

1 TSN Industrial Automation Use Cases v0.2

2 Contributor group

This Use Case Document

McCall, David <david.mccall@intel.com>

Initial Use Case Document from 2019

Belliardi, Rudy <rudy.belliardi@schneider-electric.com>
Dorr, Josef <josef.dorr@siemens.com>
Enzinger, Thomas <thomas.enzinger@br-automation.com>
Essler, Florian <f.essler@beckhoff.com>
Farkas, János <janos.farkas@ericsson.com>
Hantel, Mark <mrhantel@ra.rockwell.com>
Riegel, Maximilian <maximilian.riegel@nokia.com>
Stanica, Marius-Petru <marius-petru.stanica@de.abb.com>
Steindl, Guenter <guenter.steindl@siemens.com>
Wamßer, Reiner <Reiner.Wamsser@boschrexroth.de>
Weber, Karl <karl.weber@beckhoff.com>
Zuponcic , Steven A. <sazuponcic@ra.rockwell.com>

Following discussion during the IEEE 802 Plenary, November 2025, consensus in the 802.1 TSN Task Group was **not** to develop a use case document for an IEC/IEEE 60802 follow-on project by editing the original use case document from 2018 (i.e. this document) but instead to start with a “clean sheet of paper”.

This new revision will import use cases from the original use case document (updated to match the language used in IEC/IEEE 60802) and add use cases from the various recent presentations listed in References.

The next version of this document (v0.3) will thus look very different.

3

4 Abstract

5 This document describes use cases for industrial automation, which may be covered by a future
6 project or projects to add functionality to IEC/IEEE 60802 TSN Profile for Industrial Automation.
7 These use cases can guide a specification process: a selection of these use cases would determine
8 WHAT shall be enabled by a future project or projects that specifies HOW to achieve the use cases
9 at the system level of an IA system. Even if a project does not cover the overall system level, the
10 project can enable, or at least does not prevent, the features described in a use case.

11
12 In this first draft (v0.1) use case numbering (and Figure and Table numbering) from [1] (see
13 References) is carried over to aid comparison with that document. New use cases are identified
14 with a preceding “N”, e.g. N10. The intention is to renumber (and potentially reorder) the use
15 cases in a future draft.

16 Log

v0.1	2025-11-10	Working Draft – Reviewed during Nov 2025 IEEE 802 Plenary
v0.2	2026-01-05	Working Draft – Following review during Nov 2025 IEEE 802 Plenary. Minor updates. Group consensus from meeting was to “start fresh” rather than try to edit the original Use Case document from 2018. There will therefore be a more major update prior to the next review.

17

18 References

19 [1] ["Use Cases IEC/IEEE 60802 v1.3"](#), group contribution to IEC/IEEE 60802, September 2018

20 [2] ["Review of potential use cases for a potential amendment to IEC/IEEE 60802 version 2"](#),
21 contribution to IEC/IEEE 60802 by David McCall, September 2025

22 [3] ["Security Use Cases IEC/IEEE 60802"](#), group contribution to IEC/IEEE 60802, April 2022

23 [4] ["IEC/IEEE 60802 amendment brainstorming: IA-Controller – Cloud Solution – Configuration
24 Domain"](#), contribution to IEC/IEEE 60802 by Günter Steindl and Dieter Proell, June 2025

25 [5] ["IEC/IEEE 60802 Edition 2 Topics"](#), contribution to IEC/IEEE 60802 by Mark Hantel, July 2025

26 [6] ["Management proxies for ccA"](#), contribution to IEC/IEEE 60802 by Thomas Enzinger, May
27 2025

28 [7] ["60802 – Edition 2 – Some Topics"](#), contribution to IEC/IEEE 60802 by Marius-Petru Stanica,
29 May 2025

30 [8] ["Kick-off for Brainstorming on Potential Amendment to IEC/IEEE 60802"](#), contribution to
31 IEC/IEEE 60802 by János Farkas, May 2025

32 [9] ["Other considerations for IEC/IEEE 60802, Edition 2"](#), contribution to IEC/IEEE 60802 by
33 Jordon Woods, May 2025

34 [10] ["Simplified Standardization Workflows, ISA/IEC 62443 Security for industrial automation and
35 control systems and Mapping of Standards to 62443"](#), contribution to IEC/IEEE 60802 by
36 Dieter Proell, May 2025

37 Content

38	Contributor group	1
39	Abstract	1
40	Log	2
41	References	3
42	Content	4
43	Figures	5
44	Tables	5
45	1 Terms and Definitions	6
46	1.1 Definitions	6
47	1.2 IEEE802 terms	7
48	2 TSN in Industrial Automation	8
49	2.1 Interoperability	9
50	2.2 TSN Domain	10
51	2.2.1 General	10
52	2.2.2 Interconnection of TSN Domains	11
53	2.2.2.1 General	11
54	2.2.2.2 Bridges (Layer 2)	12
55	2.2.2.3 Routers (Layer3)	13
56	2.2.2.4 Application Gateways (Layer7)	14
57	2.2.3 Synchronization	14
58	2.3.1 General	14
59	2.3.2 Universal Time Synchronization	15
60	2.3.3 Working Clock Synchronization	15
61	2.4 Industrial automation modes of operation	16
62	2.4.1 Industrial automation traffic types	16
63	2.4.1.1 General	16
64	2.4.1.2 Characterization of isochronous cyclic real-time and cyclic real-time	18
65	2.4.2 Bidirectional communication relations	19
66	2.4.3 Control Loop Basic Model	20
67	2.5 Industrial automation networks	22
68	2.5.1 Use case 07: Redundant networks	22
69	2.5.2 Use case 09: Wireless	23
70	2.5.3 Use case N10: Multi-Subnet Operation	24
71	2.6 Industrial automation machines, production cells, production lines	25
72	2.6.1 Use case 17: Machine to Machine/Controller to Controller (M2M/C2C) Communication	25
73	2.6.2 Use case 18: Pass-through Traffic	27
74	2.6.3 Use case 21: Dynamic plugging and unplugging of machines (subnets)	29
75	2.6.4 Use case 23: Add machine, production cell or production line	29
76	2.6.5 Use case 26: Machine cloning	30
77	2.7 Further Industrial Automation Use Cases	31
78	2.7.1 Use case 30: Security	31
79	Abbreviations	33
80	Literature and related Contributions	33
81		
82		
83		
84		
85		
86		

87 **Figures**

88	Figure 1 – Hierarchical structure of industrial automation.....	8
89	Figure 2 – Principle of interoperation	10
90	Figure 3 – Scope of work	10
91	Figure 4 – Different Types of Domains.....	11
92	Figure 5 – Three TSN domains connected by Bridges	12
93	Figure 6 – Three TSN domains connected by Routers.....	13
94	Figure 7 – Gateways with two TSN domains and an attached Fieldbus	14
95	Figure 8 – plant wide time synchronization	15
96	Figure 9 – line/cell/machine wide working clock synchronization overlapping with a universal time domain.....	15
98	Figure 10 – Bidirectional Communication.....	20
99	Figure 11 – Principle data flow of control loop.....	21
100	Figure 30 – ring topology	22
101	Figure 31 – connection of rings	22
102	Figure 33 – HMI wireless connected using cyclic real-time	23
103	Figure 34 – Remote IO wireless connected using cyclic real-time.....	23
104	Figure 35 – Ring segment wireless connected for media redundancy.....	23
105	Figure 51 – M2M/C2C between TSN domains	25
106	Figure 52 – M2M with supervisory PLC.....	26
107	Figure 53 – M2M with four machines	26
108	Figure 54 – M2M with diagnostics/monitoring PC	27
109	Figure 55 – pass-through one machine.....	28
110	Figure 56 – pass-through one machine and production cell	28
111	Figure 57 – pass-through two machines	28
112	Figure 58 – machine with diagnostics / monitoring PC	28
113	Figure 62 – AGV plug and unplug	29
114	Figure 64 – add machine	30
115	Figure 67 – Machine internal communication with isolated logical infrastructure	31
116		
117		
118		
119		

120 **Tables**

121	Table 1 – Industrial automation traffic types summary	17
122	Table 2 – isochronous cyclic real-time and cyclic real-time traffic type properties	18
123	Table 3 – Application types	21

124 1 Terms and Definitions

125 1.1 Definitions

Reconfiguration	<ul style="list-style-type: none"> - Any intentional modification of the system structure or of the device-level content, including updates of any type - Ref: IEC 61158- Type 10, dynamic reconfiguration - Document provided by PI/PNO: Guidelines for high-availability
(Process) disturbance	<ul style="list-style-type: none"> - Any malfunction or stall of a process/machine, which is followed by production loss or by an unacceptable degradation of production quality - Ref: IEC 61158 – Failure - Ref. ODVA: Unplanned downtime - Document provided by PI/PNO: Guidelines for diagnosis
Operational state of a plant (unit)/machine	Normal state of function and production of a plant(unit)/machine
Maintenance state of a plant (unit)/machine	Planned suspension or partial suspension of the normal state of function of a plant(unit)/machine
Stopped state of a plant (unit)/machine	Full non-productive mode of a plant(unit)/machine
Convergent network concept	All LAN devices (wired or wireless) are able to exchange data over a common infrastructure, within defined QoS parameters
Device	End station, bridged end station, bridge, access point
DCS	Distributed Control System
Transmission selection algorithms	A set of algorithms for traffic selection which include Strict Priority, the Credit-based shaper and Enhanced Transmission Selection. ¹⁾
Preemption	The suspension of the transmission of a preemptable frame to allow one or more express frames to be transmitted before transmission of the preemptable frame is resumed. ¹⁾
Enhancements for scheduled traffic	A Bridge or end station may support enhancements that allow transmission from each queue to be scheduled relative to a known timescale. ¹⁾
Time-Sensitive Stream	A stream of traffic, transmitted from a single source station, destined for one or more destination stations, where the traffic is sensitive to timely delivery, and in particular, requires transmission latency to be bounded. ¹⁾
TSN domain	A quantity of commonly managed industrial automation devices; A set of devices, their Ports, and the attached individual LANs that transmit Time-Sensitive Streams using TSN standards which include Transmission Selection Algorithms, Preemption, Time Synchronization and Enhancements for Scheduled Traffic and that share a common management mechanism.

¹⁾ taken from 802.1Q-2018

	It is an administrative decision to group these devices (see 2.2).
universal time domain	gPTP domain used for the synchronization of universal time
working clock domain	gPTP domain used for the synchronization of a working clock
isochronous domain	stations of a common working clock domain with a common setup for the isochronous cyclic real-time traffic type
cyclic real-time domain	stations with a common setup for the cyclic real-time traffic type - even from different working clock domains or synchronized to a local timescale
Network cycle	transfer time including safety margin, and application time including safety margin (see Error! Reference source not found.); values are specific to a TSN domain and specify a repetitive behavior of the network interfaces belonging to that TSN domain;
Greenfield	for the context of this document: greenfield refers to TSN-IA profile conformant devices; regardless if "old" or "new";
Brownfield	for the context of this document: brownfield refers to devices, which are not conformant to the TSN-IA profile; regardless if "old" or "new";
Stream forwarding	Forwarding of stream data along the stream path including TSN domain boundary crossings

126 1.2 IEEE802 terms

Priority regeneration	See IEEE 802.1Q-2018 clause 6.9.4 Regenerating priority
Ingress rate limiting	See IEEE 802.1Q-2018 clause 8.6.5 Flow classification and metering

127

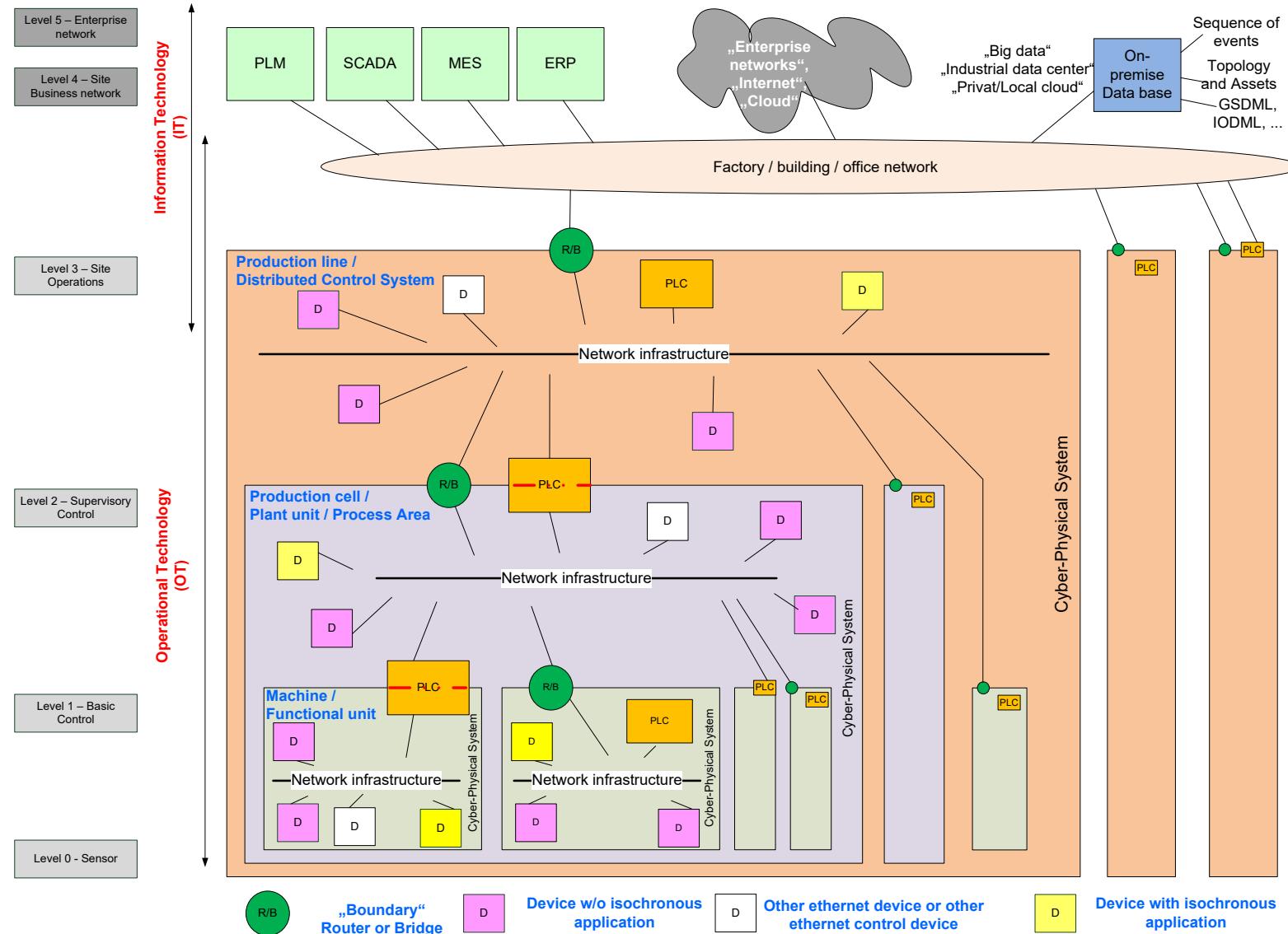


Figure 1 – Hierarchical structure of industrial automation

133 There is no generally accepted definition of the term “Cyber-Physical System (CPS)”. A report of
134 Edward A. Lee [1] suitably introduces CPS as follows: „*Cyber-Physical Systems (CPS) are*
135 *integrations of computation with physical processes. Embedded computers and networks monitor*
136 *and control the physical processes, usually with feedback loops where physical processes affect*
137 *computations and vice versa.*”

139 Cyber-Physical Systems are the building blocks of “smart factories” and Industry 4.0. IEEE 802
140 LAN technologies provide the mechanisms (e.g. TSN features) for connectivity to time critical
141 industrial applications on converged networks in operational technology control levels.

142 IEEE 802 LANs with TSN features can be used in Industrial Automation for:

- 143 • Real-time (RT) Communication within Cyber-Physical Systems
- 144 • Real-time (RT) Communication between Cyber-Physical Systems

147 A CPS consists of:

- 148 ○ Controlling devices (typically 1 PLC),
- 149 ○ I/O Devices (sensors, actors),
- 150 ○ Drives,
- 151 ○ HMI (typically 1),
- 152 ○ Interface to the upper level with:
 - 153 - PLC (acting as gateway), and/or
 - 154 - Router, and/or
 - 155 - Bridge.
- 156 ○ Other Ethernet devices:
 - 157 - Servers or any other computers, be it physical or virtualized,
 - 158 - Diagnostic equipment,
 - 159 - Network connectivity equipment.

160 2.1 Interoperability

161 Interoperability may be achieved on different levels. Figure 2 and Figure 3 show three areas, which
162 need to be covered:

- 163 - network configuration (managed objects according to IEEE definitions), and
- 164 - stream configuration and establishment, and
- 165 - application configuration.

166 The three areas mutually affect each other (see Figure 2).

167 Application configuration is not expected to be part of the profile, but the two other areas are.

168 The selection made by the TSN-IA profile covers IEEE 802 defined layer 2 and the selected
169 protocols to configure layer 2.

170 Applications make use of upper layers as well, but these are out of scope for the profile.

171 Stream establishment is initiated by applications to allow data exchange between applications. The
172 applications are the source of requirements, which shall be fulfilled by network configuration and
173 stream configuration and establishment.

174

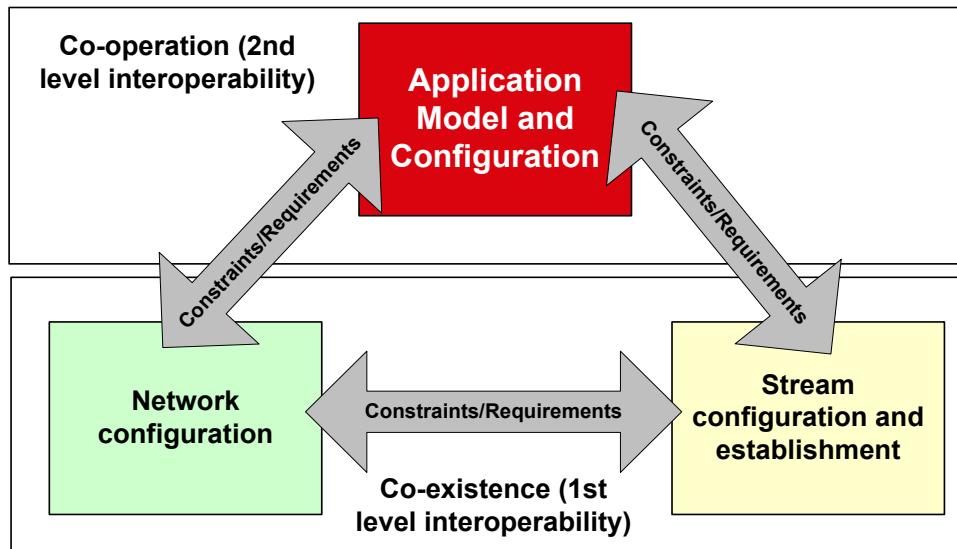


Figure 2 – Principle of interoperation

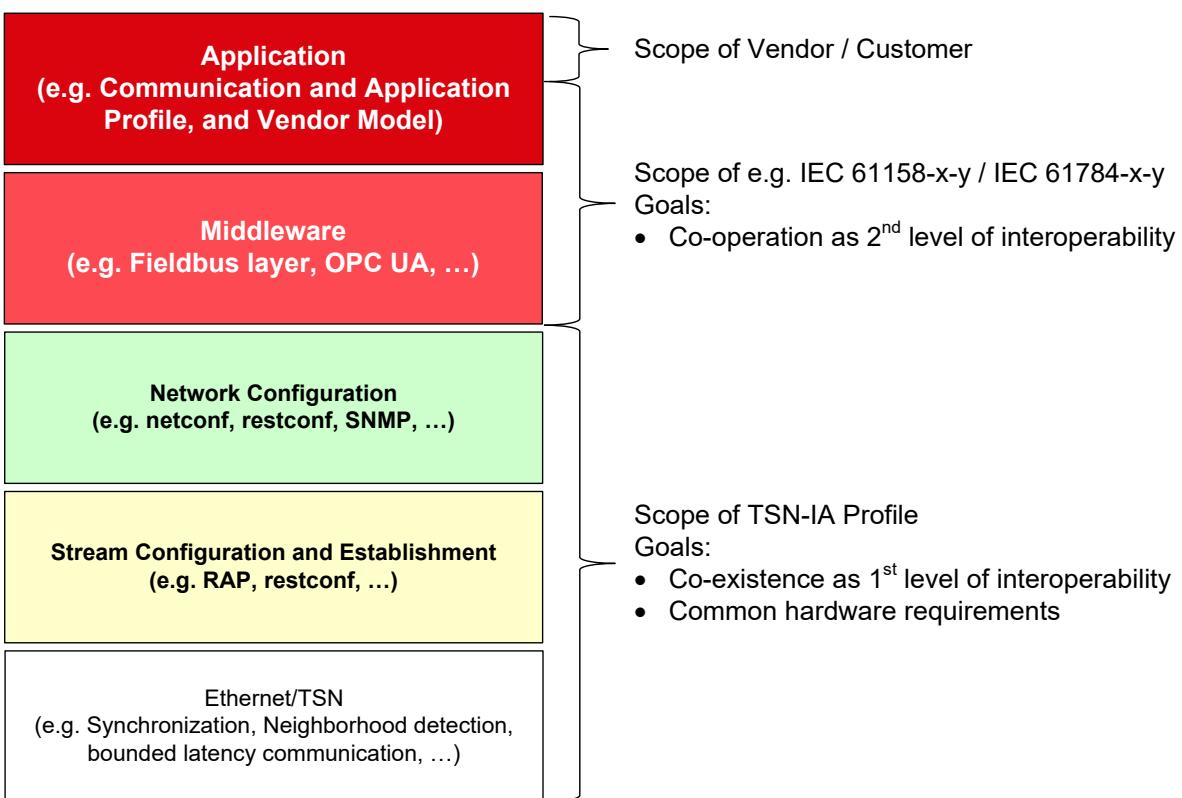
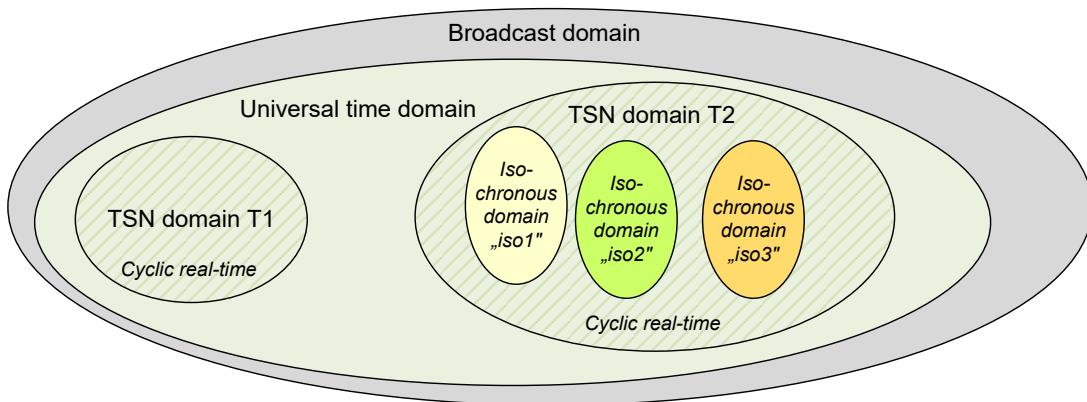


Figure 3 – Scope of work


175
176
177178
179
180181 **2.2 TSN Domain**182 **2.2.1 General**183 A TSN domain is defined as a quantity of commonly managed industrial automation devices; it is
184 an administrative decision to group these devices.

185 TSN Domain Characteristics:

- 186 One or more TSN Domains may exist within a single layer 2 broadcast domain.
- 187 A TSN Domain may not be shared among multiple layer 2 broadcast domains.
- 188 Multiple TSN Domains may share a common universal time domain.
- 189 Two adjacent TSN Domains may implement the same requirements but stay separate.
- 190 Multiple TSN domains will often be implemented in one bridge (see 2.2.2.2).
- 191 Multiple TSN domains will often be implemented in one router (see 2.2.2.3).
- 192 Multiple TSN domains will often be implemented in one gateway (see 2.2.2.4).

193 Typically machines/functional units (see Figure 1) constitute separate TSN domains. Production
 194 cells and lines may be set up as TSN domains as well. Devices may be members of multiple TSN
 195 domains in parallel.

196 Figure 4 shows two example TSN domains within a common broadcast domain and a common
 197 universal time domain. TSN domain 1 is a pure cyclic real-time domain, whereas TSN domain 2
 198 additionally includes three overlapping isochronous domains.

200
 201 **Figure 4 – Different Types of Domains**

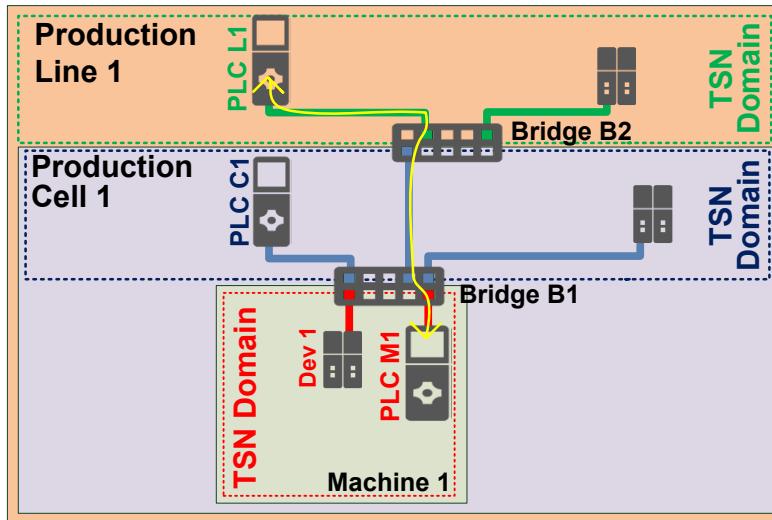
202 Interconnections between TSN domains are described in 2.2.2 and 2.6.1.

203 **2.2.2 Interconnection of TSN Domains**

204 **2.2.2.1 General**

205 TSN domains may be connected via

- 206 - Bridges (Layer 2), or
- 207 - Routers (Layer 3), or
- 208 - Application Gateways (Layer 7).


209 Wireless Access Points or 5G Base Stations may be used to connect TSN domains, too.

210 **2.2.2.2 Bridges (Layer 2)**

211 When a Bridge is member of multiple TSN domains, one bridge port must only be a member of a
212 single TSN domain.

213 Figure 5 provides an example of two Bridges, which are members of two TSN domains each.
214 Bridge B1 provides ports and connectivity in TSN domain Production Cell 1 and in TSN domain
215 Machine 1, Bridge B2 for Production Line 1 and Production Cell 1.

216

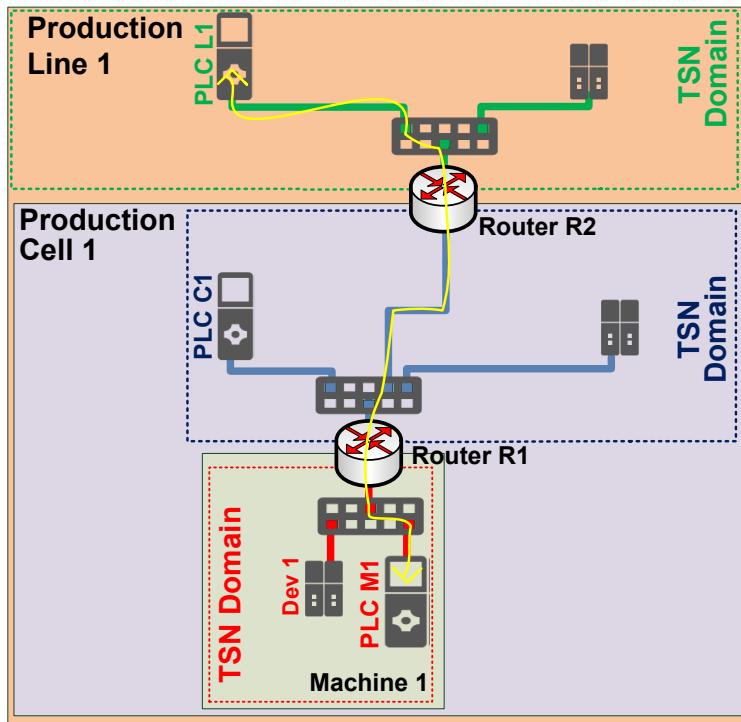
217
218 **Figure 5 – Three TSN domains connected by Bridges**

219 To support connectivity between multiple TSN domains (e.g. PLC L1 ↔ PLC M1) a method for
220 reserving time-sensitive streams over multiple TSN domains needs to be specified, including:

221 - find the communication partner,
222 - identify the involved TSN domains,
223 - identify the involved management entities independent from the configuration model
224 (centralized, hybrid, fully distributed),
225 - ensure the needed resources,
226 - parameterize the TSN domain connection points to allow stream forwarding if needed.

227

2.2.2.3 Routers (Layer3)


228

Together with routers, both intranet and internet are possible. In this sub-clause, however, only the intranet use case is addressed.

230

When a router is member of multiple TSN domains, one router interface/port must only be a member of a single TSN domain. Figure 6 provides an example of two routers, which are members of two TSN domains each. Router R1 provides ports and connectivity in TSN domain Production Cell 1 and in TSN domain Machine 1, Router R2 for Production Line 1 and Production Cell 1.

234

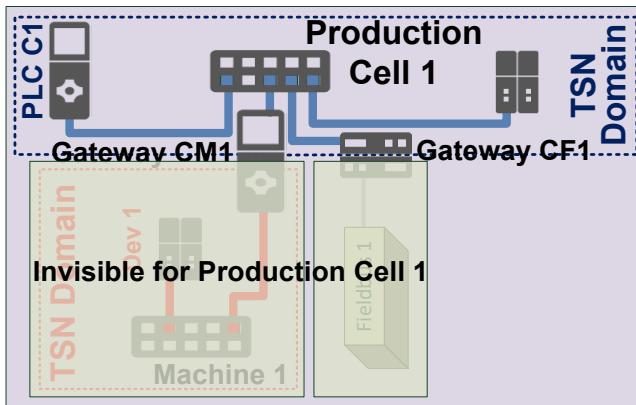
235

Figure 6 – Three TSN domains connected by Routers

236

To support connectivity between multiple TSN domains (e.g. PLC L1 \leftrightarrow PLC M1) a method for reserving time-sensitive streams over multiple TSN domains needs to be specified, including:

239


- find the communication partner,
- identify the involved TSN domains,
- identify the involved management entities independent from the configuration model (centralized, hybrid, fully distributed),
- ensure the needed resources,
- parameterize the TSN domain connection points to allow stream forwarding if needed.

245 **2.2.2.4 Application Gateways (Layer7)**

246 When an Application Gateway is member of multiple TSN domains, one gateway interface/port
 247 must only be a member of a single TSN domain.

248 Figure 7 provides an example of two application gateways:

249 - Gateway CM1 is member in the TSN domains Production Cell 1 and Machine 1;
 250 - Gateway CF1 is member of the TSN domain Production Cell 1 and of Fieldbus 1.

251 **Figure 7 – Gateways with two TSN domains and an attached Fieldbus**

253 Application level gateways do not provide direct access between devices of different TSN domains.
 254 Instead the application gateways act as end-stations for TSN domain egress and ingress
 255 communication.

256 An application specific translation of control and data to access adjacent TSN domains may be
 257 implemented in the application level gateway to realize TSN domain interconnections. The
 258 translation may even involve buffering, collecting and re-arranging of data and control. Thereby
 259 application level gateways decouple TSN domains, so that the internal structure and configuration
 260 of adjacent TSN domains is not visible respectively.

261 Application level gateways are also used to connect non-Ethernet- or Ethernet-based fieldbuses to
 262 TSN domains (see Gateway CF1 in Figure 7 and see also **Error! Reference source not found.**).

263

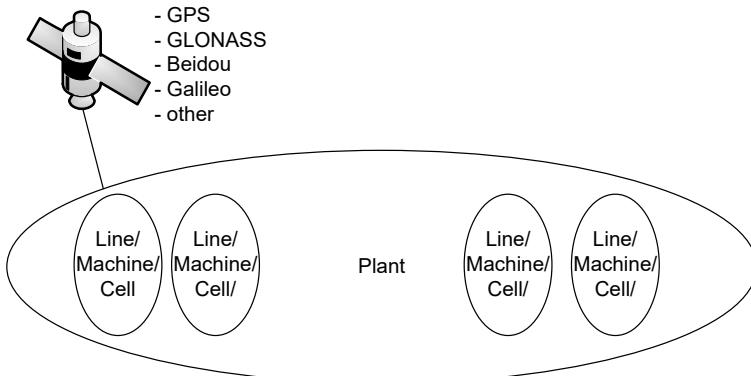
264 **2.3 Synchronization**

265 **2.3.1 General**

266 Synchronization covering both universal time (wall clock) and working clock is needed for industrial
 267 automation systems.

268 Redundancy for synchronization of universal time may be solved with "cold standby". Support of
 269 "Hot standby" for universal time synchronization is not current practice - but may optionally be
 270 supported depending on the application requirements.

271 Redundancy for working Clock synchronization can be solved with "cold standby" or "hot standby"
 272 depending on the application requirements. Support of "hot standby" for working clock
 273 synchronization is current practice.


274 More details about redundancy switchover scenarios are provided in:

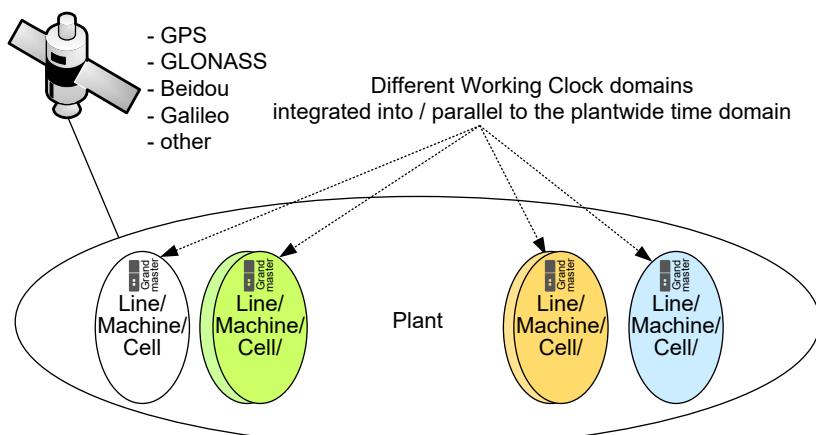
275 <http://www.ieee802.org/1/files/public/docs2018/60802-Steindl-TimelinessUseCases-0718-v01.pdf>.

2.3.2 Universal Time Synchronization

277 Universal time is used to plant wide align events and actions (e.g. for “sequence of events”). The
 278 assigned timescale is TAI, which can be converted into local date and time if necessary. Figure 8
 279 shows the principle structure of time synchronization with the goal to establish a worldwide aligned
 280 timescale for time. Thus, often satellites are used as source of the time.

281

282


Figure 8 – plant wide time synchronization

284 Note: “Global Time” or “Wall Clock” are often used as synonym terms for “Universal Time”.

2.3.3 Working Clock Synchronization

285 Working Clock is used to align actions line, cell or machine wide. The assigned timescale is
 286 arbitrary. Robots, motion control, numeric control and any kind of clocked / isochronous application
 287 rely on this timescale to make sure that actions are precisely interwoven as needed. Figure 9
 288 shows the principle structure of Working Clock synchronization with the goal to establish a line /
 289 cell / machine wide aligned timescale. Thus, often PLCs, Motion Controller or Numeric Controller
 290 are used as Working Clock source.
 291

292 If multiple PLCs, Motion Controller or Numeric Controller need to share one Working Clock
 293 timescale (e.g. for scheduled traffic), an all-time active station shall be used as Working Clock
 294 source, also known as Grandmaster.

295

Figure 9 – line/cell/machine wide working clock synchronization overlapping with a universal time domain

298 Working Clock domains may be doubled to support zero failover time for synchronization.
299 High precision working clock synchronization is a prerequisite for control loop implementations with
300 low latency (see 2.4.2).

301

302 Requirements:

303 • High precision working clock synchronization;
304 • Maximum deviation to the grandmaster time in the range from 100 ns to 1 μ s;
305 • Support of redundant sync masters and domains;
306 • Zero failover time in case of redundant working clock domains;

307

308 Useful 802.1 mechanisms:

309 • IEEE 802.1AS-Rev
310

311 **2.4 Industrial automation modes of operation**

312 **2.4.1 Industrial automation traffic types**

313 **Note: is this still necessary in the Use Cases document? Has the material in 60802
314 superseded it?**

315 **2.4.1.1 General**

316 Industrial automation applications concurrently make use of different traffic types for different
317 functionalities, e.g. parameterization, control, alarming. The various traffic types have different
318 characteristics and thus impose different requirements on a TSN network. This applies for all use
319 cases described in this document.

320 Table 1 subsumes the industrial automation relevant traffic patterns to traffic types with their
321 associated properties (see also [4]).

Table 1 – Industrial automation traffic types summary

Traffic type name	Periodic/ Sporadic	Guarantee	Data size	Redundancy	Details
isochronous cyclic real-time	P	deadline/ bounded latency (e.g. 20%@1 Gbit/s / 50%@100 Mbit/s network cycle)/ bandwidth	bounded	up to seamless ¹⁾	see Error! Reference source not found. and 2.4.2
cyclic real-time	P	deadline/ bounded latency (e.g. n-times network cycle)/ bandwidth	bounded	up to seamless ¹⁾	see Error! Reference source not found. and Error! Reference source not found.
network control	S	Priority	-	up to seamless ¹⁾ as required	see 2.2.2 and 2.5.1
audio/video	P	bounded latency/ bandwidth	bounded	up to seamless ¹⁾ as required	-
brownfield	P	bounded latency/ bandwidth	-	up to regular ²⁾	see Error! Reference source not found.
alarms/ events	S	bounded latency/ bandwidth	-	up to regular ²⁾	see Error! Reference source not found.
configuration/ diagnostics	S	Bandwidth	-	up to regular ²⁾	see Error! Reference source not found.
Internal / Pass-through	S	Bandwidth	-	up to regular ²⁾	see 2.6.2
best effort	S	-	-	up to regular ²⁾	-

324 ¹⁾ almost zero failover time;

326 ²⁾ larger failover time because of network re-convergence

328 All traffic types of Table 1 are referenced by the use cases, which are described in this document:

330 Isochronous:

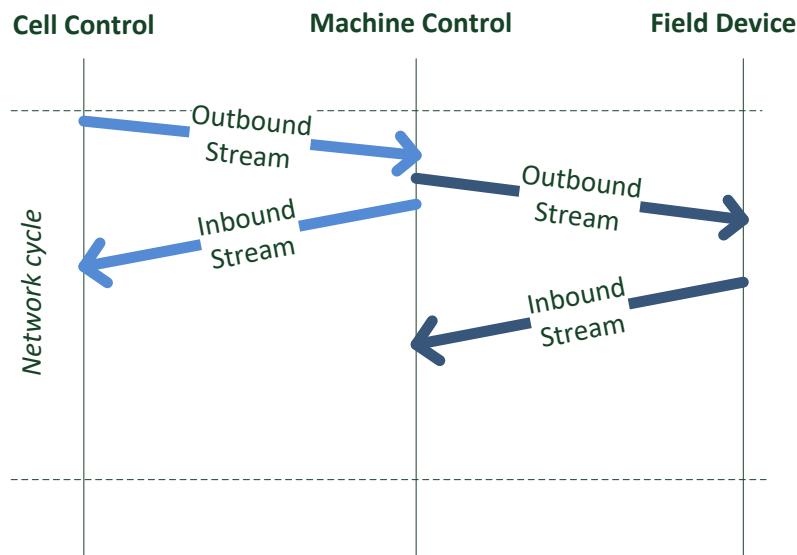
→ see **Error! Reference source not found.**

332 In addition, if an isochronous application interface is needed: Machine vision application use cases
 333 for counting, sorting, quality control, video surveillance, augmented reality, motion guidance ...
 334
 335 Cyclic:
 336 → see **Error! Reference source not found.**
 337 In addition, if a cyclic application interface is needed: Machine vision application use cases for
 338 counting, sorting, quality control, video surveillance, augmented reality, motion guidance ...
 339
 340 Network control:
 341 → see *Use case 01: Redundant networks*
 342
 343 Audio/video:
 344 → IEEE Std 802.1BA-2011 (AVB) may be supported in industrial automation as well
 345
 346 Brownfield:
 347 → see **Error! Reference source not found.**
 348
 349 Alarms/events:
 350 → see **Error! Reference source not found.**
 351
 352 Configuration/diagnostics:
 353 → see **Error! Reference source not found.**
 354
 355 Internal:
 356 → see *Use case 04: Pass-through Traffic*
 357 Best effort:
 358 → see ...

2.4.1.2 Characterization of isochronous cyclic real-time and cyclic real-time

The following properties table is used to characterize in detail the traffic types of **Error! Reference source not found.** and **Error! Reference source not found.**

362 **Table 2 – isochronous cyclic real-time and cyclic real-time traffic type properties**


Property	Description
Data transmission scheme	<i>Periodic</i> (P) - e.g. every N µs, or <i>Sporadic</i> (S) - e.g. event-driven
Data transmission constraints	Indicates the traffic pattern's data transmission constraints for proper operation. Four data transmission constraints are defined: <ul style="list-style-type: none"> • <i>deadline</i>: transmitted data is guaranteed to be received at the destination(s) before a specific instant of time, • <i>latency</i>: transmitted data is guaranteed to be received at the destination(s) within a specific period of time after the data is transmitted by the sending application, • <i>bandwidth</i>: transmitted data is guaranteed to be received at the destination(s) if the bandwidth usage is within the resources reserved by the transmitting applications,

Property	Description
Data period	<ul style="list-style-type: none"> • <i>none</i>: no special data transmission constraint is given. <p>For traffic types that transmit <i>periodic</i> data this property denotes according to the <i>data transmission constraints</i>:</p> <p style="padding-left: 20px;"><i>deadline</i>: application data deadline period, <i>latency</i>, <i>bandwidth</i> or <i>none</i>: data transmission period.</p> <p>The period is given as a <i>range</i> of time values, e.g. 1μs ... 1ms.</p> <p>For the <i>sporadic</i> traffic types, this property does not apply.</p>
Network access (data transmission) synchronized to working clock (network cycle)	<p>Indicates whether the data transmission of sender stations is synchronized to the working clock (network cycle).</p> <p>Available property options are: <i>yes</i>, <i>no</i> or <i>optional</i>.</p>
Application synchronized to network access	<p>Indicates whether the applications, which make use of this traffic pattern, are synchronized to the network access.</p> <p>Available property options are: <i>yes</i> or <i>no</i>.</p>
Acceptable jitter	<p>Indicates for traffic types, which apply data transmission with <i>latency</i> constraints, the amount of jitter, which can occur and must be coped with by the receiving destination(s).</p> <p>For traffic types with <i>deadline</i>, <i>bandwidth</i> or <i>none</i> data transmission constraints this property is not applicable (<i>n.a.</i>).</p>
Acceptable frame loss	<p>Indicates the traffic pattern's tolerance to lost frames given e.g. as acceptable frame loss ratio range.</p> <p>The frame loss ratio value <i>0</i> indicates traffic types, where no single frame loss is acceptable.</p>
Payload	<p>Indicates the payload data <i>type</i> and <i>size</i> to be transmitted. Two payload types are defined:</p> <ul style="list-style-type: none"> • <i>fixed</i>: the payload is always transmitted with exactly the same size • <i>bounded</i>: the payload is always transmitted with a size, which does not exceed a given maximum; the maximum may be the maximum Ethernet payload size (1500).

363 2.4.2 Bidirectional communication relations

364 The general behavior of field devices of process sensors and output signals is preconfigured and
 365 offers a set of services to a machine control unit. More complex field devices such as drives or
 366 machine parts have process data in both directions. If there are only outputs in a field device the
 367 stream back to the machine control is necessary for fast detection of problems in a field device. If
 368 there are only input process data the stream from the machine control to the field device is not
 369 necessary for normal operation.

370 The cell control communicates with the machine controls of the machines also in a bidirectional
 371 way.

Figure 10 – Bidirectional Communication

Requirements:

- Support of bidirectional streams;
- Sequence of actions how to establish such streams (see Figure 10);

Useful 802.1 mechanisms:

- IEEE 802.1Q (usage of streams)

2.4.3 Control Loop Basic Model

Control loops are fundamental building blocks of industrial automation systems. Control loops include: process sensors, a controller function, and output signals. Control loops may require guaranteed low latency or more relaxed bounded latency (see **Error! Reference source not found.**) network transfer quality.

To achieve the needed quality for Control loops the roundtrip delay (sometimes called makespan, too) of the exchanged data is essential.

Figure 11 shows the whole transmission path from Controller application to Device application(s) and back. The blue and red arrows show the contributions to the e2e (end-to-end) latency respectively.

Figure 11 and Table 3 show three levels of a control loop:

- Application - within Talker/Listener,
- Network Access - within Talker/Listener,
- Network Forwarding - within Bridges.

Network Access is always synchronized to a common working clock or to a local timescale.

Application may or may not be synchronized to the synchronized Network Access depending on the application requirements. Applications which are synchronized to Network Access are called "isochronous applications". Applications which are not synchronized to Network Access are called "non-isochronous applications".

Network Forwarding may or may not be synchronized to a working clock depending on whether the Enhancements for Scheduled Traffic (IEEE Std 802.1Q-2018) are applied.

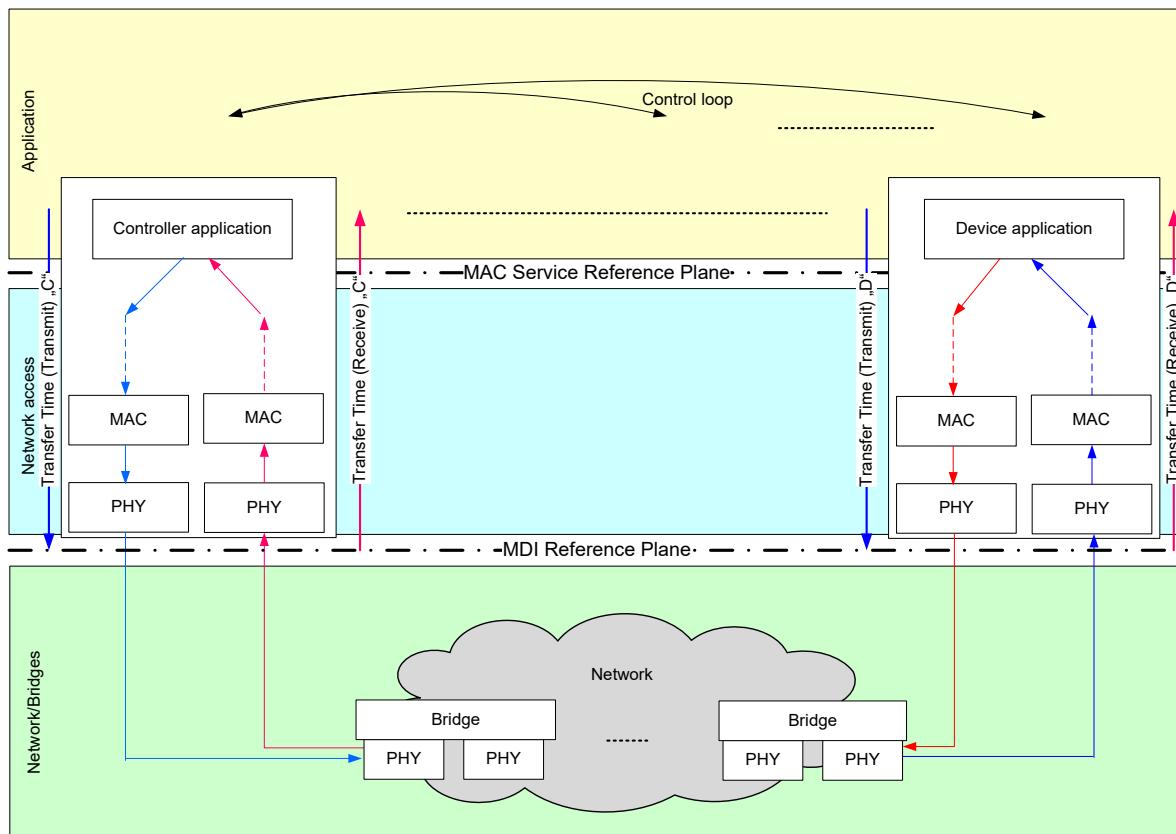
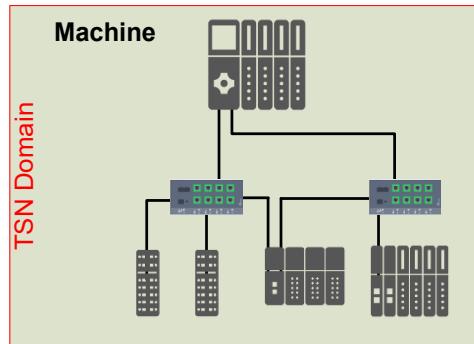
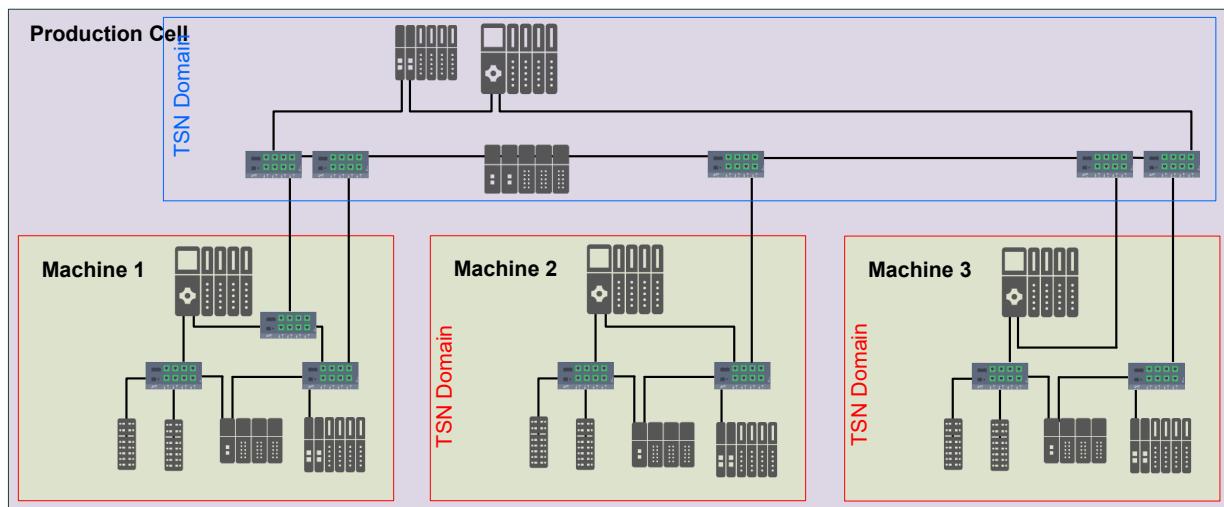


Figure 11 – Principle data flow of control loop


Table 3 – Application types

Level	Isochronous Application		Non-isochronous Application		
Application	Synchronized to network access		Synchronized to local timescale		
Network access	Synchronized to working clock, Stream Class based scheduling, Preemption			Synchronized to local timescale, Stream Class based scheduling, Preemption	
Network/Bridges	Synchronized to working clock	Free running	Synchronized to working clock	Free running	Free running
	Scheduled traffic + Strict Priority + Preemption	Strict Priority or other Shaper + Preemption	Scheduled traffic + Strict Priority + Preemption	Strict Priority or other Shaper + Preemption	Strict Priority or other Shaper + Preemption

410 2.5 Industrial automation networks


411 2.5.1 Use case 01: Redundant networks

412 Ring topologies are the basic industrial network architecture for switch-over or seamless
413 redundancy.

415 **Figure 12 – ring topology**

416 When a production cell is also arranged in a ring topology the resulting architecture of cell with
417 attached machines is an interconnection of rings.
418 To even improve availability of the interconnection from the production cell into the machines this
419 link can be arranged redundantly as well (machine 1 in Figure 13):

421 **Figure 13 – connection of rings**

422 Requirement:

423 Support redundant topologies with rings.

424
425 **Note: FRER is part of 60802, but not all features. (End Station replication & elimination
426 supported; but not for Relays.)**

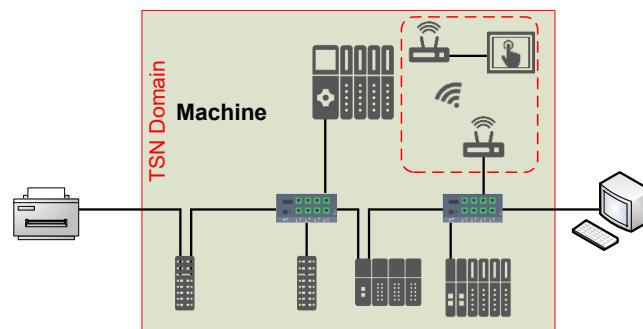
427
428 Useful 802.1 mechanisms:

429 • 802.1CB - FRER

431

2.5.2 Use case 02: Wireless

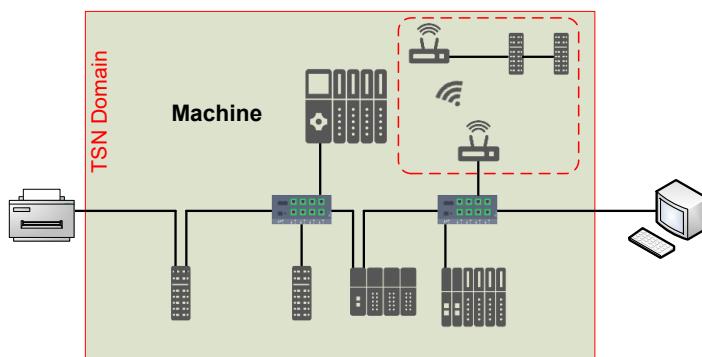
432


HMI panels, remote IOs, wireless sensors or wireless bridges are often used in industrial machines. Wireless connections may be based on IEEE 802.11 (Wi-Fi), IEEE 802.15.1 (Bluetooth), IEEE 802.15.4 or ITU/3GPP (5G). Even functional safety applications over wireless connections are supported (see **Error! Reference source not found.**).

433

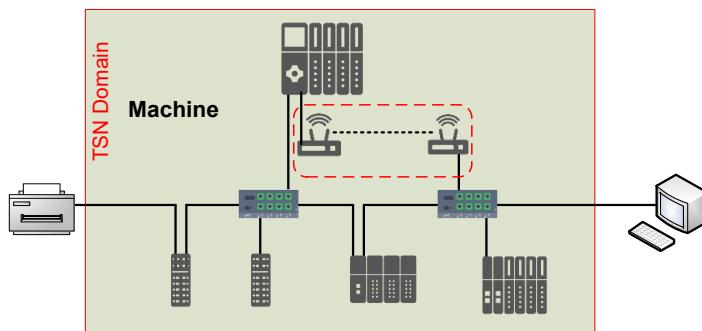
434

435


436

437

Figure 14 – HMI wireless connected using cyclic real-time


438

439

Figure 15 – Remote IO wireless connected using cyclic real-time

440

441

Figure 16 – Ring segment wireless connected for media redundancy

442

443

Requirement:

444

445

Support of wireless for

446

- cyclic real-time, and
- non-real-time communication

447

448

Useful 802.11 mechanisms:

449

- Synchronization support

450 • Extensions from .11ax
451 • ...
452

453 Useful 802.15.1 mechanisms:

454 • ...
455

456 Useful 802.1Q mechanisms:

457 • ...
458

459 limits and cycle times (see e.g. row Data period in **Error! Reference source not found.**).

460

461 **2.5.3 Use case N10: Multi-Subnet Operation**

462 See [4].

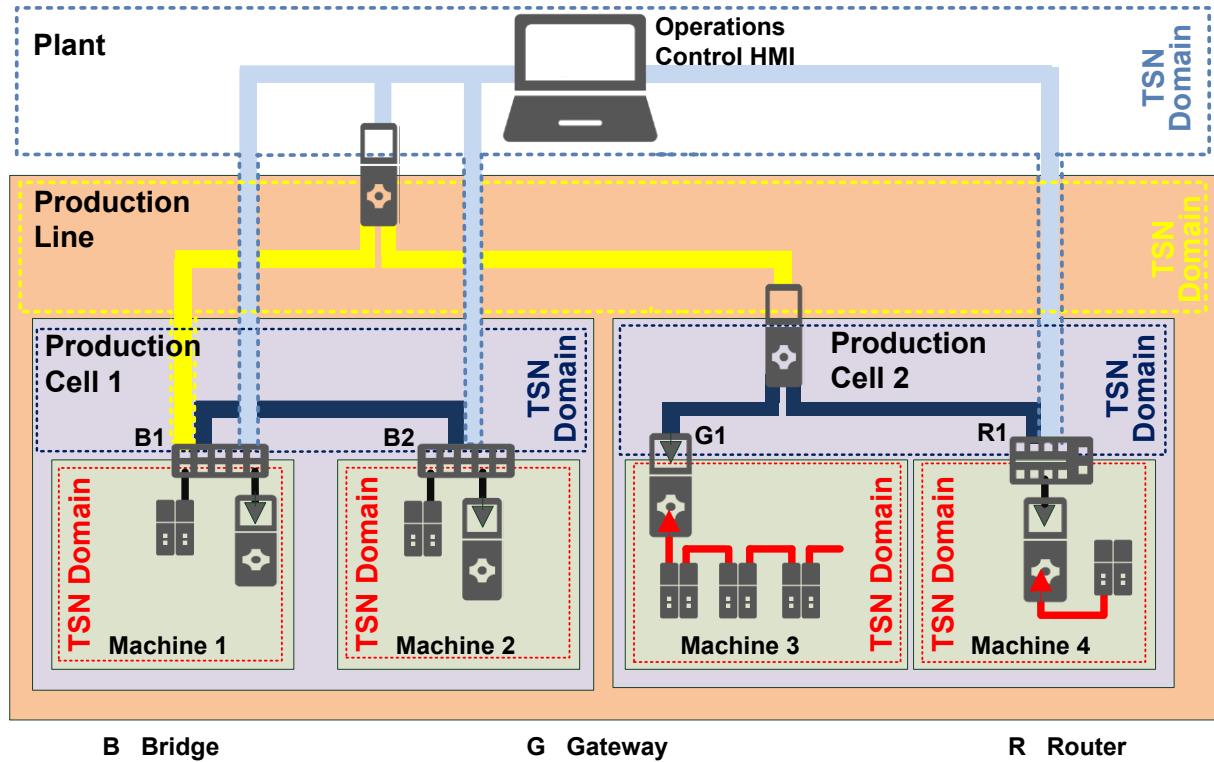
463

464

2.6 Industrial automation machines, production cells, production lines

465

2.6.1 Use case 03: Machine to Machine/Controller to Controller (M2M/C2C) Communication


466

Preconfigured machines with their own TSN domains, which include tested and approved internal communication, communicate with other preconfigured machines with their own TSN domains, with a supervisory PLC of the production cell (with its own TSN domain) or line (with its own TSN domain) or with an Operations Control HMI (with its own TSN domain).

467

468

469

B Bridge

G Gateway

R Router

470

471

Figure 17 – M2M/C2C between TSN domains

472

Figure 17 shows that multiple logical overlapping TSN Domains arise, when controllers use a single interface for the M2M communication with controllers of the cell, line, plant or other machines. Decoupling of the machine internal TSN Domain can be accomplished by applying a separate controller interface for M2M communication.

473

474

475

476

Machine 1: the controller link to its connected cell bridge B1 is concurrently member of the TSN Domains of Machine 1, Production Cell 1, Production Line and Plant.

477

478

479

Machine 2: the controller link to its connected cell bridge B2 is concurrently member of the TSN Domains of Machine 2, Production Cell 1 and Plant.

480

481

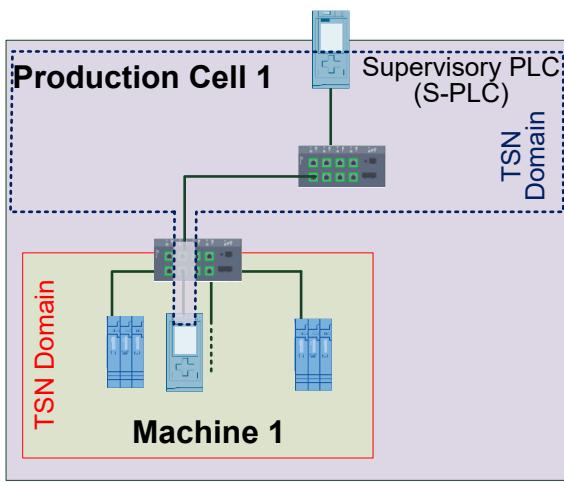
482

Machine 3: the controller is directly attached to the PLC of Production Cell 2 and is therefore member of the TSN Domain of Production Cell 2. The machine internal TSN Domain is decoupled from M2M traffic by a separate interface.

483

484

485


Machine 4: the controller link to its connected cell bridge B3 is concurrently member of the TSN Domains of Production Cell 2 and Plant. The machine internal TSN Domain is decoupled from M2M traffic by a separate interface.

486

487

488

Examples:

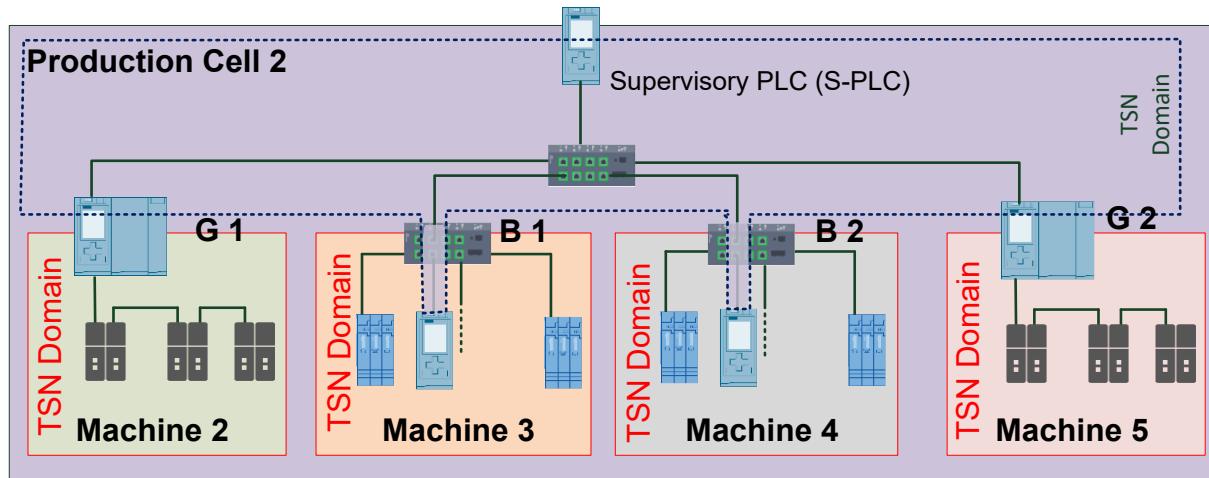


Figure 18 – M2M with supervisory PLC

There are quite a few constraints related to the machine internal networks. Each machine may run a different schedule and even the intervals may be different. It may be very complex or even impossible to find an optimal communication schedule down from the sensors and actuators to the cell control. The requirements for cascaded control loops require faster intervals for the lower control loops. The multiple machine intervals embedded in one cell interval can be mapped onto a sequence of intervals. Each step in the exchange of data between machine and cell control unit can be mapped into machine intervals:

- outbound cell communication,
- transfer outbound within machine network,
- transfer inbound within machine network,
- inbound cell communication.

Additionally Figure 20 shows an example where M2M communication is used to connect a PC for diagnostics/monitoring.

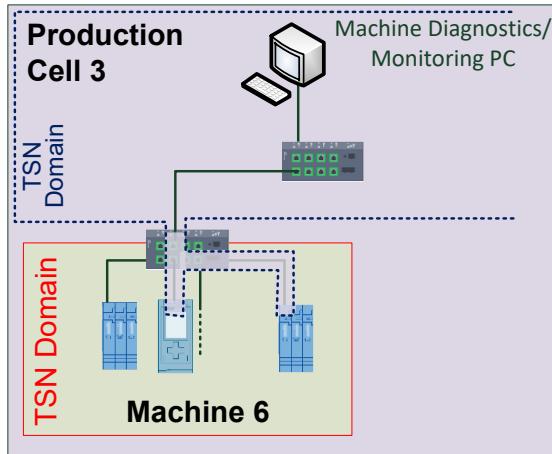


Figure 19 – M2M with four machines

Figure 18 gives an example of M2M communication to a supervisory PLC.

Figure 19 shows an example of M2M communication relations between four machines.

PLCs with one single interface lead to overlapping communication paths of M2M and machine internal traffic. In this case two TSN domains (Machine / Production cell) need to share resources due to two logical overlapping TSN domains.

Figure 20 – M2M with diagnostics/monitoring PC

489 Figure 20 shows a M2M diagnostics related use case: communication is cyclic and shall happen
 490 within short application cycle times. An example of this use case is the verification of proper
 491 behavior of a follower drive, in a master-follower application. Today, the use case is covered by
 492 connecting a common PC to an interface of the follower drive. The various TSN mechanisms may
 493 now make it possible to connect such a PC network interface card anywhere in the system network
 494 and still gather the same diagnostics with the same guarantees, as the current direct connection.

495 The required guarantees are:

496 Each 4 ms a frame shall be sent from a follower drive and have its delivery guaranteed to the
 497 network interface of the PC used to perform the diagnostics. Of course, local PC-level processing
 498 of such frames has to be implemented such that the diagnostic application gets the required quality
 499 of service.

500 From the communication point of view the two types of machine interface shown in Figure 19 are
 501 identical. The PLC represents the machine interface and uses either a dedicated (machine 1 and 4)
 502 or a shared interface (machine 2 and 3) for communication with other machines and/or a
 503 supervisor PLC.

504 The communication relations between machines may or may not include or make use of a a
 505 supervisory PLC.

506 Requirement:

- 507 • All machine internal communication (stream traffic and non-stream traffic) is decoupled from
 508 and protected against the additional M2M traffic and vice versa.
- 509 • 1:1 and 1:many communication relations shall be possible.
- 510 • Scheduling in a way that interleaved operation with machine intervals is possible.

511 Useful 802 mechanisms:

- 512 • IEEE Std 802.1Q-2018, Fixed priority, IEEE Std 802.3br
- 513 • Priority Regeneration,
- 514 • Queue-based resource allocation,
- 515 • VLANs to separate TSN domains.

516 **2.6.2 Use case 04: Pass-through Traffic**

517 Machines are supplied by machine builders to production cell/line builders in tested and approved
 518 quality. At specific boundary ports standard devices (e.g. barcode reader) can be attached to the
 519 machines. The machines support transport of non-stream traffic through the tested/approved
 520 machine ("pass-through traffic") without influencing the operational behavior of the machine, e.g.

connection of a printer or barcode reader. Figure 21, Figure 22 and Figure 23 give some examples of pass-through traffic installations in industrial automation.

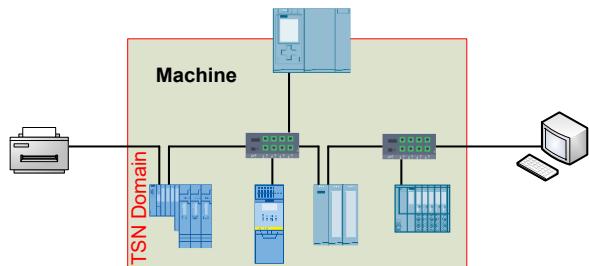


Figure 21 – pass-through one machine

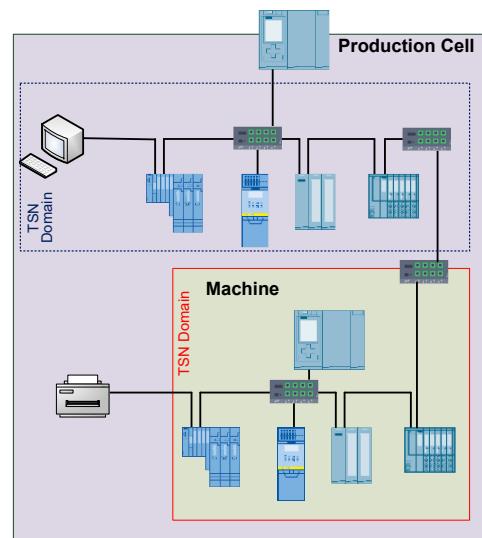


Figure 22 – pass-through one machine and production cell

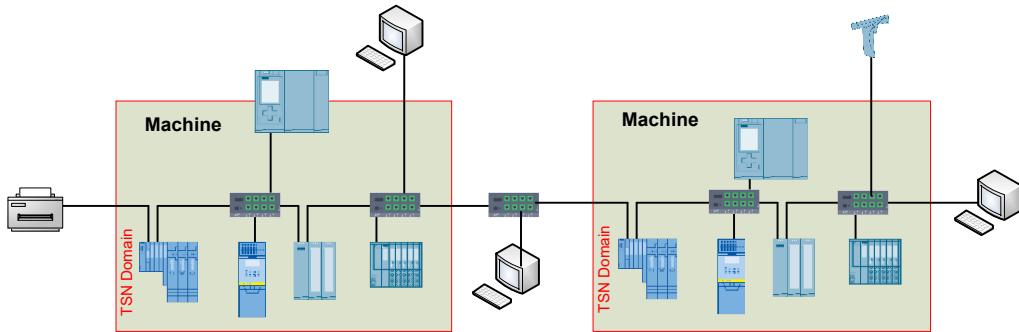


Figure 23 – pass-through two machines

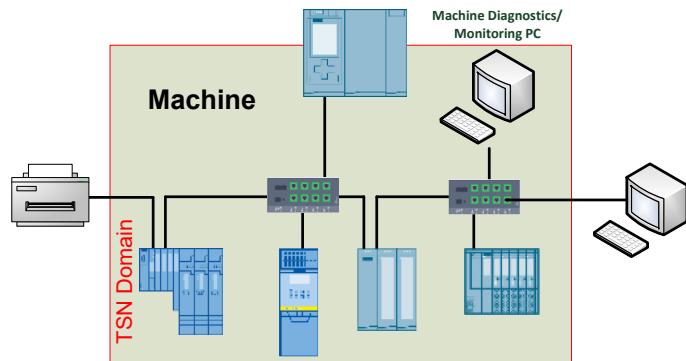


Figure 24 – machine with diagnostics / monitoring PC

Requirement:

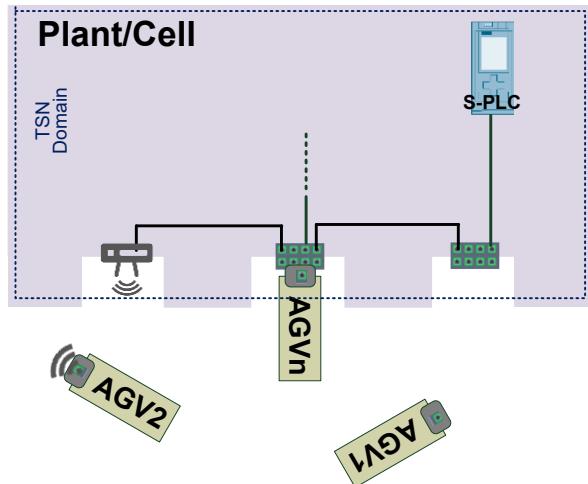
All machine internal communication (stream traffic and non-stream traffic) is decoupled from and protected against the additional “pass-through” traffic.
“Pass-through” traffic is treated as separate traffic pattern.

Note: Boundary Port prevents pass-through traffic.

530

Useful 802.1Q mechanisms:

531


- Priority Regeneration,
- separate "pass-through traffic queue",
- Queue-based resource allocation in all bridges,
- Ingress rate limiting.

535

2.6.3 Use case 05: Dynamic plugging and unplugging of machines (subnets)

E.g. multiple AGVs (automatic guided vehicles) access various docking stations to get access to the supervisory PLC. Thus, an AGV is temporary not available. An AGV may act as CPS or as a bunch of devices.

540

Figure 25 – AGV plug and unplug

541

542

Requirement:

The traffic relying on TSN features from/to AGVs is established/removed automatically after plug/unplug events.

Different AGVs may demand different traffic layouts.

The time till operate influences the efficiency of the plant.

Thousands of AGVs may be used concurrently, but only a defined amount of AGVs is connected at a given time.

Note: Mechanisms to manage wireless connections are missing.

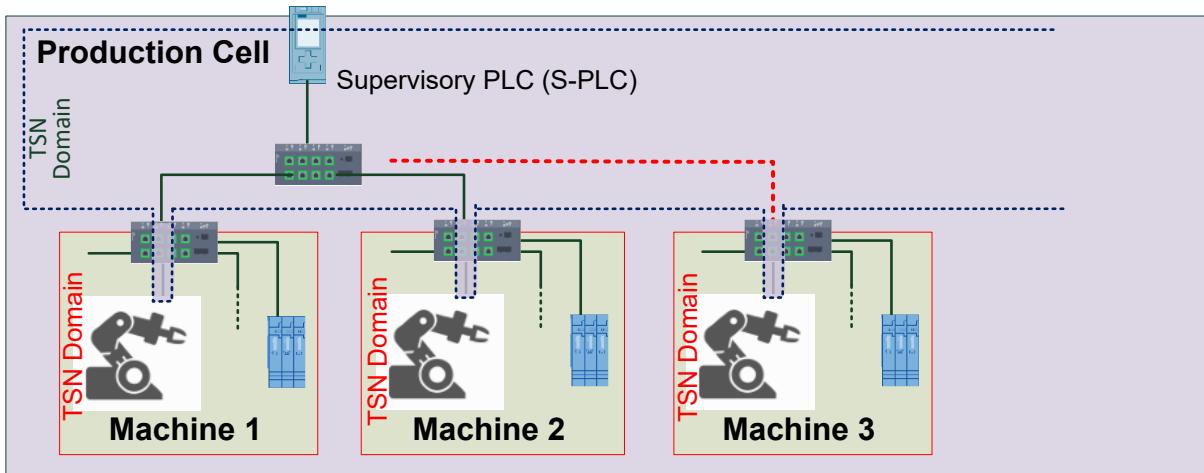
Useful 802.1Q mechanisms:

553

- preconfigured streams
- ...

555

556


2.6.4 Use case 06: Add machine, production cell or production line

When production capacity is exhausted, additional machines, production cells or even production lines are bought and integrated into a plant.

E.g. an additional welding robot is added to a production cell to increase production capacity. The additional machine has to be integrated into the production cell control with minimal disturbance of the production cell process.

563

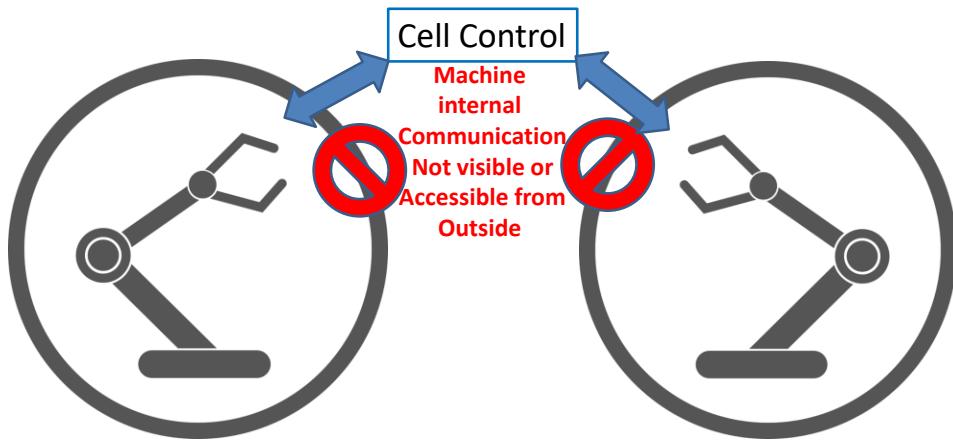
564 Another aspect is when a machine or a group of machines is tested in a stand-alone mode first
 565 before it is used in the combination with other machines or in combination with a supervisory
 566 system.
 567 A flexible cell communication is needed to support this. Enabling and disabling of cell
 568 communication within a machine should be possible with minimal impact on production.

569 **Figure 26 – add machine**

570 **Requirement:**

571 Adding and removing a machine/cell/production line shall not disturb existing installations

572 **Note: Only supported within a single configuration domain. Not supported across multiple**
 573 **domains.**


574 **Useful mechanisms:**

575

- 576 • ...

577 **2.6.5 Use case 07: Machine cloning**

578 The machines used in a cell can be identical but with a different task. Robots are a typical example
 579 of that kind of machines (see Figure 27). Thus, both machines have the same internal
 580 communication flows. The difference is just different machine identification for the external flow.
 581 The concept as of today is that the machine internal configuration has its identification and the cell
 582 system has its configuration but there is no dependency between both. The machine internal setup
 583 is done earlier and the cell identification is a result from a different configuration step and is done
 584 by a different organizational unit. Thus, it is difficult to propagate the cell level identification at the
 585 very beginning to the machine internal components. A worst case scenario is the startup of a
 586 machine and the connection to a cell in an ad hoc way with identification of the machine by the
 587 globally unique MAC address of the machine and the resolution of other addresses within the cell
 588 controller or above (e.g. for allocation of IP addresses). If there is a need to communicate with a
 589 few field device within the machine in a global way the machine subsystem has to be configured
 590 accordingly in advance. This configuration step could be done by a different organization as the
 591 stream configuration and not all machine internal elements may require a global address.

595

596 **Figure 27 – Machine internal communication with isolated logical infrastructure**597 Requirements:

598 • TSN domains with unique addressing within the TSN domains;

599 • Unique TSN domain identification (e.g. using LLDP) also for cloned machines;

600 • Define handling of specific addresses (e.g. IP addresses) for global identification and how

601 they are managed within the machine set-up procedures;

602
603 **Note: Only supported within a single configuration domain. Not supported across multiple**
604 **domains.**

605
606 Useful 802.1 mechanisms:

607 • IEEE 802.1Q (usage of streams)

608 • IEEE 802.1 support for isolation is VLAN

609

2.7 Further Industrial Automation Use Cases

610

2.7.1 Use case 08: Security

611 Industrial automation equipment can become the objective of sabotage or spying.

612 Therefore all aspects of information security can be found in industrial automation as well:

613 • Confidentiality "is the property, that information is not made available or disclosed to

614 unauthorized individuals, entities, or processes."

615 • Integrity means maintaining and assuring the accuracy and completeness of data.

616 • Availability implies that all resources and functional units are available and functioning

617 correctly when they are needed. Availability includes protection against denial-of-service

618 attacks.

619 • Authenticity aims at the verifiability and reliability of data sources and sinks.

620
621 Requirement:

622 Optional support of confidentiality, integrity, availability and authenticity.

623 Security shall not limit real-time communication

625 **Note: Limited security for Control Plane only.**

626 Protection against rogue applications running on authenticated stations are out of scope.

628

629 **Note: No mechanisms identified for the Data Plane, so no guarantees. (It is expected that**
630 **upper layer protocols will provide Data Plane security.)**

631
632 Useful mechanisms:

633 • 802.1X
634 • IEC62443
635 • ...

AGV	Autonomous Guided Vehicle
CCTV	Closed Circuit Television
DCS	Distributed Control System
FW	Firmware
PA	Process Automation

640 Literature and related Contributions

641 Literature:

642 [1] "Cyber Physical Systems: Design Challenges", E. A. Lee, Technical Report No. UCB/EECS-
643 2008-8; <http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-8.html>
644

645 [2] Beckers, K. (2015). Pattern and Security Requirements: Engineering-Based Establishment of
646 Security Standards; Springer; ISBN 9783319166643
647

648 [3] PI: Isochronous Mode – Guideline for PROFINET IO; V1.0; June 2016; available at
649 <http://www.ieee802.org/1/files/private/liaisons>
650

651 Related contributions:

652 [4] LNI traffic patterns for TSN: <http://www.ieee802.org/1/files/public/docs2018/new-Bruckner-LNI-traffic-patterns-for-TSN-0118.pdf>
653

654

655 [5] Multivendor Motion Control: <http://www.ieee802.org/1/files/public/docs2018/new-industrial-enzinger-multivendor-motion-control-0318-v01.pdf>
656

657

658 [6] Hierarchical Domain based Network: <http://www.ieee802.org/1/files/public/docs2018/60802-harima-industrial-use-case-0518-v04.pdf>
659

660

661 [7] Process Automation System Quantities: <http://www.ieee802.org/1/files/public/docs2018/60802-sato-pa-system-quantities-0718-v01.pdf>
662

663

664 [8] TSN Interdomain Communications: <http://www.ieee802.org/1/files/public/docs2018/60802-Hantel-TSN-Interdomain-Communications-0718.pdf>
665

666

667 [9] Cycle Timing Models: <http://www.ieee802.org/1/files/public/docs2018/60802-enzinger-cycle-timing-models-0718-v04.pdf>
668

669

670 [10] Isochronous Drive Synchronization: <http://www.ieee802.org/1/files/public/docs2018/60802-enzinger-use-case-isochronous-drive-synchronization-0718-v01.pdf>
671

672

673 [11] Machine Internal and Machine to Cell Controller (M2C) Embedded Communication:
674 <http://www.ieee802.org/1/files/public/docs2018/60802-essler-additional-use-case-0718-v01.pdf>
675

676 [12] Coexistence & Convergence in TSN-based Industrial Automation Networks:
677 <http://www.ieee802.org/1/files/public/docs2018/60802-stanica-convergence-coexistence-0718-v03.pptx>
678

679 [13] Flexible Manufacturing System (FMS) for Small Batch Customized Production:
680 <http://www.ieee802.org/1/files/public/docs2018/60802-Bai-small-batch-customized-production-0718-v01.pdf>
681

682 [14] Multi-traffic transmission in industrial backbone network:
683 <http://www.ieee802.org/1/files/public/docs2018/60802-chen-multi-traffic-transmission-on-backbone-0918.pdf>
684

685

686

687

688