P802.1ASds

Proposed resolutions for comments #75, #40, and #74 against P802.1ASds-D0.1

Silvana Rodrigues (Editor)
(Huawei Technologies Co., Ltd.)
IEEE 802.1 Plenary meeting
March 2023
Acknowledgment

• The proposed resolutions for comments #75, #40, and #74 are the collaborative work of:
 • Geoff Garner (ADI)
 • Martin Ostertag (zhaw)
 • Olaf Mater (Marvell)
 • Adriaan Niess (Bosch)
 • Don Pannell (NXP)
 • Max Turner (Ethernovia)
 • Christian Boiger (Infineon.com)
 • Martin Mittelberger (Siemens)
 • Woojung Huh (Microchip)
 • Silvana Rodrigues (Huawei)
Pdelay Messages are initiated by the TimeReceivers only

- For 802.1ASds, the initiator for Pdelay messages is the End Station. TimeReceiver sends Pdelay_Req
- timeTranmitter does not send Pdelay_Req
MDPdelayReq state machine for timeReceiver

- pdelayReqSendDisabled is FALSE
- The state machine runs normally: AsCapableAcrossDomains is set TRUE or FALSE depending on the execution of the state machine at the “WAITING_FOR_PDELAY_INTERVAL_TIMER” state
Clause 11.2.2 works for timeReceiver, no changes are needed

11.2.2 Determination of asCapable and asCapableAcrossDomains

There is one instance of the global variable asCapable (see 10.2.5.1) per PTP Port, per domain. There is one instance of the global variable asCapableAcrossDomains (see 11.2.13.12), per port, that is common across, and accessible by, all the domains.

The per-PTP Port global variable asCapable (see 10.2.5.1) indicates whether the IEEE 802.1AS protocol is operating, in this domain, on the PTP Link attached to this PTP Port, and can provide the time-synchronization performance described in B.3. asCapable is used by the PortSync entity, which is media-independent; however, the determination of asCapable is media-dependent.

The port is exchanging peer delay messages with its neighbor,

- The measured delay does not exceed \(\text{meanLinkDelayThresh} \).
- The port does not receive multiple Pdelay_RESP or Pdelay_RESP_FOLLOW_UP messages in response to a single Pdelay_REQ message, and
- The port does not receive a response from itself or another PTP Port of the same PTP Instance.

NOTE 1—If a PTP Instance implements only domain 0 and the MDPdelayReq and MDPdelayResp state machines are invoked on domain 0 (see 11.2.19), asCapableAcrossDomains is still set by the MDPdelayReq state machine.

The default value of meanLinkDelayThresh shall be set as specified in Table 11-1.

- At the timeReceiver port, if items a), b), c), and d) are satisfied then asCapableAcrossDomains is TRUE
- At the timeReceiver port, if items a), b), c), and d) are not satisfied then asCapableAcrossDomains is FALSE

<table>
<thead>
<tr>
<th>Link</th>
<th>Value of meanLinkDelayThresh ((\mu s)) (see NOTE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100BASE-TX, 100BASE-X</td>
<td>(800_{10})</td>
</tr>
<tr>
<td>100BASE-TX, 100BASE-X</td>
<td>(FFFF_{16})</td>
</tr>
</tbody>
</table>

NOTE—The actual propagation delay for 100BASE-TX and 1000BASE-X links is expected to be smaller than the above respective thresholds. If the measured mean propagation delay (i.e., meanLinkDelay; see 10.2.5.8) exceeds this threshold, it is assumed that this is due to the presence of equipment that does not implement PTP. For 100BASE-FX and 1000BASE-X links, the actual propagation delay can be on the order of, or larger than, the delay produced by equipment that does not implement PTP; therefore, such equipment cannot be detected by comparing measured propagation delay with a threshold. In this case, meanLinkDelayThresh is set to the largest possible value (i.e., all 1's).

The per-PTP Port, per-domain global variable asCapable shall be set to TRUE if and only if the following conditions hold:

- At the timeReceiver port, if asCapableAcrossDomains is TRUE, then item e) is satisfied.
- Item f) 1) is satisfied because both GptpCapableTransmit and GptpCapableReceive state machines shall be disabled, and according to Asdm, neighborGptpCapable is set to TRUE.
- Therefore, asCapable is set to True.
- At the timeReceiver port, if asCapableAcrossDomains is FALSE, the asCapable is set to FALSE, as item e) is not satisfied.
MDPdelayReq state machine for timeTransmitter

- `pdelayReqSendDisabled` is TRUE
- The state machine goes to “SET_AS_CAPABLE_ACROSS_DOMAINS” state and sets `AsCapableAcrossDomains` to TRUE
- `timeTransmitter` does not send `Pdelay_Req`,
 - `Pdelay_Resp` are not received at the `timeTransmitter` for HDE
 - No need to check whether or not `Pdelay_Resp` are received or `meanLinkDelayThresh` is exceeded, as `timeTransmitter` port does not measure `meanLinkDelay`
Clause 11.2.2 works for timeTransmitter

11.2.2 Determination of asCapable and asCapableAcrossDomains

There is one instance of the global variable asCapable (see 10.2.5.1) per PTP Port, per domain. There is one instance of the global variable asCapableAcrossDomains (see 11.2.13.12), per port, that is common across, and accessible by, all the domains.

The per-PTP Port global variable asCapable (see 10.2.5.1) indicates whether the IEEE 802.1AS protocol is operating, in this domain, on the PTP Link attached to this PTP Port, and can provide the time-synchronization performance described in B.3. asCapable is used by the PortSync entity, which is media-independent; however, the determination of asCapable is media-dependent.

The per-port global variable asCapableAcrossDomains is set by the MDPdelayReq state machine (see 11.2.19 and Figure 11-9). For a port attached to a full-duplex point-to-point PTP Link, asCapableAcrossDomains shall be set to TRUE if and only if it is determined, via the peer-to-peer delay mechanism, that the following conditions hold for the port:

a) The port is exchanging peer delay messages with its neighbor,
b) The measured delay does not exceed $meanLinkDelayThresh$,
c) The port does not receive multiple $Pdelay_Resp$ or $Pdelay_Resp_Follow_Up$ messages in response to a single $Pdelay_Req$ message, and

d) The port does not receive a response from itself or another PTP Port of the same PTP Instance.

NOTE 1—If a PTP Instance implements only domain 0 and the MDPdelayReq and MDPdelayResp state machines are invoked on domain 0 (see 11.2.19), asCapableAcrossDomains is still set by the MDPdelayReq state machine.

The default value of $meanLinkDelayThresh$ shall be set as specified in Table 11-1.

- At the timeTransmitter port, asCapableAcrossDomains is set to TRUE by the state machine.
- At the timeTransmitter port, items a), b), c), and d) are not applicable, as the state machine sets asCapableAcrossDomains to TRUE. Need a small modification of clause 11.2.2, see slide 9.

<table>
<thead>
<tr>
<th>Link</th>
<th>Value of meanLinkDelayThresh (ns) (see NOTE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100BASE-TX, 1000BASE-T</td>
<td>800_{16}</td>
</tr>
<tr>
<td>100BASE-FX, 1000BASE-X</td>
<td>$FFFF\ FFFF\ FFFF\ FFFF\ FFFF\ FFFF\ FFFF_{16}$</td>
</tr>
</tbody>
</table>

NOTE—The actual propagation delay for 100BASE-TX and 1000BASE-T links is expected to be smaller than the above respective threshold. If the measured mean propagation delay (i.e., $meanLinkDelay$; see 10.2.5.8) exceeds this threshold, it is assumed that this is due to the presence of equipment that does not implement PTP. For 100BASE-FX and 1000BASE-X links, the actual propagation delay can be on the order of, or larger than, the delay produced by equipment that does not implement PTP; therefore, such equipment cannot be detected by comparing measured propagation delay with a threshold. In this case, $meanLinkDelayThresh$ is set to the largest possible value (i.e., all 1s).

- At the timeTransmitter port, asCapableAcrossDomains is set to TRUE, item e) is satisfied.
- Item f) 1) is satisfied because both GptpCapableTransmit and GptpCapableReceive state machines shall be disabled, and according to Asdm, neighborGptpCapable is set to TRUE.
- Therefore, asCapable is set to True.
- At the timeTransmitter port, asCapableAcrossDomains and asCapable are always TRUE for HDE.
MDPdelayReq state machine when pdelayReqSendDisabled is TRUE at the timeReceiver and at the timeTransmitter

- pdelayReqSendDisabled is TRUE
- The state machine goes to “SET_AS_CAPABLE ACROSSDOMAINS” state and sets AsCapableAcrossDomains to TRUE

- timeTransmitter and timeReceiver do not send Pdelay_Req
 - Transport-specific peer-to-peer delay mechanism is not used
 - No need to check whether or not Pdelay_Resp are received or meanLinkDelayThresh is exceeded, as there is no measurement done for meanLinkDelay
Clause 11.2.2 works for timeTransmitter and timeReceiver when pdelayReqSendDisabled is TRUE for both

11.2.2 Determination of asCapable and asCapableAcrossDomains

There is one instance of the global variable asCapable (see 10.2.5.1) per PTP Port, per domain. There is one instance of the global variable asCapableAcrossDomains (see 11.2.13.12), per port, that is common across, and accessible by, all the domains.

The per-PTP Port global variable asCapable (see 10.2.5.1) indicates whether the IEEE 802.1AS protocol is operating, in this domain, on the PTP Link attached to this PTP Port, and can provide the time-synchronization performance described in B.3. asCapable is used by the PortSync entity, which is media-independent; however, the determination of asCapable is media-dependent.

The per-port global variable asCapableAcrossDomains is set by the MDPdelayReq state machine (see 11.2.19 and Figure 11-9). For a port attached to a full-duplex point-to-point PTP Link, asCapableAcrossDomains shall be set to TRUE if and only if it is determined, via the peer-to-peer delay mechanism, that the following conditions hold for the port:

a) The port is exchanging peer delay messages with its neighbor,
b) The measured delay does not exceed meanLinkDelayThresh,
c) The port does not receive multiple Pdelay_Resp or Pdelay_Resp_Follow_Up messages in response to a single Pdelay_Req message, and
d) The port does not receive a response from itself or another PTP Port of the same PTP Instance.

NOTE 1—If a PTP Instance implements only domain 0 and the MDPdelayReq and MDPdelayResp state machines are invoked on domain 0 (see 11.2.19), asCapableAcrossDomains is still set by the MDPdelayReq state machine.

The default value of meanLinkDelayThresh shall be set as specified in Table 11-1.

- At the timeTransmitter and timeReceiver ports, asCapableAcrossDomains is set to TRUE by the state machine (as pdelayReqSendDisabled is TRUE on both ports)
- At the timeTransmitter port and timeReceiver port (when pdelayReqSendDisabled is TRUE), items a), b), c), and d) are not applicable, as the state machine sets asCapableAcrossDomains to TRUE. Need a small modification of clause 11.2.2, see slide 9.

<table>
<thead>
<tr>
<th>Link</th>
<th>Value of meanLinkDelayThresh (ns) (see NOTE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100BASE-TX, 100BASE-T</td>
<td>FFFF FFFF FFFF FFFF FFFF FFFF</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Link</th>
<th>Value of meanLinkDelayThresh (ns) (see NOTE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100BASE-FX, 100BASE-X</td>
<td>FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF</td>
</tr>
</tbody>
</table>

NOTE—The actual propagation delay for 100BASE-TX and 1000BASE-T links is expected to be smaller than the above respective threshold. If the measured mean propagation delay (i.e., meanLinkDelay; see 10.2.5.8) exceeds this threshold, it is assumed that this is due to the presence of equipment that does not implement jPTP. For 100BASE-FX and 1000BASE-X links, the actual propagation delay can be on the order of, or larger than, the delay produced by equipment that does not implement jPTP; therefore, such equipment cannot be detected by comparing measured propagation delay with a threshold. In this case, meanLinkDelayThresh is set to the largest possible value (i.e., all 1s).

• At the timeTransmitter port and timeReceiver port (when pdelayReqSendDisabled is TRUE), asCapableAcrossDomains is set to TRUE, item e) is satisfied.

• Item f) 1) is satisfied because both GptpCapableTransmit and GptpCapableReceive state machines shall be disabled, and according to Asdm, neighborGptpCapable is set to TRUE

• Therefore, asCapable is set to True

• At the timeTransmitter port and timeReceiver port (when pdelayReqSendDisabled is TRUE), asCapableAcrossDomains and asCapable are always TRUE
Delete the editor’s note and add the following text:

“Determination of asCapable and asCapableAcrossDomains is described in 11.2.2.”

Modify 11.2.2 as follows (green – text is added, red – text that is removed)

There is one instance of the global variable asCapable (see 10.2.5.1) per PTP Port, per domain. There is one instance of the global variable asCapableAcrossDomains (see 11.2.13.12), per port, that is common across, and accessible by, all the domains.

The per-PTP Port global variable asCapable (see 10.2.5.1) indicates whether the IEEE 802.1AS protocol is operating, in this domain, on the PTP Link attached to this PTP Port, and can provide the required time-synchronization performance requirement performance described in B.3. asCapable is used by the PortSync entity, which is media-independent; however, the determination of asCapable is media-dependent.

The per-port global variable asCapableAcrossDomains is set by the MDPdelayReq state machine (see 11.2.19 and Figure 11-9). For a port attached to a full-duplex point-to-point PTP Link or to an HDE link, asCapableAcrossDomains shall be set to TRUE if and only if either:

1) It is determined, via the peer-to-peer delay mechanism, that the following conditions hold for the port:
 a) The port is exchanging peer delay messages with its neighbor,
 b) The measured delay does not exceed meanLinkDelayThresh,
 c) The port does not receive multiple Pdelay_Resp or Pdelay_Resp_Follow_Up messages in response to a single Pdelay_Req message, and
 d) The port does not receive a response from itself or another PTP Port of the same PTP Instance.

or:

2) pdelayReqSendDisabled is set to TRUE

Modify the note in 10.2.5.1 as follows:

“….It is computed by the MDPdelayReq state machine (see 11.2.19). For full-duplex point-to-point and HDE links (see 11), asCapableAcrossDomains is used …”
Resolution for Comment #74

19.2.13.12 asCapableAcrossDomains

Delete the editor’s note and add the following text:

“asCapableAcrossDomains is described in 11.2.13.12.”

Modify 11.2.13.12 as follows (green - text is added)

A Boolean that is TRUE if and only if either: 1) conditions a) through d) of 11.2.2 are satisfied, or 2) pdelayReqSendDisabled is set to TRUE. This Boolean is set by the MDPdelayReq state machine and is used in determining asCapable for a port (see 11.2.2). There is one instance of this variable for all the domains (per port). The variable is accessible by all the domains. When only one domain is active, asCapableAcrossDomains is equivalent to the variable asCapable (see 10.2.5.1).
Thank you!