

Resource Allocation Protocol (RAP) for Inter-domain QoS Signaling in TSN

by Lukas Osswald, Michael Menth

- ► Introduction to inter-domain communication
- ► Related work on inter-domain QoS signaling
 - Published research
 - IEEE contributions
- Concept for inter-domain QoS signaling
- Discussion

Inter-Domain Communication

- What is a TSN domain?
 - Configuration domain (IEEE Std 802.1Qdj-2024)
 - Set of devices with
 - · Common TSN configuration model
 - Under a single administration
- ► Coherent configuration of TSN domains
 - Physical infrastructure
 - Security
 - Firewalls, IDS, protocol security, ...
 - Time synchronization
 - gPTP
 - Path selection
 - RSTP/MSTP, 802.1Qca, VLAN IDs, ...
 - QoS signaling
 - Distributed, centralized signaling
 - Quality of service
 - Compatibility of TSN shapers and scheduling

Inter-Domain Communication

- What is a TSN domain?
 - Configuration domain (IEEE Std 802.1Qdj-2024)
 - Set of devices with
 - Common TSN configuration model
 - · Under a single administration
- Coherent configuration of TSN domains
 - Physical infrastructure
 - Security
 - Firewalls, IDS, protocol security, ...
 - Time synchronization
 - gPTP
 - Path selection
 - RSTP/MSTP, 802.1Qca, VLAN IDs, ...
 - QoS Signaling
 - Distributed, centralized signaling
 - Quality of Service
 - Compatibility of TSN shapers and scheduling

Related Work – Published Research

- ▶ Boehm et al. [1], [2]
 - Inter-domain signaling for multiple centralized domains via custom east-west bound interface
 - Uses OpenFlow for signaling and prototyping → not applicable to real deployments
- Bhattacharjee et al. [3]
 - Hierarchical signaling scheme via multiple centralized domains
 - Additional domain controller that orchestrates signaling procedure
 - Limited to centralized domains.

Limitations

- → No concept for support of distributed domains
- → Additional protocols or control entities required

References

- [1] Böhm, Martin, J. Ohms, and D. Wermser. "Multi-domain time-sensitive networks-an east-westbound protocol for dynamic TSN-stream configuration across domains.", *IEEE ETFA*, 2019.
- [2] Böhm, Martin, and D. Wermser. "Multi-domain time-sensitive networks—Control plane mechanisms for dynamic inter-domain stream configuration.", MDPI Electronics, 2021.
- [3] Bhattacharjee, Sushmit, K. Alexandris, and T. Bauschert. "Hierarchical control plane framework for multi-domain TSN orchestration.", IEEE NetSoft, 2023.

Related Work – IEEE Contributions

- ► Hantel et al. [1]
 - "Domain edge ports" share information about QoS requirements with neighboring domains
- ► Steindl et al. [2], [3]
 - TSN domains viewed as virtual bridges for transparent signaling
 - Distributed signaling protocol called TSN Inter-domain Protocol (TIDP)
- ▶ Dorr et al. [4]
 - Similar use of RAP for inter-domain signaling
- Farcas et al.
 - RAP requires a SDN controller (e.g., CNC) for path configuration with TE-VIDS in 60802 industrial automation deployments [5]
 - Inter-domain signaling messages should be compliant to the TSN UNI, e.g., 802.1Qdj. [6][7]
 - Proposes to use a higher-level domain controller for TSN domains that are under a single administration [8]

Related Work – IEEE Contributions

References

- [1] Mark Hantel et al. "TSN Interdomain Communications", https://www.ieee802.org/1/files/public/docs2018/60802-Hantel-TSN-Interdomain-Communications-0718.pdf, July 2018.
- [2] Gunter Steindl et al. "Inter TSN Domain Communication Concept ", https://www.ieee802.org/1/files/public/docs2020/60802-Steindlet-al-InterTsnDomainCommunication-0620-v3.pdf, June 2020.
- [3] Gunter Steindl et al. "TSN Inter Domain Communication Concept", https://www.ieee802.org/1/files/public/docs2020/new-SteindITSN-inter-domain-communication-0120-v4.pdf, January 2020.
- [4] Josef Dorr. "RAP in Industrial Automation Follow-up: Workflow and Benefits". https://www.ieee802.org/1/files/public/docs2021/60802-dorr-RAPinIndustrialAutomation-0521-v02.pdf, May 2021.
- [5] János Farkas. "Central and Distributed Components for TSN Configuration". https://www.ieee802.org/1/files/public/docs2021/60802-farkas-central-and-distributed-configuration-components-0521-v02.pdf, May 2021.
- [6] János Farkas et al. "TSN Network Configuration Entity". https://www.ieee802.org/1/files/public/docs2021/60802-farkas-tsn-network-configuration-entity-0721-v01.pdf, July 2021.
- [7] János Farkas et al. "TSN Inter-domain Considerations". https://www.ieee802.org/1/files/public/docs2021/new-farkas-inter-domain-considerations-0721-v01.pdf, July 2021.
- [8] János Farkas et al. "Deterministic 6G: Some Thoughts on Multiple Configuration Domains". https://www.ieee802.org/1/files/public/docs2024/new-farkas-multiple-configuration-domains-0924-v01.pdf

Recap: TSN QoS Signaling

- ► IEEE P802.1Qdd -> now IEEE P802.1DD
 - Resource Allocation Protocol (RAP)

Talker Announce Attribute (TAA)

Listener Attach Attribute (LAA)

- ► IEEE Std 802.1Qcc
 - Three configuration models
 - QoS signaling from end stations (users) to bridges (network)

Inter-Domain Signaling – Problem Statement

- Design goals
 - End-to-end inter-domain signaling across
 - centralized and distributed domains
 - Without additional controllers, hierarchies, and protocols
 - Under multiple distinct administrations
- ► Transitions between domains of different configuration models
 - Four possible domain transitions
 - Distributed-Distributed
 - Distributed-Centralized
 - Centralized-Distributed
 - Centralized-Centralized

Distributed-Distributed Domain Transition

Prerequisite

- Domains are physically connected
- Paths and VLANs are preinstalled

► Signaling scheme

- RA class attributes are exchanged to form an RA class domain
- 1 Talker announces Talker Announce Attribute (TAA) and Listener announces Listener Attach Attribute (LAA)
- 2 Bridges forward the TAA until it meets the LAA
- 3 Bridge B3 admits the stream, forwards the LAA to B2, and forwards the TAA to the Listener
- 4 Process is repeated until the LAA reaches the Talker

Inter-Domain Signaling – RAP Usage

- We use RAP proxy and controlled systems to exchange RAP messages between
 - A bridge and CNC across a distributed-centralized domain transition
 - A CNC and bridge across a centralized-distributed domain transition
 - Two CNCs across a centralized-centralized domain transition

Recap: Link-local Registration Protocol (LRP)

► LRP system types

- Native system
 - One device including RAP, LRP, and physical target port
- Proxy system + controlled system
 - Proxy system
 - · One device implementing RAP and LRP
 - Controlled system
 - One device including the physical target port
 - Only announces the address and application information of proxy system via LLDP to neighbor system.

- LRP is used to connect RAP end station with RAP proxy system
- This can be manually configured or automated with LLDP
 - RAP controlled bridge announces address information of CNC
- ② → Direct TCP connection is established between RAP proxy system and RAP native end station

Centralized-Distributed Domain Transition

- ► Needed RAP capabilities
 - CNC must be able to act as a RAP proxy system
- ► LRP connection setup
 - 1 RAP controlled bridge B1 announces address information of "RAP proxy CNC" via LLDP, or manual configuration
 - 2 "RAP proxy CNC" and RAP native bridge B2 establish a TCP tunnel for exchanging RAP attributes

→ Direct TCP connection is established between "RAP proxy CNC" and native Bridge B2

Centralized-Distributed Domain Transition

- Signaling scheme
 - RAP endpoint requests a stream from CUC
 - CUC knows other end point is in a different domain and requests "inter-domain stream" from CNC
 - 3 CNC injects RAP attribute into distributed domain
 - 4 TAA flows along distributed domain until it meets the LAA
 - **5** Resources are reserved hop-by-hop and LAA flows back until it reaches CNC
 - **6** CNC reserves resources and reconfigures the centralized network
 - **ONC** notifies CUC, CUC notifies Talker about reservation result.

► Required capabilities for implementing the concept

- IEEE P802.1DD
 - "RAP proxy CNC"
 - Capability to receive/inject/forward RAP attributes to other domains
- IEEE Std 802.1Qdj
 - "Inter-domain stream request"
 - CUC must be able to request a stream for an end station whose communication partner is outside the domain to trigger inter-domain signaling

Publication

- Osswald, L., S. Lindner, L. Bechtel, and M. Menth,
 "A Unified Inter-Domain QoS Signaling Scheme for Time-Sensitive Networking", under review in IEEE OJ-COMS.
- Related publications
 - Wüsteney, L., D. Hellmanns, M. Schramm, <u>L. Osswald</u>, R. Hummen, M. Menth, and T. Heer.
 "Analyzing and Modeling the Latency and Jitter Behavior of Mixed Industrial TSN and DetNet Networks.", ACM CoNEXT, 2022.
 - L. Osswald, S. Lindner, L. Bechtel, T. Heer, and M. Menth,
 "Secure Resource Allocation Protocol (SecRAP) for Time-Sensitive Networking.", IEEE ETFA, 2024.