CODIAC Protocol

Centralized or Distributed Integrated Access Control

Slides for document IEEE P802.11-93/54

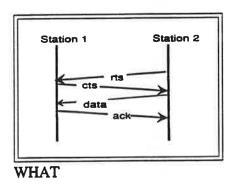
Carolyn Heide/Spectrix

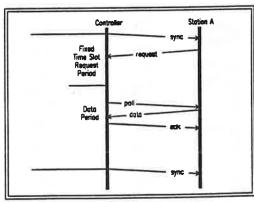
Goals

- ◆ Take advantage of the contention avoidance, power efficiency and time-bounded support characteristics of a point coordination function;
- Operate efficiently and with fairness in the absence of a point coordination function;
- Provide maximum flexibility, allowing the protocol to be tailored to varying implementations without losing compatibility across those implementations.

CODIAC Protocol

Slide 1


Carolyn Heide, Spectrix


IEEE 802.11-93/54a

Concept

Combination of two protocols:

Xircom's Wireless Hybrid Asynchronous Time-bounded (WHAT) Protocol Spectrix' Reservation/Polling Protocol (RPP)

RPP

Page 2

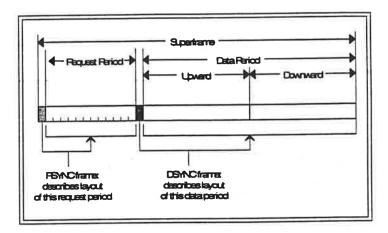
Carolyn Heide, Spectrix

Theory of Operation

- ◆ Two modes of operation: centralized and distributed.
- Centralized: point coordination function managed by a controller.
- Distributed: enhanced listen-before-talk.
- ◆ Data transfer performed point-to-point by exchange of four frames: RTS, CTS, DATA and ACK.
- ◆ Station startup procedure: listen.

CODIAC Protocol Slide 3 Carolyn Heide, Spectrix

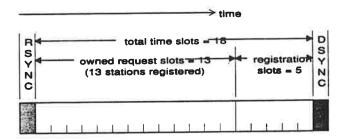
IEEE 802.11-93/54a


Distributed Mode

WHAT

Centralized Mode

Superframe



CODIAC Protocol Slide 5 Carolyn Heide, Spectrix

IEEE 802.11-93/54a

Centralized Mode

Example Request Period

RSYNC specifies 18 total slots, 5 registration slots.

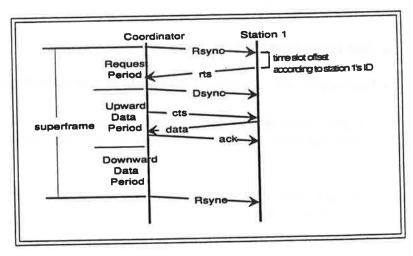
13 stations have already registered and been assigned ID's 1 to 13, which are specifies the request time slot they own.

Registering stations generate random numbers from 1 to 5 and contend for the five registration slots.

CODIAC Protocol Slide 6 Carolyn Heide, Spectrix

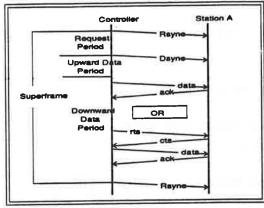
Centralized Mode

Registration

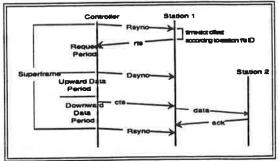

- ♦ Stations must be registered to use the medium (for anything but registration).
- Controller allocates any number of registration slots.
- Registration slots can overlap owned slots if the implementation choose to do so.
- Controller assigns registering station an owned slot number, which becomes the station's ID, used when in frames sent to/from that station for the duration of its registration.

CODIAC Protocol Slide 7 Carolyn Heide, Spectrix

IEEE 802.11-93/54a


Centralized Mode

Upward Data Period



Centralized Mode

Downward Data Period

Controller to Station

Station to Station

CODIAC Protocol

Slide 9

Carolyn Heide, Spectrix

IEEE 802.11-93/54a

Changing Modes

- ♦ Stations change modes according to whether or not they hear the controller.
- Two types of controllers, dedicated and potential.
- Dedicated controllers always operate in centralized mode.
- ◆ Potential controllers can operate as regular stations in distributed mode or as controllers in centralized mode at their discretion.
- Criteria for potential controller changing modes is choice of the implementation.

Page (

ACK & Duplicate Detection

Goals

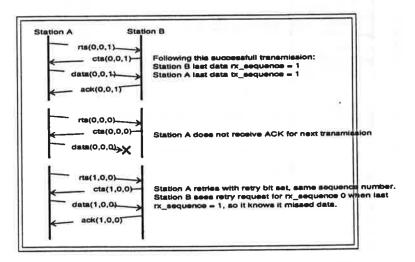
- minimize retransmission of data frames
- filter out most duplicates
- ♦ NOT to guarantee no duplicates

Mechanism

- Retry Bit
- ◆ Sequence Bit
- ◆ Out-of-sequence Bit

CODIAC Protocol

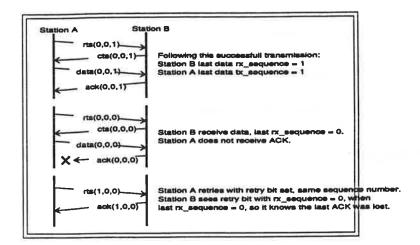
Slide 11


Carolyn Heide, Spectrix

IEEE 802.11-93/54a

ACK & Duplicate Detection

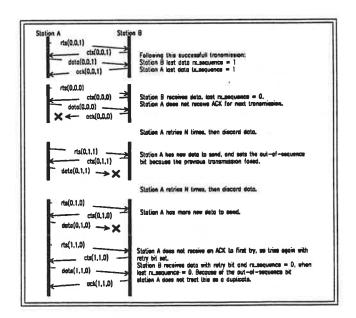
Example 1


flags ⇒ (retry, out-of-sequence, sequence)

ACK & Duplicate Detection

Example 2

flags ⇒ (retry, out-of-sequence, sequence)



Carolyn Heide, Spectrix CODIAC Protocol

IEEE 802.11-93/54a

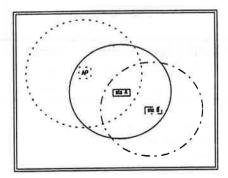
ACK & Duplicate Detection

Example 3 flags ⇒ (retry, out-of-sequence, sequence)

Overlapping Modes

Distributed/Distributed

null case

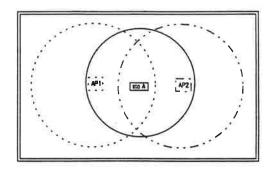

CODIAC Protocol Slide 15 Carolyn Heide, Spectrix

IEEE 802.11-93/54a

Overlapping Modes

Distributed/Centralized

The AP and Station A are centralized, station B is distributed


Performance of both centralized and distributed stations in the overlap is degraded.

Slide 18

Overlapping Modes

Centralized/Centralized

AP1, AP2 and station A all centralized.

Station A powers up this way - it cannot communicate, but could try to register to inform an AP of the problem.

Station A moves into this position,?

CODIAC Protocol

Slide 17

Carolyn Heide, Spectrix

IEEE 802.11-93/54a

Frame Format

Minimum Frame Length (10 + n) octets								
		FCS Coverage						
Preamble 8n	SD 8	DID 16	Typ e 8	Contr ol 8	INFO (optional) 8m	FCS 32	ED 8	← field name ← field length (bits)

Preamble = Preamble (n to be determined)

SD = Start Delimiter
DID = Destination Identifier
Type = Frame Type

Control = Control Flags: AP, sequence, out-of-sequence, retry, hierarchical

INFO = Information (0 <= m <= to be determined)

FCS = Frame Check Sequence, CRC-32

ED = End Delimiter

Destination identifier values:

FFFFh = broadcast

8000 - FFFEh = controller stations 0 - 7FFFh = non-controller station.

IEEE 802.11-93/54a

Possible Enhancements

Pages 21 & 22 of document 93/54.

IEEE 802.11-93/54a

802.11 Issues

Pages 29 to 36 of document 93/54

Character 1