

TSN Industrial Automation Use Cases v0.3

Potential Use Case Targets for a future version / edition of IEC/IEEE 60802 [2026]

1 Contributors

2 This Use Case Document

3 McCall, David david.mccall@intel.com

4 Proell, Dieter dieter.proell@siemens.com

5 Initial Use Case Document from 2019

6 Belliardi, Rudy rudy.belliardi@schneider-electric.com

7 Dorr, Josef josef.dorr@siemens.com

8 Enzinger, Thomas thomas.enzinger@br-automation.com

9 Essler, Florian f.essler@beckhoff.com

10 Farkas, János janos.farkas@ericsson.com

11 Hantel, Mark mrhantel@ra.rockwell.com

12 Riegel, Maximilian maximilian.riegel@nokia.com

13 Stanica, Marius-Petru marius-petru.stanica@de.abb.com

14 Steindl, Guenter guenter.steindl@siemens.com

15 Wamßer, Reiner Reiner.Wamsser@boschrexroth.de

16 Weber, Karl karl.weber@beckhoff.com

17 Zuponcic , Steven A. sazuponcic@ra.rockwell.com

18

19 **Abstract**

20 This document describes use cases for industrial automation, which may be covered by a future
21 project or projects to add functionality to IEC/IEEE 60802 TSN Profile for Industrial Automation.
22 These use cases can guide a specification process: a selection of these use cases would determine
23 WHAT shall be enabled by a future project or projects that specifies HOW to achieve the use cases
24 at the system level of an IA system. Even if a project does not cover the overall system level, the
25 project can enable, or at least does not prevent, the features described in a use case.

26

Log

Version	Date	Description
0.1	2025-11-10	Working Draft – Reviewed during Nov 2025 IEEE 802 Plenary
0.2	2026-01-05	Working Draft – Following review during Nov 2025 IEEE 802 Plenary. Minor updates. Group consensus from meeting was to “start fresh” rather than try to edit the original Use Case document from 2018. There will therefore be a more major update prior to the next review.
0.3		Working Draft – “Start fresh” document. Clean sheet with use cases that, from previous discussion, it was decided to include for consideration; a mix of “old” use cases from discussions as part of developing IEC/IEEE 60802, but are not (fully) addressed by the published specification, and “new” use cases from contributors.

27

28

29 References

30 [1] “[Use Cases IEC/IEEE 60802 v1.3](#)”, group contribution to IEC/IEEE 60802, September 2018

31 [2] “[Review of potential use cases for a potential amendment to IEC/IEEE 60802 version 2](#)”,
32 contribution to IEC/IEEE 60802 by David McCall, September 2025

33 [3] “[Security Use Cases IEC/IEEE 60802](#)”, group contribution to IEC/IEEE 60802, April 2022

34 [4] “[IEC/IEEE 60802 amendment brainstorming: IA-Controller – Cloud Solution – Configuration](#)
35 [Domain](#)”, contribution to IEC/IEEE 60802 by Günter Steindl and Dieter Proell, June 2025

36 [5] “[IEC/IEEE 60802 Edition 2 Topics](#)”, contribution to IEC/IEEE 60802 by Mark Hantel, July 2025

37 [6] “[Management proxies for ccA](#)”, contribution to IEC/IEEE 60802 by Thomas Enzinger, May
38 2025

39 [7] “[60802 – Edition 2 – Some Topics](#)”, contribution to IEC/IEEE 60802 by Marius-Petru Stanica,
40 May 2025

41 [8] “[Kick-off for Brainstorming on Potential Amendment to IEC/IEEE 60802](#)”, contribution to
42 IEC/IEEE 60802 by János Farkas, May 2025

43 [9] “[Other considerations for IEC/IEEE 60802, Edition 2](#)”, contribution to IEC/IEEE 60802 by
44 Jordon Woods, May 2025

45 [10] “[Simplified Standardization Workflows, ISA/IEC 62443 Security for industrial automation](#)
46 [and control systems and Mapping of Standards to 62443](#)”, contribution to IEC/IEEE 60802
47 by Dieter Proell, May 2025

48 [11] “[FRER Improvements Elimination of Contradicting Design Requirements](#)”, contribution to
49 802.1 TSN TG by Balázs Varga and János Farkas, September 2025

50 [12] “[Overview of known issues for IEEE 802.1CB FRER...and next steps](#)”, contribution to 802.1
51 TSN TG by Dr. Lisa Maile, November 2025

52

53 **Contents**

54	Contributors	2
55	Abstract.....	3
56	Log	4
57	References	5
58		
59		

60 <Figures – Placeholder for Table of Figures>

61 <Tables – Placeholder for Table of Tables>

62 **Introduction**

63 The document should be read in conjunction with IEC/IEEE 60802 TSN Profile for Industrial
64 Automation (1st Edition; in a late draft, pre-publication stage at the time of writing v0.3 of this
65 document). IEC/IEEE 60802 defines terms used in this document and provides context for many of
66 the use cases. Some use cases are extensions of those covered by IEC/IEEE 60802 and described
67 in early documents (see references) that drove development of the specification. Others are use
68 cases defined in those documents, but not addressed in the specification (i.e. “left over” from its
69 development). The remaining use cases are new to this document and based on contributions
70 from the IEEE 802.1 TSN group.

71

72 Use Case 01: Deterministic Wireless Communications

73 Use Case

74 See [1] Use Case 9.

75 Wireless communications can be used in multiple scenarios. For example:

- 76 • Autonomous Mobile Robots (AMRs) and other mobile applications.
- 77 • Sensors and actuators where wired communications are impossible due to environmental
78 conditions or movement.
- 79 • Communications where wired connectivity is expensive and wireless offers cost saving.

80 Within these scenarios, the ability to easily build heterogeneous networks with wired and one or
81 more wireless technologies is desirable. The industrial automation use cases often require the
82 same or similar capabilities from wireless connectivity when it comes to determinism and
83 reliability. The use of existing wireless technologies is preferable. For example:

- 84 a) IEEE 802.11
- 85 b) IEEE 802.15.1
- 86 c) IEEE 802.15.3
- 87 d) IEEE 802.15.4
- 88 e) 5G / 6G

89 Existing Support & Potential Additions

90 IEC/IEEE 60802 is silent on wireless technologies. It only provides explicit support for wired (IEEE
91 802.3) connections.

92 Relevant Specifications

93 Besides those listed above:

- 94 • 802.1Q
- 95 • 802.11ax (Wi-Fi 6)
- 96 • 802.11be (Wi-Fi 7)

97

98 Use Case 02: Redundant Communications (FRER for 99 Relays)

100 Use Case

101 See [1] Use Case 7.

102 For critical applications, where loss of communication is unacceptable, networks are constructed
103 to provide redundant paths. Data is replicated at one point in the network; copies of the data
104 travers redundant pathways across the network; at a later point in the network, the pathways join
105 and redundant data is eliminated.

106 The points of replication and elimination can be at the source (talker), sink (listener), or any point
107 between (e.g. a bridge).

108 Existing Support & Potential Additions

109 IEC/IEEE 60802 1st Edition includes optional support for replication and elimination at an End
110 Station (ccA or ccB), but not at a bridge (see 5.10.1b and 5.10.1c). Support for replication and/or
111 elimination at a bridge is a possibility for 2nd Edition.

112 Relevant Specifications

- 113 • IEEE 802.1CB Frame Replication and Elimination for Reliability

114

115 Use Case 03: Virtual PLCs (FRER; Virtual NICs)

116 Use Case

117 Historically, Industrial Automation (IA) workloads have executed on PLCs running RTOSs. In the
118 future it is expected that some workloads will execute on virtual PLCs (vPLCs) in containers or
119 Virtual Machines (VMs) running general purpose OSs (e.g. Linux) with real-time capabilities.

120 The latter architecture enables distributed control systems that are much more dynamic, with
121 workloads potentially being short-lived and/or rapidly moving from one location in a network to
122 another. The network itself may also include a combination of physical NICs and virtual NICs, the
123 latter running as part of a virtual machine.

124 The network protocols, and network configuration and management tools need to cope with the
125 dynamic orchestration of workloads and nature of virtual NICs, specifically the fact that multiple
126 virtual NICs' capabilities may be constrained by the resources available in a single physical NIC.

127 Existing Support & Potential Additions

128 IEC/IEEE 60802 1st Edition includes optional support for replication and elimination at an End
129 Station (ccA or ccB), but not at a bridge (see 5.10.1b and 5.10.1c). Concerns have been raised that
130 some aspects of the current FRER recovery algorithms may be problematic for dynamic, virtual
131 environments (see [11]) and may be addressed by maintenance actions that the 802.1 TSN TG is
132 currently considering (see [12]).

133 Contributions would be appreciated on the challenges and potential solutions related to the uses
134 of virtual NICs.

135 Relevant Specifications

- 136 • IEEE 802.1CB Frame Replication and Elimination for Reliability

137

138 Use Case 04: Remote Virtual PLCs (Multi-subnet 139 Operation)

140 Use Case

141 Architectures that support consolidation of workloads from multiple PLCs to a single, higher-
142 powered industrial PC (see Use Case 03) also enable the physical location of the PC and it's
143 workloads to be more easily moved away from the production line to, for example, and on-premises
144 data centre or the Cloud. This location is typically not on the same IP subnet as the production line.
145 Thus, network traffic from the workload to the production line has to traverse multiple subnets.

146 There are two potential use cases:

- 147 a) Integration of deterministic IETF, IP-Level, cross-subnet, dynamic routing (DETNET)
- 148
- 149 b) Ability to set up a cross-subnet, QoS "tunnel" that can be comprehended and used by
150 dynamic routing that is otherwise restricted to single subnet operation.

151 Existing Support & Potential Additions

152 IEC/IEEE 60802 is silent on multi-subnet operation. It only provides explicit support for operation
153 within a single subnet.

154 IETF DETNET defines technologies that provide deterministic data paths that operate over Layer 2
155 bridged and Layer 3 routed segments.

156 See [4] regarding Use Case 04(b).

157 Relevant Specifications

158 [IETF DETNET](#)

159

160 Use Case 05: Bumpless Joining of Two Machines

161 Use Case

162 See [1] Use Case 21.

163 In some production environments, machines can connect and disconnect to and from multiple
164 different networks during normal operation. For example, multiple AGVs (automatic guided
165 vehicles) accessing various docking stations to communicate with a supervisory PLC. At times, an
166 AGV may operate as a self-contained CPS (Cyber-Physical System). At other times, an AGV may act
167 as one part of a larger CPS.

168 As networks are separated and joined, the operation of the AGVs must not be interrupted, i.e. there
169 can be no “bump”; the separation and joining must be “bumpless”.

170 Existing Support & Potential Additions

171 IEC/IEEE 60802 1st Edition covered alignment of a 2nd machine's time domain with a 1st machine's
172 in a bumpless manner (see D.2.3). It also states that if 2nd machine's time domains ceases to exist
173 (i.e. replaced by first machine's) "Typically, in this case, the second machine is not operational
174 while it is joined to the first.", i.e. BUMP!

175 Discussions in IEC/IEEE 60802 have included suggestions that further informative guidance could
176 be provided on how to enable bumpless separation and joining either with or without normative
177 additions to the specification.

178 Relevant Specifications

179 ?

180

181 Use Case 06: SECURITY - Maintain security during Device 182 Replacement and Modular Machine Assembly

183 Use Case

184 See [3] Use Case 2.

185 a) **Device replacement without engineering:** an owner/operator wants to (ad-hoc) replace a
186 broken IA device and needs to equip the replacement IA device with keys/credentials that
187 are specific for the production site or cell – without using engineering (or similar) tools.
188

189 b) **Modular machine assembly:** an owner/operator wants to (ad-hoc) re-use a priorly
190 deployed IA device in another machine and needs to equip the re-used IA device with
191 keys/credentials that are specific for the new production cell – without using engineering (or
192 similar) tools.

193 Existing Support & Potential Additions

194 Use case for Taking Posession was covered in detail (trust on first use model) in IEC/IEEE 1st Edition;
195 Device Replacement and Modular Machine Assembly are not elaborated on, i.e. the specification is
196 silent. Both would probably use a lot of what was defined for Taking Possession but were regarded
197 as out of scope for 1st Edition.

198 Relevant Specifications

199 ?

200

201 Use Case 07: SECURITY - Resilience Against Attacks via 202 LLDP

203 Use Case

204 See [3] Use Cases 3, 5 & 7.

205 Deployments of Industrial Automation technology must be secure against attack to ensure safety,
206 performance, and continued operation. Compliance with the EU Cyber Resilience Act (CRA)
207 (Regulation 2024/2847) is also a requirement for many deployments.

208 LLDP (IEEE 802.1AB) is an important enabling technology for IEC/IEEE 60802.

209 Existing Support & Potential Additions

210 IEC/IEEE 60802 1st Edition includes security for configuration, but not LLDP (or Time Sync; all are
211 part of the Control Plane).

212 Note that security of Data Plane is expected to be managed via Industrial Automation protocols.

213 Relevant Specifications

- 214 • IEEE 802.1AB

215

216 Use Case 08: SECURITY - Resilience Against Attacks via 217 Time Sync (Control Plane)

218 Use Case

219 See [3] Use Cases 3, 5 & 7.

220 Deployments of Industrial Automation technology must be secure against attack to ensure safety,
221 performance, and continued operation. Compliance with the EU Cyber Resilience Act (CRA)
222 (Regulation 2024/2847) is also a requirement for many deployments.

223 Time Synchronization (IEEE 802.1AS) is an important enabling technology for IEC/IEEE 60802.

224 Existing Support & Potential Additions

225 IEC/IEEE 60802 1st Edition includes security for configuration, but not Time Sync (or LLDP; all are
226 part of the Control Plane).

227 Note that security of Data Plane is expected to be managed via Industrial Automation protocols.

228 Relevant Specifications

- 229 • IEEE 802.1AS

230

231 Use Case 09: SECURITY - Resilience Against Increasingly 232 Sophisticated Attacks (excluding Quantum Computing)

233 Use Case

234 See [3] Use Cases 10.

235 Deployments of Industrial Automation technology must be secure against attack to ensure safety,
236 performance, and continued operation. Compliance with the EU Cyber Resilience Act (CRA)
237 (Regulation 2024/2847) is also a requirement for many deployments.

238 Over time, threat vectors change and protective actions must evolve to mitigate the threats.

239 Note: this use case is for threats excludes threats from quantum computing, which are sufficiently
240 different and novel to warrant an separate use case.

241 Existing Support & Potential Additions

242 IEC/IEEE 60802 1st Edition includes security for configuration. It is best practice to periodically
243 evaluate whether the supported approaches and algorithms continue to provide sufficient
244 protection against current and future, expected threats.

245 Relevant Specifications

246 ?

247

248 Use Case 10: SECURITY - Resilience Against Attacks 249 Using Quantum Computation

250 Use Case

251 See [3] Use Cases 10.

252 Deployments of Industrial Automation technology must be secure against attack to ensure safety,
253 performance, and continued operation. Compliance with the EU Cyber Resilience Act (CRA)
254 (Regulation 2024/2847) is also a requirement for many deployments.

255 Over time, threat vectors change and protective actions must evolve to mitigate the threats. Recent
256 advances in Quantum Computing suggest that, if the current pace is maintained, quantum
257 computers might become capable of breaking many existing, widely used encryption protocols
258 within a few years. It is therefore desirable to have encryption protocols that are robust against
259 quantum computing available.

260 It may also be advisable to start using “quantum-safe” encryption algorithms in advance of
261 quantum computing achieving the capability to break existing encryption algorithms. This protects
262 against the possibility of sensitive, encrypted data being captured and stored until the capability is
263 available.

264 Existing Support & Potential Additions

265 IEC/IEEE 60802 1st Edition includes security for configuration, but only against “traditional”, i.e. non-
266 quantum, attack vectors.

267 Relevant Specifications

268 ?

269

270 Use Case 11: SECURITY - Robust Supply of Security Core 271 Function

272 Use Case

273 See [3] Use Case 11.

274 Deployments of Industrial Automation technology must be secure against attack to ensure safety,
275 performance, and continued operation. Compliance with the EU Cyber Resilience Act (CRA)
276 (Regulation 2024/2847) is also a requirement for many deployments.

277 Most Industrial Automation approaches to security, including IEC/IEEE 60802, rely on a solid
278 foundation of underlying core capabilities. For example:

- 279 • **Authenticated encryption (AEAD)** vs. classical schemes (first-sign-then-encrypt or first-
280 encrypt-then-sign; sidenote: encrypt-only is no safe harbor)
- 281 • **Key protection**
- 282 • **Randomness** for symmetric and asymmetric keys, nonces
- 283 • **Dedicated HW** for accelerating cryptographic operations and protecting keys/credentials,
284 especially long-lived ones

285 Manufacturers, machine builders, system integrators and owners/operators need to be able to rely
286 on these core functions.

287 Existing Support & Potential Additions

288 Considered out of scope for IEC/IEEE 60802 1st Edition, but the specification does rely on the
289 robust supply of security core functions. Might not need details included in the specification, but
290 might be good to add some references on how to do it (e.g. IEC 62443)?

291 Relevant Specifications

292 ?

293