
MKA optimization for group CAs

Revision 2.2 March 17, 2025 Mick Seaman 1

MKA optimization for group CAs
Mick Seaman

MACsec Key Agreement (MKA, Clauses 9 through 12 of IEEE 802.1X-2020) explicitly
supports group connectivity. It provides a secure fully distributed multipoint-to-multipoint
transport and applications of that transport including distribution of data keys (SAKs) by
an elected Key Server. Each participant transmits and receives MKPDUs using a group
address, thus communicating with all the others and reducing the number of MKPDUs
required to add a new participant to an existing group.1 Each of the participants can
cryptographically validate MKPDUs transmitted by any of the others, supporting direct
timely communication to support (for example) early identification of an alternate Key
Server and (for another example) delay bounding of transmitted data. The Key Server
distributes each SAK,2 identifies the participants that are to use it and their readiness to
receive from each of the others, and initiates protected data transmission. Participants can
or could (with appropriate standardization) reduce the processing required to validate
MKPDUs and install keys. This note describes some possibilities, and pitfalls.3 
________________________________________________________________________

1. Overview
This note describes:

—How MKA participants in a potential or current
group CA4 might reduce the effort required to
validate MKPDUs (2) and/or increase protocol
responsiveness without increasing the effort
expended to protect MKPDUs (3).

—The existing procedures for SAK distribution, the
requirements and existing rules for fresh SAK
distribution, and the need for good random number
generation to support those requirements (4).

—The participant effort required for fresh SAK
installation and use (4.5).

—How prior knowledge of the likely or required5 CA
participants and a common set of performance goals
can expedite rapid group CA formation, and a
possible Cipher Suite independent addition to the
existing MKA TLVs that would allow SAK
installation in parallel with other operations (5).

—Existing and possible Cipher Suite dependent ways
of extending the nonce space to allow a new or
changed set of participants to continue to use an
existing SAK (6).

While some of the optimizations described do not
change or add to the syntax and semantics of
MKPDUs and TLVs, they should still be subject to the
scrutiny and documentation that comes with
standardization—verifying that they do address a real
need not met by the existing standard or other
optimizations, do not conflict with the latter, and do
not depend on further changes. Any substantive
changes should be broadly applicable, standardized as
such, and not justified by special case or scenario
pleading—not least because secure implementations
need thorough validation6, but also because scenarios
can change in unexpected ways.7

1 The group address used is generally one of the Reserved Addresses specified in IEEE Std 802.1Q, each of which has a defined scope i.e. frames with that
destination address are filtered by certain bridges. This reduces the risk of an ‘attack from a distance’ and of accidentally creating unwanted obscured secure
connections. A potential attacker needs the help of an insider (within the circumscribed scope) to interfere with MKA even if hat attacker possesses the CAK
(possibly by prior equipment theft).
2 SAK (Secure Association Key), a data key used by MACsec to protect frames.
3 This note follows up on a brief discussion in the 802.1 Security Task Group, November 2024. It should be regarded as a living document, a work in progress.
All statements in this note represent the personal opinion of the author, not that of the IEEE, or the 802.1 Working Group or Task Groups.
4 Secure Connectivity Association.
5 Required in the sense that their participation in network operation is necessary for successful networked application operation.
6 Validation not just of the code of the implementation but also of any imported system libraries and calls, and of the entire tool change (compilers, linkers, etc.
etc.).
7 Any special pleading based on timing accuracy, including network speed, is particularly suspect. A 10 Mb/s network could well benefit from bridging to
higher rate technologies in the future (which is one of the reasons why a single default Cipher Suite, capable of very high speed operation, was chosen for
802.1AE-2006). At such a future time it might be impractical or impossible to update original lower speed stations.



MKA optimization for group CAs

Revision 2.2 March 17, 2025 Mick Seaman 2

2. Selective MKPDU validation
MKA participants other than an elected or aspiring
Key Server can omit, or treat as lower priority,
validation of certain MKPDUs, as follows.
MKPDUs are not confidentiality protected. This was a
deliberate design decision so that protocol operation,
and any difficulty in the progress of that operation,
could be observed by a network administrator who did
not possess the CAK.8 Each MKPDU’s content can be
inspected and used to decide whether it should be
validated. MKPDUs can be retained for later
validation (subject to ageing out) if required.
Selective validation is definitely safe if no protocol
action is taken on an unvalidated MKPDU, as the
current attack model assumes [see item a) of 9.1 of
802.1X-2020] that an attacker can selectively prevent
the delivery of any frame. It could be used to reduce
the validation workload of any participant, however
there are some more or less obvious consequences
worth spelling out (2.1–2.5).

2.1 Duplicate MI detection
Each participant needs to check the content of
MKPDUs transmitted by other participants for
duplicate use of its own MI to identify that participant
as specified in 9.4.2 of 802.1X. Before taking any
action as a consequence of apparent duplication, the
MKPDU in question needs to be validated.

2.2 Maintaining liveness
MIs (Member Identifiers) can only be added to a
participant’s Potential Peers or Live Peers List as a
consequence of receipt of an MKPDU that passes
validation. A participant that does not respond to any
Key Server MKPDU for 3 seconds,9 risks being aged
out and excluded from future communication. The last
unvalidated Key Server MKPDU needs to be retained
in case it needs to be validated so an MKPDU
including its MI.MN can be sent.

2.3 Confirming connectivity
The presence of any other participant’s MI in a
transmitted MKPDU’s Live Peer List is an indication
that the transmitter has received a recent MKPDU
from the participant that includes the transmitter’s own
MI and recent MN. That confirms a direct, live, data

path from the other participant to the transmitter. If
two participants, Alice and Bob (say), include each
other’s recent MI and MN in their respective
transmitted MKPDUs then there is a potential (at
least) direct secure data path between the two.
Optimizing out receive validation of MKPDUs from
participants other than the current Key Server (or
perhaps its potential successor) removes this
indication of connectivity, and a network administrator
needs to be aware of this potential reason for the
absence of expected Live or Potential Peer List entries.
For that reason, if not other, it might be advisable to
standardize a selective validation optimization, if
thought to be generally useful. While it could be used
without any change to protocol fields, it might be wise
to provide an indication of its use in MKPDUs.
If a participant has validated only MKPDUs recently
transmitted by the Key Server (within MKA Life Time
and MKA Life Time plus MKA Hello Time, see 9.4.3
of 802.1X), then the only peer on its Live Peers List
will be the Key Server, and the only peers on its
Potential Peers List will be those received on the Live
Peers List of Key Server MKPDUs.

2.4 Total number of MKPDUs transmitted
Since MIs received in unvalidated MKPDUs cannot
be added to a participant’s Live or Potential Peer Lists,
a failure to validate received MKPDUs from
participants other than a Key Server (Kevin, say) can
result in the transmission of more MKPDUs in total as
participant Bob (say) cannot learn Key Server Kevin’s
MI from Alice’s MKPDUs, but is reduced to
exchanging MKPDUs directly with Kevin. Detailed
analysis of this potential inefficiency depends on the
number of participants, the intervals at which they can
be expected join, and the effort required for MKPDU
reception compared to that for validation. Kevin’s
transmission strategy also plays a part—a single
MKPDU can be transmitted in response to initial
transmissions from several other participants—so
Kevin can improve upon an independent 3-way
handshake with each of the other participants.

8 The secure Connectivity Association Key (CAK) is either pre-shared/pre-place key (PSK) or a direct or indirect result of a prior authentication exchange,
demonstrated live possession of which is the token of prior authentication and authorization. See 6.2 of 802.1X for a description of the key hierarchy.
Allowing any network administrator to observe MKA operation without knowing the CAK significantly reduces the attack surface. Where CAKs are securely
distributed, or calculated, as a result of an authentication exchange there should be no need to make the CAK, or the ICK and KEK, available outside of as
secure partition within each participant that derives and uses the ICK and KEK to protect and verify MKPDUs and to wrap and unwrap SAKs (data keys).
MKA does not reveal information that compromises privacy beyond that which an attacker can glean from observing protected data frames, even when MAC
Privacy protection is used to reduce the information disclosed by data frames.
9 MKA Life Time (Table 9-3 of 802.1X-2020) is 6 seconds. I suggest 3 seconds for response time to guard against potential MKPDU loss, but that figure
could be refined. In stable operation the Key Server will transmit at MKA Hello Time (2 second) intervals, so simply discarding an MKPDU id a bet that the
next periodic transmission will be received.



MKA optimization for group CAs

Revision 2.2 March 17, 2025 Mick Seaman 3

2.5 Peer determination
Unless extended packet numbering (XPN) is being
used, the MACsec nonce comprises an SCI (Secure
Channel Identifier, the transmitter’s MAC Address
followed by a port number) and a 32-bit packet
number (PN). The SCI is either encoded in the
SecTAG of each MACsec protected frame or derived
on receipt from the frame’s source MAC Address (9.3,
9.9, 14.1 of 802.1AE). 
The SCI is used, together with a two-bit Association
Number (AN) encoded in the SecTAG of each
received MACsec-protected frame to associate the
frame with a Secure Association (SA) and then to
identify and update the lowest acceptable PN for the
SA, discarding frames not within the replay window
(potentially enforcing in order delivery). Frames not
associated with a known SC/SA are discarded prior to
MACsec validation (if validation is required, see
validateFrames == Strict in Figure 10-4 of 802.1AE).10

The SCI of each peer is not included in MKPDUs
transmitted by the Key Server. The mapping between
each any given peer’s MI (which is included in the
Key Server’s Live Peer List) and the corresponding
peer’s SCI is available in each of the MKPDUs
transmitted by the peer. While there is no subsequent
MACsec-protected frame data integrity or
confidentiality exposure in taking the mapping from
one of the latter MKPDUs without validating it — if it
was sent by an attacker that did not in fact possess the
SAK, any subsequent apparently MACsec data frames
sent by that attacker will not pass validation — that
would increase an attacker’s DoS options and present
a confusing management picture. On balance, and
considering 2.4 above, it seems wise to continue to
require validation of any MKPDU prior to taking any
protocol action, including peer SCI determination.
NOTE—A received MACsec protected frame, sent by a CA
participant possessing the SAK, could be validated without
assigning it to an SA. So it would be possible create the SA, and to
assign an initial lowest acceptable PN value purely on the basis of
receiving the frame. The failure to follow the processing order
specified in 10.6 of 802.1AE could be considered harmless.
However it could also be impractical for hardware based MACsec
implementations.

3. Repeated MKPDU transmission
Hand-in-hand with possibility of selective MKPDU
validation is the possibility of repeated transmission of
the same MKPDU, specifically by a Key Server that is
attempting to facilitate rapid instantiation of secure
connectivity between potential CA participants whose
arrival is likely to be roughly but not exactly
synchronized by power supply availability. If
individual participants check the in-clear data of
presumptive Key Server MKPDUs, and their cost of
reception and such checking is acceptably low, the
Key Server can repeat the same MKPDU, possibly
without any Live or Potential Peer List entries, until
some target time has elapsed or a satisfactory number
of responses have been solicited. Only then might the
Key Server update its Live Peer List, possibly
distributing an SAK at the same time.

As with selective validation, repeated transmission is
safe, from a security point of view, as the current
attack model assumes [see item a) of 9.1 of
802.1X-2020] that an attacker can copy any frame and
transmit arbitrary frames (except of course frames
never previously transmitted and whose construction
would require knowledge of the CAK derived keys).

Rapid repeated MKPDU transmission addresses the
possibility that some participants transmit their initial
MKPDUs after power up when they remain unable to
receive from others who have already transmitted their
initial MKPDUs. In an ideal world that doesn’t
happen, but there may be active intermediate
components of the LAN infrastructure that power up
after the attached stations.

4. SAK distribution detail
The discussion so far has suggested lowering the
MKA workload for non-Key Server participants by
reducing the effort they expend in MKPDU validation
(2. above). That effort might be considered (by some)
excessive in two general cases: (a) when a very large
number of participants are involved;11 and (b) when
very rapid CA 12 formation is desired after some more
or less synchronizing event, such as near but not exact
power cycling of the attached participants causing the
loss of prior {SAK, PN, MI, MN} state. 

10 Other settings of the management variable ‘validateFrames’ allow validation to be skipped, with or without SecTAG and ICV removal, or forwarding of
invalid frames. These settings were more relevant prior to MKA standardization, anticipating potential issues with non-standard key agreement protocols and
wishing to avoid mandating combined MACsec/MAC implementations which could prove unusable if those protocols failed.
11 The current limit as to the possible number of participants is effectively determined by the inclusion of each of their Member Identifier.Member Number
(MI.MN) tuples in one or other of the Live or Potential Peers Lists. At 16 octets per peer, that works out to a little less than 100 participants in a CA (secure
Connectivity Association). If each transmits at MKA Hello Time (2.0 seconds, Table 9-3 of 802.1X) that implies a constant validation rate of about 50
MKPDUs/second. Note that I do not intend to imply that sharing SAKs amongst such a large group is a good idea.
12 In this context CA stands for secure Connectivity Association, created by the use of MACsec over the insecure Connectivity Association created simply by
attaching end stations to the same (possibly bridged) LAN media.



MKA optimization for group CAs

Revision 2.2 March 17, 2025 Mick Seaman 4

Rapid CA formation can also be expedited by frequent
repeated MKPDU transmission by a Key Server
(3. above), using selective validation to mitigate the
potential workload increase.

4.1 Basic SAK distribution and rollover
Figure 1 and Figure 2 illustrate simple MKPDU
exchanges for SAK distribution and installation13

(notation and scenario adapted from 9.17 of
802.1X).

Figure 1 begins with an MKPDU transmission, after
power up, from Key Server, Kevin, to participant
Alice. Since Kevin and Alice can complete power up
at different times, it is likely that a prior MKPDU has
been lost.14 Kevin’s first MKPDU, transmitted at t0,
contains just its MI and first MN (shown collectively
as ‘K+1’) with the empty Live and Potential Peer Lists
(shown after the first and second ‘:’ respectively) and
no additional data (after the third). Alice responds with
its own MI.MN (‘A+1’), an empty Live Peer List, an a
Potential Peer List containing just K+1. Receipt of that
message proves Alice’s liveness to Kevin, who can
then (at t2) transmit an MKPDU including a key
wrapped SAK (the Key Number is shown as ‘K+1’,
but is not tied to Kevin’s MI or any MN) and the
MI.MN received from Alice.

Kevin includes the SAK Use parameter set in its
MKPDU, with the Key Number, Association Number
(AN, ‘0’ in this case) and the transmit and receive
status (‘rt’ , showing both enabled) for the Latest

Key.15 In this scenario, as described in 9.17 of 802.1X,
there is no prior SAK and Kevin enables both receive
and transmit immediately (‘.rt’) for the Latest (and
only distributed) SAK. The text of 9.17 says that
Kevin loses nothing by immediate use of the SAK
without waiting for any acknowledgment that Alice
can receive using the SAK, as there was no prior
communication. However that statement does rather
rely on the use of well designed and symmetric initial
configuration protocols—so if Alice misses a first
message from Kevin, Alice will transmit after
installing the SAK and being able to receive
subsequent messages from Kevin without waiting for
Kevin to timeout.16 The last MKPDU in the figure
merely advertises Alice’s transmit and receive
status—its receipt is not a vital part of enabling
MACsec-protected communication.

Figure 2 shows a continuation of the dialogue, with a
third participant, Bob, joining, which forces (9.8 of
802.1X) the distribution of a fresh SAK (K+2) at t3.
Alice has to receive, and validate, two MKPDUs from
Kevin—one with the fresh SAK, and one indicating

13 Scenarios from 9.17 of 802.1X, notation abbreviated.
14 A first MKPDU from A might also precede the sequence shown, effectively prompting K to begin (K would then include A’s MI and MN in its initial
Potential Peer List transmission).

Figure -1—Initial SAK Distribution

Figure 1—Initial SAK Distribution

K A
K1:::

A1::k1:

K2:A1::{k1}k1.0rt
A installs k1

A2:K2::k1.0rt A, k1 rx&tx

t0

t1
t2

t3

K, k1 rx&tx

15 Key Numbers are, of course, included so there is no doubt to which SAK these status bits refer.
16 Lossless initial startup and roll-over could benefit from refinement of the CP:READY to CP:TRANSMIT transition conditions taking into account the
number of peers on the Key Server’s Live Peer List when a SAK is distributed. If there is just one (i.e. the secure connectivity is to be point -to-point), and the
Key Server is already able to receive when it sends the MKDPDU with the first (initial SAK), then the peer participant can starting transmitting immediately
without loss, and the Key Server can begin transmitting when it receives an MKPDU from that peer (or any data). If the secure connectivity is multi-point (i.e.
there are more than entries in the Live Peer List), lossless startup can be achieved by the Key Server waiting to transmit until it sees MKPDUs from all
participants indicating that they can receive using the SAK, wile those participants wait to transmit until they receive an MKPDU indicating that the Key
Server is transmitting, or any data frame from the Key Server or another participant using the new SAK. The same conditions apply to lossless rollover.

Figure -2—Follow up SAK Distribution

Figure 2—Follow up SAK Distribution

K A
A, k1 rx&tx

B1:::

K3:A2:B1:k1.0rt

B

B2:K3:A2:

K4:A2,B2::{k2}k1.0rt,k2.1r

A3:K4, B3::k1.0rt,k2.1r

K5:A3, B3::{k2}k1.0r,k2.1rt

A4:K5, B3::k1.0r,k2.1rt

A,B install k2

A,k2 rx&tx,
k1 rx

t0

t4

t1

t5
t6

t7

A,k2 rx
B3:K4:A2:k1.0rt,k2.1rt B,k2 rx&tx

t3
t2

K,k2 rx



MKA optimization for group CAs

Revision 2.2 March 17, 2025 Mick Seaman 5

that Kevin has started transmitting using that SAK, so
Alice can also proceed with transmission using that
SAK (transition from CP:READY to CP:TRANSMIT
in Figure 12-2 of 802.1X). After the first, Alice
transmits an MKPDU when it has installed SAK K+2
for reception,17 allowing Kevin to transmit the second,
coordinating the lossless rollover from K+1 to K+2.

If the addition of participants to a CA is spread over
time, the pattern of communication for existing
participants on each addition will follow Alice’s in
Figure 2. Each receives a new SAK, installs it, enables
reception, transmits an MKPDU, and after they have
all enabled reception with the new receives the go
ahead to transmit, and reports its status. The last of
these need not be prompt, but can occur as part of
periodic transmission. The MKPDUs transmitted by
the Key Server are multicast, not per participant, so
each participant addition results in just one MKPDU
from each of the existing participants (reporting key
installation).

The timing of fresh SAK distribution is restricted by
item c) in 9.8 of 802.1X — a fresh SAK can be
distributed if MKA Life Time (2.0 second) has elapsed
since the prior SAK was first distributed, or if the Key
Server’s Potential Peer List is empty. If new
participant arrivals occur at intervals that are shorter
than the minimum between the Key Server’s attempts
to distribute SAKs, they will result in the distribution
of a single fresh SAK after they have all be added to
the Key Server’s Live List. The Key Server cannot, of
course, distribute fresh SAKs faster that it can install
them itself. However there is no requirement in 9.8 for
the Key Server to wait until all Live List participants
have reported successful installation of a given SAK
before distributing a fresh SAK as such a requirement
would not cope with possible participant failure.

If distribution of a fresh SAK does address the arrival
of several new participants, as in the immediately prior
paragraph, then it might be distributed and brought
into service with as few as two MKPDU transmissions
per new participant, one from each of the existing
participants, and two from the Key Server. The
operative word here is ‘might’, as the first MKPDU
from each new participant needs to include a recent
MI.MN for K in its Potential Peer list. That could be

obtained from an MKPDU with a non-null Live List
transmitted by an existing participant, after validating
that MKPDU

4.2 SAK distribution requirements
The principal requirement for the distribution of fresh
SAKs stems from the absolute need to avoid the use of
the same SAK and cryptographic nonce18 to protect
data frames that differ in any way. The nonce space for
non-XPN Cipher Suites is subdivided by SCI, as
described in 2.5 above. The nonce space for XPN
Cipher Suites is subdivided by a shorter SSCI,19 with
successive MIs in the Key Server’s Live Peer List
allocating successive SSCIs to their participants.20

In addition to distributing fresh SAKs to new
participants, and when any participant’s packet
number (PN or XPN) part of its nonce space nears
exhaustion, the Key Server is responsible for ensuring
that no two entries in its Live Peer List represent
different participants with the same SCI 21 when an
SAK is distributed. Even if the nonce space is
partitioned by SSCI (rather than SSCI) for
transmission/protection, the SSCI is indexed by SCI
on reception, so a frame from Bob, say, could be
discarded as duplicate of (or outside the replay
window set by) a prior frame from Alice.
When a new participant joins the CA, a fresh SAK (or
at least a fresh SAK.nonce space tuple) is also required
to guard against replay of old frames to that new
participant.
A further goal of fresh SAK distribution is to reduce
the window for individual participant compromise,
under the assumption that a participant that is no
longer operational on the network might be the subject
of some interference.
Finally of course, fresh SAKs are required when
participants are reauthenticated, and the CAK and
SAK rollover procedures in 802.1X-2020 (and
802.1X-2010) handle that possibility without
MACsec-protected data frame loss.

4.3 SAK distribution rules
The requirements for fresh SAK distribution stated in
9.8 of 802.1X-2020 are deliberately cautious in two
respects: mandating fresh SAK distribution on almost
any change in the Key Server’s Live Peer List, while
at the same time restricting the rate of fresh SAK

17 Bob also transmits an MKPDU to indicate successful installation of the new SAK (not shown in the Figure).
18 IV, or “initialization vector” for GCM and GMAC.
19 ‘SSCI’ literally ‘Short Secure Channel Identifier’.
20 With, for MKA version 3, the position of the Key Server SSCI also carried explicitly in the Live Peer List parameter set (Figure 11-9 of 802.1X-2020).
21 Given the prevalence of network management operations that can change a station’s MAC Address, the possibility of local MAC address assignment which
might be by random selection, and the weakness of some vendor allocation procedures this is a real possibility, inadvertently or as a consequence of a planned
attack.



MKA optimization for group CAs

Revision 2.2 March 17, 2025 Mick Seaman 6

distribution to provide ample time for each to be
installed. The assumption in that current text is that a
SAK has been ‘distributed’ when it is included in a
Distributed SAK parameter set (Figures 11-11 and
11-12 of 802.1X-2020). What is important for
preventing nonce reuse with a given SAK is the
installation and use of the SAK for transmission.
When a participant is rolling over protected data
transmission from one SAK to its successor,
transmission with that successor is delayed until the
Key Server sets ‘Latest Key tx’ in its MACsec SAK
Use parameter set. That delay allowed the Key Server
to observe the ‘Latest Key rx’ for prior and new
participants and avoid (for any participant that installs
the new SAK promptly) protected data frame loss
during rollover. However a new participant can use the
new SAK immediately (see the transition from
CP:READY to CP:TRANSMIT when
!controlledPortEnabled in the CP state machine,
Figure 12-2 of 802.1X-2020). The Cipher Suite
independent rules in 9.8 of 802.1X-2020 thus prohibit
subsequent redistribution of the SAK, i.e. the inclusion
of that SAK in a Distributed SAK parameter with a
different Live Peer List or a different Key Number.22

4.4 RNG considerations
Each MKA participant is required to use a fresh,
randomly generated 96-bit MI whenever it starts or
restarts. This is essential if does not have a record of
the highest MN used or received with the current
MI,MAC and so can no longer screen received
MKPDUs including that MI to check that they have
been transmitted by a currently live peer and include
the freshest information distributed by that peer.23

MKA’s threat model [item a) in 9.1 of 802.1X]
includes attackers that can selectively prevent delivery
of frames to some participants, can copy frames
(including MKPDUs), and can transmit arbitrary
frames to arbitrary frames. An attacker could record
MKPDU exchanges between a participant and a
legitimate Key Server. So, if the participant restarts (as
evidenced by its MN re-use) with the same MI, the
attacker could replay the recorded Key Server
MKPDUs in apparent response to those sent by the
participant, inducing it to install a previously used

SAK. If that SAK is then used by the participant with a
previously used Cipher Suite nonce and a different
data frame an attacker could use those frames to
recover the SAK and gain receive and transmit access
to previously secure communication. Given the
aforementioned attack capabilities, other CA
participants might be unaware of the intrusion.
So, a potential challenge for rapid CA formation, or
extension, incorporating newly started or restarted
participants lies in each participant providing an
adequate RNG shortly after starting.24,25,26

4.5 SAK installation and use
The effort required from any participant to install a
fresh SAK for reception and transmission can be
divided into the following broad categories:
a) Unwrapping the received AES Key Wrapped SAK,

extracted from a Distributed SAK parameter set.
b) Calculation of any intermediate tables required for

Cipher Suite processing with that particular SAK.
c) Creation of the appropriate SCI and AN

(Association Number) indexed tables for reception,
including per SC counts and the per SA lowest
acceptable PN record (see 10.6 and Figure 10-4 of
802.1AE-2018).

d) Calculation of any additional Cipher
Suite-dependent values applicable per received SA
(SCI and AN indexed) and per transmit AN (such as
the SSCI for the XPN Cipher Suites) or applicable
to all SAs for that SAK (such as the Salt for the
XPN Cipher Suites).

updating the appropriate hardware or memory
structures for b) through d).
Of the above a) and b) can be expected to be the most
work, although for CAs with a very large number of
participants c) and d) might not be negligible.

22 The exact 9.8 rules should be further spelled out in any future revision of 802.1X, as the current text might be carelessly misinterpreted by the hopeful.
Prohibited redistribution includes, of course, any SAK previously obtained from a different Key Server by the current Key Server. The current text does
address the possibility of a server-swapping attack on a participant.
23 See 6.2, 9.2.1, 9.3.1, 9.3.3, and 9.8.1 of 802.1X for general Random Number Generator (RNG) requirements, and 9.4.2–9.4.4, 9.8, 9.10, 9.17, 9.18.3,
9.18.4, 9.19, and 12.2, for MI generation and use.
24 As a practical matter, the acceptable probability of prior MI duplication (where it differs from the ideal) may need to accommodate the deployment of a very
large number of instances of the basic design while an attacker could benefit from a small number of successful attacks.
25 The potential technical background reading list is extensive and I have decided not to speculate further on potential approaches, particularly for very low
cost participants, in this note.
26 See 6.2, 9.2.1, 9.3.1, 9.3.3, and 9.8.1 of 802.1X for general Random Number Generator (RNG) requirements, and 9.4.2–9.4.4, 9.8, 9.10, 9.17,Review
9.18.3, 9.18.4, 9.19, and 12.2, for MI generation and use.



MKA optimization for group CAs

Revision 2.2 March 17, 2025 Mick Seaman 7

5. Rapid Group CA formation
5.1 Joining together
The protocol exchanges illustrated in Figure 1 and
Figure 2, and described in the standard, are not the
only possibilities. Participants do not have to join an
existing CA one by one. In fact the existing constraints
on the rate of fresh SAK distribution exclude that
possibility when initial MKPDUs from several
participants arrive in a brief interval, as described in
4.1 above. Figure 3 shows a scenario in which the Key
Server has delayed SAK distribution to Alice long
enough to receive an initial message from Bob as well,
so the initial SAK is distributed to both Alice and
Bob.

Additional participants could also feature in this
scenario, each transmitting the same initial MKPDU
from Kevin, and each transmitting its own MKPDU to
prove liveness to Kevin, before receiving the initial
SAK and installing it for both transmission and
reception (the reception, by Alice and Bob, of each
other’s initial transmissions so they have the necessary
SCI information is not shown in the figure). Only one
additional MKPDU need be transmitted for each
additional participant in this fortunate scenario (the
last pair of MKPDUs shown in the figure only serve to
advertise Alice and Bob’s current state).

Similarly, after an initial SAK has been distributed to
Alice, following participants Bob and Charlie might
join together (as existing constraints on SAK
distribution rate might require), as shown in
Figure 4.

5.2 Prior knowledge
Rapid installation of SAKs by all the intended CA
participants can thus benefit from appropriate Key
Server SAK distribution timing. In particular, if the
challenge is that their availability is likely to be
roughly but not exactly synchronized by power supply
availability it helps if the Key Server has some idea of
the target time for full CA operation and:
a) The maximum expected time between Key Server

availability and the last participant becoming
available; or

b) The expected number of participants for viable
system operation following establishment of secure
connectivity; or

c) The identity (MAC Address) of each of the
essential participants.

With the last of these being obviously the most useful.
The description of MKA operation in the 802.1X
standard does not assume that the CA participants
have any prior knowledge of each other, essentially
discovering their identities and the fact they can
communicate after an authentication protocol has
provided each with the same CAK (and authorization
data), or after some physical connectivity has been
established, or after power up. However, in some
potential applications those participants have been
previously physically installed and software
configured in a more or less fixed network.

Figure -3—Three initial participants

Figure 3—Three initial participants

K B
K1:::

A1::K1:

K2:A1,B1::{k1}k1.0rt
Install k1

A2:K2:B1:k1.0rt
Data tx with 
SAK k1

t0

t1
t2
t3

t4
t5

A

B1::K1:

B2:K2,A1::k1.0rt

Figure -4—Two join together

Figure 4—Two join together

K A
A,k1 rx&tx

B1::K3:

K3:A2::k1.0rt

B,C

C2:K4:A2,B1:k2.1rt

K4:A2,B1,C1::{k2}k1.0rt,k2.1r

A3:K4:B1,C1::k1.0rt,k2.1r

K5:A3,B2,C2::{K2},k1.0r,k2.1rt

A4:K5,B3::k1.0r,k2.1rt

A,B,C install k2

A,k2 rx&tx, 
k1 rx

t0

t4

t1

t5
B2:K4:A2,C1:k2.1rt

B,k2 rx&tx

t3
t2

C1::K3:

C,k2 rx&tx

A,k2 rx

t6
t7

t8



MKA optimization for group CAs

Revision 2.2 March 17, 2025 Mick Seaman 8

The constraints upon such participants may include a
limited ability to record and recall any data that
changes from power on to power on. In the interests of
cost most might have no non-volatile memory that is
capable of being modified each and every time they
power up.

Some participants might have a record of the
identities27 of the others with whom they need to
cooperate, either as part of their fixed code or install
time written memory, while others might have a very
limited record of their environment, even though they
have experienced it many times and their designers
hope is that they will continue to do so. In the latter
case, the Key Server system can be responsible for
orchestrating the operation of the networked
participants, and the fact that MKA provides a secure
fully distributed multipoint-to-multipoint transport
between authenticated participants and is not limited
to activating MACsec should not be overlooked.
While the amount of data MKA can distribute is
limited by the size of MKPDUs (at least), and is not an
efficient substitute for MACsec protected
communication, it can distribute EAPOL
announcement TLVs including Organizationally
Specific TLVs (see Figure 11-15, 11.12, Table 11-8 of
802.1X-2020, and Annex D of IEEE Std 802.1Q for
examples) if configuration prior to MACsec operation
is required. One possibility is for the Key Server to
supply its already known list of SCIs even in advance
of the users of those SCIs having completed power up
(MIs are not required to support installation of SCIs
for reception). Supplying such a list does not preclude
later dynamic addition of new participants.

5.3 SAK pre-distribution
A participant can expend a significant part of the effort
required use a fresh SAK [a) and b) of 4.5 above]
before enabling protection and validation of data
frames [which might be only part of 4.5 c) and d)].
Since the initial key unwrapping and key installation
stages have no externally visible consequences, a
participant could undertaken them before the Key
Server decides (by transmitting a Distributed SAK
parameter set and a Live Peer List in an MKPDU) on
the set of participants that are to use an initial SAK.

An SAK could be ‘pre-distributed’ (as described
below) even before the Key Server becomes aware of
their active presence. The decision to act on such a
‘pre-distribution’ lies with individual participants, and

choice to do so (or not) depends on the expected level
of exposure to DoS attack in the scenario for which the
participant has been developed, as follows.
If the potential CA concerned is thought to be both (a)
somewhat isolated, only exposed thorough the prior
installation of a rogue component, and (b) amenable to
rapid mission suspension, followed by out of operation
diagnosis, then an initial SAK (protected by the Key
Wrap specified for MKA) might even be transmitted
in an entirely separate message (not an MKPDU),
avoiding the requirement for the Key Server to
calculate a CAK dependent ICV for that message. A
protocol design choice to use such an unprotected
message does however balance the cost of ICV
protection against the probable need to transmit more
messages in total, as MKPDUs will also be required at
some stage to establish participant liveness. An
optimal design decision depends on accurate cost
figures, so, while bearing the possible use of
unprotected messages in mind, the following proposal
is based on the use of MKPDUs.
Pre-distribution adds two new MKPDU parameter
sets, one with the existing Distributed SAK parameters
for GCM-AES-128, and the other with those for
explicitly identified Cipher Suites. These new sets do
not couple the transmission of their parameters to their
immediate installation and use based on the Live Peer
List in the same MKPDU.28

The addition of these new parameter sets forces an
MKA version increment. At the same time a
previously reserved bit in the existing Distributed
SAK parameter set can be used to signal that
participants should not begin transmission until they
receive an MKPDU indicating that the Key Server has
started transmission with the new SAK, allowing the
Key Server to delay initial transmissions until it knows
that all are ready to receive.
Figure 5 shows a possible start up sequence. The
notation ‘[k1]’ represents a key wrapped SAK, with
Key Number 1, pre-distributed by Kevin starting in an
MKPDU transmitted at t0. Alice and Bob receive that
MKPDU and can start key installation, but cannot yet
use k1 to receive data frames as they have as yet no
proof of the liveness of Kevin or of the data they might
receive—both might be replays of past messages.
They both respond with Kevin’s MI.MN, establishing
their liveness, allowing Kevin to transmit a Distributed
SAK ‘{k1}’ with a Live Peer List which selects the
participants that are allowed to transmit using that
SAK. Alice and Bob now know they are participating

27 Such identity information might include the assignment of well-known (from the point of view of running code) local MAC addresses of other participants.
28 Changing the semantics of the existing parameter sets would be an unacceptable violation of the EAPOL versioning rules.



MKA optimization for group CAs

Revision 2.2 March 17, 2025 Mick Seaman 9

in a live exchange, check the octets of the key wrapped
SAK with those pre-distributed to confirm that they do
not need to repeat the unwrapping and installation
process, begin receiving with that key and transmit
MKPDUs confirming that they can receive protected
data frames from Kevin and all participants on the
Live Peer List accompanying the Distributed SAK.
They will start transmission following receipt of
Keven’s next message, which confirms that all
participants have reported their reception status (or
that Kevin has decided to proceed with transmission
without that confirmation).

If a lossless initial data transmission is not required,
Kevin can start transmitting when sending the
MKPDU at t3, with Alice and Bob beginning
transmission on its receipt.
Figure 6 shows another possible start up sequence.
Bob arrives too late to be included in Kevin’s initial
pre-distribution, but responds to that MKPDU,
proving liveness and is then included in Kevin’s
subsequent SAK distribution. Kevin could of course
continue to pre-distribute, with the possibility of
adding further participants before transmitting a
Distributed SAK parameter set for initial protected
data transmission using that key.
In some applications, where the availability of new
participants is roughly synchronized by some event
such as power availability (see 3 and 4.1 above), a
potential participant might restart during the process
of initial MKPDU exchange, using the same SCI but
with an incomplete record of its prior state and thus of
necessity (4.4 above) using a fresh MI. In Figure 6 the
participant temporarily identified as Bob reappears as
Charlie. Since Bob was not include in Kevin’s Live

Peer List in an MKPDU with a Distributed SAK
parameter set, Kevin can replace Bob with Charlie in
the transmitted Live Peer List that conveys that
parameter set.

Figure -5—Pre-distribution

Figure 5—Pre-distribution

K B
K1:::[k1]k1.0

A1::K1:

K2:A1,B1::{k1}k1.0r

Install k1

A2:K2:B1:k1.0r

k1, rx

t0

t1
t2
t3

t4
t5

A

B1::K1:

B2:K2,A1::k1.0r

K2:A2,B2::{k1}k1.0rt
k1, rx&tx

BA

t6

Figure -6—Pre-distribution (2)

Figure 6—Pre-distribution (2)

B

A

K

B
A1:::

K1::A1:[k1]k1.0

Install k1

A2:K1:B1:k1.0r

k1, rx

t0
t1

t2
t3

t4
t5

A

B1::K1:

B2:K1,A1::k1.0r

K2:A2,B2::{k1}k1.0rt
k1, rx&tx

K2:A1,B1::{k1}k1.0r
Install k1

k1, rx

t6

Figure -7—Pre-distribution (2)

Figure 7—A participant restarts

BA

K B
A1:::

K1::A1,B1:[k1]k1.0
Install k1

A2:K2:B1:k1.0

k1, rx

t0
t1
t2

t3

t4
t5

A

B1:::

C1:::

K2:A2:C1:[k1]k1.0

k1, rx&tx

C

C2:K2:A2:k1.0

C

A2:K3:B1:k1.0r

t6
K3:A2,C2::{k1}k1.0r

C2:K3:A2:k1.0r

K3:A2,C2::{k1}k1.0rt
t10
t9
t8

t7

Install k1
k1, rx



MKA optimization for group CAs

Revision 2.2 March 17, 2025 Mick Seaman 10

That replacement does depend on Kevin’s ordered
reception of MKPDUs. In the worst case the past
memory of Bob might have to be timed out before
Charlie can be included following SAK rollover.

6. Continued SAK distribution
A fresh SAK is distributed whenever the Key Server’s
Live List changes (9.8 of 802.1X). This provides a
Cipher Suite independent defence against nonce
reuse—a participant that resets, forgetting its prior PN
use and restarting its PN sequence with the next SAK
it receives, is also obliged to forget its prior MI.29,30

When one of the current non-XPN Cipher Suites is
being uses, the SCI (a concatenation of each
participant’s MAC Address and port number)31

divides the nonce space between participants. So the
rule forcing fresh SAK distribution could be relaxed
for Key Servers that retain a complete record of
{MI,SCI} tuples for the SAK currently being
distributed: new participants need only force fresh
SAK distribution only if their SCI was previously used
with a different MI. That should lessen the load for
participants that have already installed a current SAK.
Additionally such an existing participant need only
validate and respond once a second or so to a stream of
successive MKPDUs from the same Key Server that
only serve to convey the SAK to new participants.
Those periodic responses will suffice to retain its
presence on the Key Servers Live List. 
While this (6) optimization does not involve any
change or addition to the existing MKPDU format and
TLVs, it should be subject to the scrutiny and
documentation that comes with
standardization—verifying that it does indeed address
a real need not met by the existing standard or
optimizations previously described, that envisaged use
cases do not require fresh SAKs for other reasons, and
ensuring that it not used with any competing
optimizations that might also be thought to be possible
with the existing MKPDU specification.

6.1 Lossless considerations
A potential drawback to continued SAK distribution,
as describe immediately above, is the absence of any
convenient mechanism for informing each new
participant(s) that the existing participants can now
receive frames transmitted by that new participant, and

(vice versa) of informing each of the existing
participants of when the new participant can receive a
data frame that they might transmit. Tweaking timers
at each and every participant is unsatisfactory and
having new data frames transmitted at very rapid
intervals to minimize the delay in initiating
communication might also be unsatisfactory. One way
of addressing this issue (if it matters) is to use the
existing rollover procedure, with a new Key Number
and a ‘nonce extension’ as described in 6.3–6.8
below—substituting the distribution of a fresh
‘SAK+nonce space’ for the distribution of fresh SAK.

6.2 Participant restarts
Continued SAK distribution as described above (6)
reduces the load placed on existing participants (by
not requiring that they install a further SAK) as new
participants (with a distinct SCI) are recognized as
Live by the Key Server. It does, however, require fresh
SAK distribution if a participant already on the Key
Server’s Live List restarts with the same SCI. Simple
continued SAK distribution with the same Key
Number also does not support XPN Cipher Suites, as
Live List additions and removals can change SSCI
assignments (see 9.10 of 802.1X). However nonce
extension could be used to reduce the effort required to
use a new SAK.

6.3 Nonce extensions
The requirement for fresh SAK distribution stems
from the absolute need to avoid nonce reuse with the
standardized Cipher Suites. Distribution of an SAK, as
specified by 802.1X-2020 allows a participant to use
that SAK together with the participant’s SCI and a
32-bit PN (for non-XPN Cipher Suites) or with the
participant’s SSCI and a 64-bit PN (for XPN Cipher
Suites). The same SAK could be used with a repeated
PN without reusing a given {SAK, nonce} if other
fields extend the nonce values.

The details of possible nonce extension techniques are
Cipher Suite and procedure specific. The following
descriptions begin with the use of the existing XPN
Cipher Suites together with Key Number rollover: a
combination that does not require changes to the way
those Cipher Suites are currently standardized, so can
be orchestrated by the Key Server without changes to

29 The reset participant (A, say) will only accept an SAK from a Key Server (K) when its (A’s) new MI has appeared on the K’s Live List, which will have
caused K to distribute a fresh SAK. K cannot reliably track and update A’s PN use, as [in the threat model, a) in 9.1 of 802.1X] the attacker could have
selectively limited the propagation of A’s frames.
30 A further use case specific consideration concerns possible theft of a participant system and extraction of the SAK. While the CAK and its derived keys that
are used to protect and validate MKPDUs might be retained within a secure boundary in the system, it is most unlikely that such precautions could be applied
to use of the SAK. There is no suggestion that SAK changes provide perfect forward secrecy (PFS), but it could raise the cost of some attacks.
31 In most cases each port (physical MAC entity) will have its own MAC Address, so the port number component will not play a significant role.



MKA optimization for group CAs

Revision 2.2 March 17, 2025 Mick Seaman 11

other participants, and has the desirable lossless
characteristics for existing, new, and restarted CA
participants.
A similar procedure can be used for the existing
non-XPN Cipher Suites. As described this adds bits
from the Key Number space into the existing SCI Port
ID field, so should be usable with existing MACsec
protection and validation hardware. A variant of this
procedure avoids key rollover (minimizing the effort
required from existing CA participants) at the expense
of lossless additions for new participants.
Finally, the syntax and semantics of the Live Peer List
can be tweaked to support minimal effort additions
and restarts, again at the expense of lossless additions.

6.4 XPN rollover
When the XPN Cipher Suites, (GCM-AES-XPN-128
or GCM-AES-XPN-256) are used, a 96-bit Salt
(10.7.27, 10.7.28, 14.7 and 14.8 of 802.1AE) is
XOR’d with each participant’s 32-bit SSCI and 64-bit
XPN to yield the Cipher Suite nonce.
When MKA is used for key agreement, the 64 least
significant bits of the Salt are the 64 least significant
bits of the Key Server’s MI, the 16 next most
significant bits of the Salt are the 16 next most
significant bits of the Key-Server’s MI XOR’d with
the 16 most significant bits of the MKA Key Number
(KN). The 16 most significant bits of the Salt are the
16 most significant bits of the Key Server’s MI XOR’d
with the 16 least significant bits of the Key Number.
The Salt thus creates a distinct fraction of the nonce
space for each of the first 216 Key Numbers used with
its MI.32 MKPDU size limits ensure that all SSCIs
will be encoded in the 16 least significant bits of the
SSCI field, and will not interfere with this
{Key Number.MI bits} space in the Salt. 
So the Key Server could, when using these XPN
Cipher Suites, continue to distribute the same SAK
even though the Key Server’s Live List (listing MIs of
participants allowed to use the SAK for transmission)
has changed provided that the Key Number is changed
with each change in the Live List. That Key Number
change prompts the necessary SA AN (Association
Number) increment, and the SAK installation and
rollover procedures (see newSAK in the CP state
machine, Figure 12-2 of 802.1X) that accompany
distribution of an SAK with a new Key Number.
A participant that receives a distributed SAK with a
new Key Number can skip the calculations necessary
to unwrap and install the SAK if a simple string

comparison with the prior wrapped SAK shows it to
be a repeat. The fresh set of SSCIs do need to be
installed, and the ability to receive using this new SA
reported (using the MACsec SAK Use parameter set,
Figure 11-10 of 802.1X) so the Key Server can
coordinate transmit rollover for all participants
(transition from CP:READY to CP:TRANSMIT in the
CP state machine, Figure 12-2 of 802.1X).
Changing Key Number without changing the SAK
when the XPN Cipher Suites are being used, as
described here (6.4), does not require changes or
additions to the existing MKPDU and TLV formats.
Indeed existing implementations that are unaware of
the potential optimization and do not check for the
repeated SAK will (if correct) interoperate with Key
Servers and other participants that use it. However this
optimization does not strictly follow all the rules for
fresh SAK use specified in 9.8 of 802.1X, so should be
standardized, and the comments in 1 regarding public
scrutiny of both need and mechanism apply.
While the upper, Key Number influenced, bits of the
Salt could be used to allow a given SAK to protect
more than 264 frames, that is not the intent of this
optimization, which rather addresses reducing the
workload during periods of significant change. Even at
1 Tb/s fewer than 240 back to back minimum sized
Ethernet frames can be transmitted in a week, and
cryptanalytic attack should not be made easier by
unnecessarily prolonging use of a single SAK.

6.5 PN nonce extension with KN rollover
When a non-XPN Cipher Suite (GCM-AES-128 or
GCM-AES-256) is used, the 64 most significant bits
of the 96-bit nonce (IV, 14.5 and 14.6 of
802.1AE-2018) are the octets of the SCI. The
most-significant octets of the SCI are a MAC Address
associated with the transmitter and the two least
significant octets are a Port Identifier. The inclusion of
the Port Identifier supports the following possibilities:
a single system MAC Address could be used for
multiple physical ports (MAC entities), although
current standards recommend or require each to have
its own unique MAC address; or multiple virtual
instantiations (as yet unspecified) of the physical port
could be supported in a single CA; or a 64-bit MAC
Address could be used without requiring a change to
the length of the SCI or its encoding in the MACsec
SecTAG (a possibility that diminished for other
reasons since the initial standardization of MACsec).
Some or all of the Port Identifier bits could thus be
used to identify allocate successive fragments of the

32 In addition to the less significant effects (for this note) of using a Key Server instantiation dependent fraction of the 80 least significant bits of the nonce
(IV) for any given SAK value, and not using nonces is strict numerical order.



MKA optimization for group CAs

Revision 2.2 March 17, 2025 Mick Seaman 12

nonce space in a similar way to that described for the
XPN Cipher Suites (6.4). Again the reason for doing
so is to lessen the processing load (and consequent
delays involved) in repeated SAK installation
following closely staggered recognition.

The fragments of nonce space could be identified by
encoding least significant bits of the Key Number in
the most significant bits of the SCI Port Identifier
space.33 Coupling the nonce space fragments to Key
Numbers allows their use to be coordinated by the
normal SAK Rollover procedures, just as for the XPN
Cipher Suites.

802.1Q specifies 12-bit Bridge Port Numbers.
Assuming other participant systems will have modest
port counts, this leaves 4 bits to identify alternate
nonce spaces. That is probably sufficient, allowing the
same SAK to be retained across 16 group formation
episodes, during each of which one or more
participants could join the Key Server’s Live List. The
true (i.e. without any included Key Number bits) Port
Identifier need to be advertised by each participant in
its Basic parameter set (Figure 11-8 of 802.1X) SCI.

Each participant needs to advertise its ability to use
this PN nonce extension, and the Key Server needs to
be able to select its use for any given distributed SAK
and to be able to distribute a SAK that is not to be used
with the extension if unsupported by one or more
members of the Live Peer List using the SAK. One
way to do that would be to assign one of the currently
reserved bits in the third octet of the Live Peer List and
Potential Peer List to signal support of the capability,
and to assign one of the reserved bits in the second or
third octet of the Distributed SAK Parameter set to
select its use. An MKA Version Number of 4 or above
(it is currently 3) would be used by any participant
capable of setting either of these bits (see versioning
rules in the third paragraph of 11.11 of 802.1X).34 An
alternative approach, consistent with the existing
specification, would be to assign two additional
MACsec Cipher Suite reference numbers for use in the
Distributed SAK Parameter set and in the MACsec
Cipher Suites EAPOL-Announcement TLV (type 112
in Table 11-8 and Figure 11-12 of 802.1X). The latter
may be thought to be consistent with Cipher Suite
specification to date, and would not require a version
number increment but does add more octets to the

MKPDUs than might be thought desirable. The choice
between these approaches does affect the way they are
documented.
As described, the Key Number dependent part of the
nonce is encoded in the Port Identifier part of the
SecTAG SCI to support existing MACsec protection
and validation hardware, rather than creating a Salt
equivalent (which would be XORed into the relevant
bits for protection and validation, and not carried in
SecTAG).

6.6 PN nonce extension with KN Salt
The PN nonce extensions described above (6.5) and
below (6.7) avoid changes to existing MACsec
hardware support by encoding extension information
in the Port Identifier conveyed in the SecTAG. This
does impose a per-peer update requirement on each
participant as the KN is incremented. In new
application spaces, where new hardware is required
for other reasons, the SCI could be left untouched and
the KN used to salt the nonce (the IV) as follows.
The least significant nibble (the four-least significant
bits, bits 1 through 4) of the KN are exclusive-or’d
with the most significant nibble (the four-most
significant, bits 13 through 16) of the Port Identifier
component of the nonce, the next to least significant
nibble of the KN with the next to most significant
nibble of the Port Identifier, and so on to
exclusive-or’ing the most significant nibble of the 16
most significant bits of the KN with the least
significant nibble of the Port Identifier component.
This PN nonce salt procedure is slightly simpler (and
thus possibly less error prone) than the bit order
reversal of the lower 16 bits of the KN before
exclusive-or’ing those with the Port Identifier part of
the SCI when constructing the nonce.35 The Key
Server would be responsible for ensuring that the
number of instances of KN increment/Salt use with
any specific SAK would not be greater than 2 to the
power of the more significant bits Port Identifier
unused by any two CA participants—so the
application of nonce salts for the set of KNs for a
given SAK would not result in the reuse of the nonce
for that SAK. The Salt is applied nibble-by-nibble
rather than octet-by-octet so that any system that uses
a Bridge Port Number in the Port Identifier field could
still use this nonce extension method (802.1Q
specifies 12-bit Port Numbers). While the first KN

33 Other solution are of course possible, including creating new parameter sets, extending existing parameter sets, and borrowing reserved bits from existing
fields including (notably) the Live Peer List and Potential Peer List parameter sets —at least one of these parameter sets needs to be present in MKPDUs sent
by participants and by the Key Server prior to SAK distribution to Live Peers.
34 Not all future versions of MKA should be tied to this capability, so a version number increment alone is insufficient. 
35 The Salt applied is also simpler than that specified for XPN, as the latter is intended to provide more nonce diversity for an SAK that could, in principle, be
used up to 264 times.



MKA optimization for group CAs

Revision 2.2 March 17, 2025 Mick Seaman 13

used with this procedure could be large, and thus
modify more significant Port Identifier bits in the KN
nonce that do disambiguate SCIs, that is not a problem
for nonce duplication unless the KN is successively
incremented to the point those bits are changed again.
The use of this PN Salt would allow the most talkative
participant in a group CA to protect around 246

frames36 (as opposed to a maximum of 232) with a
single SAK. However the real goal is to accommodate
participants that might restart frequently, as might
occur in automotive applications. When the Key
Number changes, the receive (validation logic) only
has to be updated with the new AN and Salt as part of
Key Number rollover (as opposed to a per peer Port
Identifier update) and a desirable property of Key
Rollover (knowing when communication is possible
between existing and new or restarted participants) is
retained.
This ‘PN nonce extension with KN Salt’ could be
easily represented in MKA as a distinct Cipher Suite.
Assuming that the Salt value would be under software
control (one 16 bit value for each of two receive ANs),
an implementation capable of this Cipher Suite would
naturally also be capable of supporting the Default
Cipher Suite (GCM-AES-128) by just using 0 for
those two Salt values (and requiring, of course, a fresh
SAK with each Key Number).

6.7 PN nonce extension without KN rollover
A Port Identifier based nonce extension could also be
applied piecemeal, with the Key Server supplying
participant specific Port Identifier values. There are a
range of possibilities, none particularly appealing at
present.
Using additional Port Identifiers [or with the SSCI
nonce addition described below (6.8), additional
SSCIs] to avoid the KN increment with its need to
update the AN [and with XPN the need to update the
Salt], and its need to use the CP state machine SAK
rollover procedure, also means that the signalling that
is part of that SAK update procedure does not take
place. As described above (6.1), the Key Server can
receive indications that new participants can receive
and transmit with the assigned Port Identifiers [or
SSCIs] and the existing SAK, but can see no change in
existing participants status. So a new participant can
only tell when other new participants are capable of
receiving the frames it will transmit if it spots their
receive status transition in the MKPDUs they transmit,

and not by receiving information in Key Server
MKPDUs. A new participant has no way of telling
when existing participants have installed its Port
Identifier [SSCI]. Existing participants also have no
way of knowing when the new participant is capable
of transmission and reception, as far as they are
concerned the MAC was already operational (OperUp)
and continues to be OperUp.

6.8 SSCI nonce addition
The available nonce space for given SAK can also be
effectively extended by simply adding an SSCI when a
the Key Server detects a new participant.37 SSCI
assignments can then be defined by the order of their
appear in the Live Peer List of the MKPDU that the
Key Server uses to distribute a SAK (which may now
be a repeat of an earlier distribution). A list MI for a
participant that has since restarted (with a fresh MI) or
has been timed out, can be replaced with a reserved
value (0, for example).38

This approach has the appeal of not requiring an MKA
Key Number (KN) increment and the accompanying
key rollover procedure when the new participant is
added. The downsides are the lack, as described in 6.1
and 6.7 above, of support for lossless addition, and the
change in the semantics of the Key Server’s Live List
(as specified in both 802.1AE and in 802.1X) when
used in conjunction with Key Distribution. The
EAPOL protocol version handling rules (and other
similar versioning rules in other 802.1 standards) were
designed to prohibit such changes in the interests of
backwards and forwards compatibility. The issue and a
work around is described in 6.8.1.

If the CA can include a significant number of
participants, e.g. 50 or more, and the expectation is
that a given participant system might appear as a fresh
participant more than once, either due to a potential
reboot during an initial erratic power up sequence or
due to temporary power down while the overall
network of participants continues group CA operation,
then SSCI nonce extension will not avoid the need to
support SAK rollover as currently required by the
802.1X CP state machine.

6.8.1 Live Peer List semantics
The fourth paragraph of 10.7.13 ‘Receive SA creation’
of 802.1AE specifies SSCI assignment:

36 Allowing for some inefficiency in nonce space use when progressing from one Key Number to the next before PN exhaustion occurs.
37 Lars Völker identified this possibility, building on the XPN nonce extension previously described (6.4 above).
38 In theory a random value could be chosen for the replacement, given the extremely low probability of a collision with a real participant value, but that could
be confusing both for implementation and administration.



MKA optimization for group CAs

Revision 2.2 March 17, 2025 Mick Seaman 14

“MKA, specified in IEEE Std 802.1X, does not
distribute SSCIs explicitly. A KaY assigns SSCI
values as follows. The KaY with numerically greatest
SCI uses the SSCI value 0x00000001, the KaY with
the next to the greatest SCI uses the SSCI value
0x00000002, and so on. This assignment procedure is
not necessarily applicable to any other key agreement
protocol.”39

The fifth and subsequent paragraphs of 9.10 of
802.1X-2020 reinforce that ordering, but specify that
for MKA Version 3 (or higher) the SSCI assignments
for an XPN Cipher Suite are taken from the order in
the Live Peer List.
To be certain that the current set of CA participants do
not include some that use the original SSCI
assignment rule (sequentially, strictly by SCI value)
and some that rely entirely on the Live Peer List
(sequentially, strictly by list order skipping SSCIs
corresponding to reserved entries in the list), the Key
Server should be required to use SSCI nonce addition
only if all Live Peers are using MKA version 4 (to be
safe) or above. Prior version participants could coexist
with updated participants in a single CA, but the Key
Server would not be able to use simple SSCI nonce
addition but would need to use XPN rollover
(6.4 above) to add participants, for which support
would remain a mandatory part of conformance.

A. Additional background and notes
t.b.s.

39 See also the following note.


	MKA optimization for group CAs
	1. Overview
	2. Selective MKPDU validation
	2.1 Duplicate MI detection
	2.2 Maintaining liveness
	2.3 Confirming connectivity
	2.4 Total number of MKPDUs transmitted
	2.5 Peer determination

	3. Repeated MKPDU transmission
	4. SAK distribution detail
	4.1 Basic SAK distribution and rollover
	4.2 SAK distribution requirements
	4.3 SAK distribution rules
	4.4 RNG considerations
	4.5 SAK installation and use

	5. Rapid Group CA formation
	5.1 Joining together
	5.2 Prior knowledge
	5.3 SAK pre-distribution

	6. Continued SAK distribution
	6.1 Lossless considerations
	6.2 Participant restarts
	6.3 Nonce extensions
	6.4 XPN rollover
	6.5 PN nonce extension with KN rollover
	6.6 PN nonce extension with KN Salt
	6.7 PN nonce extension without KN rollover
	6.8 SSCI nonce addition
	6.8.1 Live Peer List semantics



