measured
 • One clock for node N, which is measuring meanLinkDelay
 • One clock for node N-1, the Path Delay to which node N is measuring.
 • Each “real” clock has a constant offset (ppm) relative to the ideal clock
 • The offset can be 0 ppm
Description of Simulation – 2

• Models a series of Pdelay_Req and Pdelay_Resp messages, each separated by a randomly generated Pdelay Interval and with a randomly generated Pdelay Turnaround time
 • Both are in terms of “ideal” clock
• Models “actual” timestamps for t_1, t_2, t_3 and t_4 in terms of “ideal” clock
• Then:

 ![Simulation Diagram]

• Note that Time Series Simulation does this (and this RStudio simulation has an option to do the same)…
Description of Simulation – 3

• Carries out mPathDelay calculation:

\[
PathDelay = \frac{(t_4(x) - t_1(x)) - (t_3(x) - t_2(x))}{\text{Neighbor Rate Ratio}(x)}
\]

• NRR is the actual NRR with the option for added error
 • Error is not calculated (as it is from a different process that is not modelled) but rather taken as an output from [1]. Same error file is used for all simulations.

• Carries out meanLinkDelay calculation using algorithm defined in D.5.7
 • Uses initial value of Path Delay with an error of normal distribution, mean 0 ns, standard deviation 0.1 ns. (Avoids need to simulate start-up behaviour.)
mPathDelay Measurements
& meanLinkDelay Errors
Path Delay Measurement

\[\text{PathDelay} = \frac{(t_4(x) - t_1(x)) - \frac{(t_3(x) - t_2(x))}{\text{Neighbor Rate Ratio}(x)}}{2} \]
Path Delay Measurement – Actual

PathDelay = \(\frac{(t_{4A}(x) - t_{1A}(x)) - \frac{(t_{3A}(x) - t_{2A}(x))}{\text{Neighbor Rate Ratio}(x)}}{2} \)
Path Delay Measurement – Actual

\[\text{PathDelay} = \frac{(t_{4m}(x) - t_{1m}(x))}{2} - \frac{(t_{3m}(x) - t_{2m}(x))}{\text{Neighbor Rate Ratio}(x)} \]
Path Delay Measurement – Actual

\[\text{PathDelay} = \frac{(t_{4m}(x) - t_{1m}(x)) - \frac{(t_{3m}(x) - t_{2m}(x))}{\text{Neighbor Rate Ratio}(x)}}{2} \]
Path Delay Measurement – Actual

\[\text{PathDelay} = \frac{(t_{4m}(x) - t_{1m}(x)) - \left(\frac{t_{3m}(x) - t_{2m}(x)}{\text{Neighbor Rate Ratio}(x)}\right)}{2} \]
Path Delay Measurement – Actual

\[
\text{PathDelay} = \frac{(t_{4m}(x) - t_{1m}(x)) - \left(\frac{(t_{3m}(x) - t_{2m}(x))}{\text{Neighbor Rate Ratio}(x)}\right)}{2}
\]

4ns Granularity

8ns Granularity

8ns Granularity

If NRR is 1 (0 ppm)
No Clock Offsets

Individual Path Delay Measurements
Simulated Data - Path Delay 454.21 ns - meanLinkDelay min 453.97 ns max 454.42 ns

KEY
- mPathDelay Data
- Path Delay
- meanLinkDelay

David McCall, 60802 Time Sync – Mean Link Delay & Timestamp Granularity
n-1 node +0.5 ppm
n-1 node +1 ppm
n-1 node +5 ppm
Observations

• Zero clock offset (note: simulation is “perfect”, i.e. clocks are exactly in sync apart from initial phase offset) illustrates 4ns quantisation steps according to TSGE.

• Adding a clock offset spreads out the measurements around the quantisation steps and shifts the steps themselves, within broad limits.

• If the clock offset is large enough, the quantisation steps are swamped and the datapoints appear to be dispersed around the actual Path Delay.
Proposition

• The way the data is spread around the quantisation steps is related to the probability distribution of Pdelay Turnaround.
 • Test by varying the distribution of Pdelay Turnaround

• The shift of the quantisation steps is affected by both the distribution of Pdelay Turnaround and clock offset(s)
 • Test by varying the distribution of Pdelay Turnaround and the clock offsets
n-1 node +0.5 ppm

Pdelay Turnaround – Truncated Normal Distribution
($\mu = 10; \sigma = 1.8; \text{truncated 1 to 15 ms}$)
n-1 node +0.5 ppm

Pdelay Turnaround – Uniform Distribution 1 to 15 ms
n-1 node +0.5 ppm

Pdelay Turnaround – Uniform Distribution 5 to 15 ms
n-1 node +0.4 ppm
Pdelay Turnaround – Uniform Distribution 5 to 15 ms

KEY
- mPathDelay Data
- Path Delay
- meanLinkDelay
n-1 node +0.3 ppm

Pdelay Turnaround – Uniform Distribution 5 to 15 ms

KEY
- mPathDelay Data
- Path Delay
- meanLinkDelay
n-1 node +0.2 ppm
Pdelay Turnaround – Uniform Distribution 5 to 15 ms
n-1 node +0.1 ppm

Pdelay Turnaround – Uniform Distribution 5 to 15 ms
No Clock Offsets

Pdelay Turnaround – Uniform Distribution 5 to 15 ms

KEY
- mPathDelay Data
- Path Delay
- meanLinkDelay
Observations

• The combination of TSGE, DTSE, Pdelay Turnaround distribution and Clock Offsets determines the quantisation steps and distribution around those steps of \(mPathDelay \) measurements.

• The underlying distribution of \(mPathDelay \) measurements around the actual Path Delay value remains the same, and is determined by DTSE and TSGE.

• Regardless of the above factors, taking a long “average” as described in Clause D.5.7, yields stable \(\text{meanLinkDelay} \) values well within the normative requirement of \(\pm 3 \text{ ns} \).
n-1 node +0.5 ppm

Pdelay Turnaround – Truncated Normal Distribution

(μ =10; σ=1.8; truncated 1 to Pdelay Turnaround – Truncated Normal Distribution 15 ms)
n-1 node +0.5 ppm

Pdelay Turnaround – Uniform Distribution 5 to 15 ms
Simulations to Match Time Series Simulations
Difference

• Simulations in previous section do this...

...which matches most implementations.

• Time Series Simulations in [1] and [2] do this...

...which the RStudio simulation can also match.
No DTSE; No Clock Offset
No DTSE; n-1 node +0.5 ppm
±6 ns DTSE; No Clock Offset
±6 ns DTSE; No Clock Offset
– Probability Density (100,000 Messages)
±6 ns DTSE; No Clock Offset – QQ Plot
±6 ns DTSE; n-1 node +0.5 ppm

Individual Path Delay Measurements
Simulated Data - Path Delay 454.21 ns - meanLinkDelay min 453.94 ns max 454.44 ns
±6 ns DTSE; n-1 node +0.5 ppm
– Probability Density (100,000 Messages)

![Graph showing mPathDelay Probability Density with minimum at 438.67 ns and maximum at 469.27 ns.](image-url)
±6 ns DTSE; n-1 node +0.5 ppm – QQ Plot
Observations & Recommendation

• RStudio simulation shows some similarities with [1] and [2]
 • Quantisation steps due to TSGE with distribution either side of steps due to DTSE.
• But no evidence of “sticking” on a particular step for any length of time with consequent visible step changes
• Without step changes, normative requirements on meanLinkDelay are easily met.
 • This is regardless of whether Timestamp Granularity is applied before or after Dynamic Timestamp Error
• Currently there is no theory for why [1] and [2] exhibit the step-change behaviour. (Especially what causes a move from one step to another.)
• Recommendation: do not alter meanLinkDelay normative requirements from d2.2 values.
Thank you