Leon S. Scaldeferri

Office of Information Security Research

NSA, R22

9800 Savage Rd.

Ft. Meade MD 20755-6000

(301) - 688 - 0293

Time Bounded Implications Applied to Secure Services

- * Encryption Overview
- * Bit/Frame Count Integrity
- *Time Delay vs. Buffer Size
 - *Absolute Time Delay

Doc: IEEE P802.11-93/010

Encryption Overview¹

Encryption:

$$P[f]K = C$$

Decryption:

$$C[f^1]K = P$$

P = Plaintext Digital Data. e.g. voice, video, FAX, etc.

K = Key

C = Cipher Text

[f] = encrypt function; $[f^{-1}]$ = decrypt function

1. ref: G. J. Simmons (ed), "Contemporary Cryptology", IEEE Press, 1992.

Encryption Overview cont.

Stream Cipher: $P_n (+) K_n = C_n$; $C_n (+) K_n = P_n$

n= 1,2,3,.....N bits N= Message Length

(+) = Modular Addition base 2, (symmetric function)

Block Cipher: $P_B[f] K_B = C_B;$ $C_B[f] K_B = P_B$

B= Block of bits/Frame; [f] = symmetric function. e.g. DES

Block size of P and K may be different.

PKC: $P_B[f] K_B = C_{B_1} C_B[f^{-1}] K_B = P_B$

[f] and [f⁻¹] are non-symmetric functions, e.g. RSA

Given either [f] or [f⁻¹], the other is very difficult to find!

Bit/Frame Count Integrity

- * Sync of $K_n & C_n$ necessary in receiver for decryption.
- * Loss of bit/block count Integrity will result in loss of crypto-sync.
- * C bits/blocks must be received in the order sent.
- * Lost/duplicate bits/blocks result in loss of crypto-sync.
- * Re-sync's may take many seconds. To be avoided!
- * Incorrect C bits/blocks result in incorrect P bits/blocks.
- * Bit/block errors are acceptable, handled by upper Layers in ISO model, e.g. frame replay/interpolation.
- * MAC must keep Frame count integrity, removing duplicates or adding blanks, to maintain bit/block count integrity in upper Layers.

Time Bounded Services

- * Offer/expect data in a periodic/regular manner, e.g voice, FAX.
- * Large uncertainties in acceptance/arrival requires large data buffers to smooth out data.
- * Data Frames will be offered in a continuous manner without ACK/NACK.

examples:	frame rate	bits/frame	
IS-54 (dig. cell.)	25/sec	318+OverHead	
GSM	216/sec	60 +OH	
DECT	100/sec	320 +OH	
QCDMA	50/sec	160 +OH	
	OH = error coding + sync bits		

Absolute Time Delay

- * Interactive services, e.g. conversations, interactive video, require short absolute delays.
- * For human interactive events, typically less than 100 msec.

Unnoticeable: < 100 msec

Noticeable: 100 msec < T < 300msec

Objectionable: > 300 msec

* For telecommunication systems.

Transparent: < 5 msec

Possible impact: 5 msec < T < 10 msec

Impact design, e.g. echo cancellers: > 10 msec

			v e