DISCUSSION OF MODULATION PARAMETERS FOR THE 2.4 GHz FREQUENCY HOP PHYSICAL LAYER

Jim McDonald Motorola, Inc JULY, 1993

Submission:

J. McDonald

July, 1993

Doc: IEEE P802.11-93/102

SCOPE OF PAPER

- Discuss the relative merits of four level and two level FSK modulation.
- Propose selection of BT product and modulation index.

	2.	
*		
		*. 1

		* 4
		- 10 / 2 / 2 / 2 / 2 / 2 / 2 / 2 / 2 / 2 /
		2

Doc:

DISCUSSION OF 4 LEVEL AND 2 LEVEL

- Identify systems of comparison
- Identify the basis of comparison
- Present side by side performance comparison
- Discuss issues of relative economic viability
- Summarize
- Present conclusions

bmission:	2			J. McDonald
lly, 293		Doc:	TREE	P802 11-03/102

SYSTEMS OF COMPARISON

- Comparable restraints for both the 4 level and 2 level systems.
 - Same data rate
 - Same bandwidth
- For this exercise the occupied 99% power bandwidth of both the 4 level and 2 level systems will be set to 1 MHz.
- Relative conclusions would also apply if the 20 dB bandwidth criteria were used.

2 LEVEL SYSTEM (0.39 GMSK)

- Uses Gaussian premodulation filter.
- Deviation set to 250 kHz.

4 LEVEL SYSTEM

- Uses square root raised cosine premodulation filter.
- Deviation set to 275 kHz.

Submission: 4 J. McDonald

July, 1993 Doc: IEEE P802.11-93/102

Block Diagram of the Two-Level System

					× ,
z:					
					2
F 6.	_				

Eye-Pattern of Two-Level System

bmission: 6 J. McDonald ally, 1993 Doc: IEEE P802.11-93/102

RAISED COSINE FILTERS

- Used in communications systems because they have the property of no intersymbol interference, i.e., the eyes are fully open.
- One square root cosine filter is used at transmitter for splatter protection and another at the receiver for post demodulation filtering.
- The combined effect is raised cosine.
- Used on four level systems such as U.S. Digital Cellular with π /4 QPSK, Japan Digital Cellular with π /4 QPSK, and RD-LAP with FSK.
- Refer to K. Feher, Digital Communications; Satellite / Earth Station Engineering, Prentice-Hall, New Jersey, 1983.

*

ŋ

Block Diagram of the Four-Level System

Submission: 8 J. McDonald

July, 1993 Doc: IEEE P802.11-93/102

Eye-Pattern for the Four-Level Raised-Cosine System

Submission: 9 J. McDonald

SYSTEM COMPARISON

System	Bit Rate	Modulation Filter	Deviation	IF Filter
2 Level	1 MB/S	Gaussian	250 kHz	SAW*
4 Level	1 MB/S	SRRC	275 kHz	SAW*

--SAW Filter: 3 dB BW > 1.0 MHz, 20 dB BW < 2.5 MHz ote: Power outside 1 MHz bandwidth is -21.3 dB/2 level, -21.2/4 level.

ubmission:

10

J. McDonald

ly, 1993

ubmission:

Doc: IEEE P802.11-93/102

SIMULATED SENSITIVITY- Eb/No

SYSTEM	SIMPLE DEMODULATOR	COMPLEX DEMODULATOR
2 LEVEL	1 BIT INTEGRATOR AND SLICER 18 dB	2 BIT INTEGRATOR AND 4 LEVEL SLICER 13 dB*
4 LEVEL	SIMPLE DEMODULATOR NOT APPLICABLE	SRRC AND 4 LEVEL SLICER 11 dB

-Based on actual measurement. It is expected that longer integration eriods would improve performance 1 dB or more.

er e			
			E
9			1
W W S			3-79

TRANSMITTER SPLATTER IN ALTERNATE CHANNEL

- Simulations were done with a brickwall filter having a passband from F_C + 1.5 MHz to F_C +2.5 MHz
- There are two primary sources of noise:
 - 1. Modulation splatter
 - 2. VCO Noise
- Modulation Splatter

With 2 Level (0.39 GMSK) noise is -72 dBc

With 4 level SRRC deviation at 275 kHz noise is -87 dBc

•VCO noise floor of commercial modules measures to be -140 dBc/Hz or -80 dBc in 1 MHz BW. Assuming tolerance for practical issues and the observation that the floor is not reached at the alternate channel, a relative noise power of -70 dBc is estimated.

Submission:	1 2		J.	McDonald
July, 1993		Doc:	IEEE P80	2.11-93/102

ALTERNATE-CHANNEL NOISE POWER FROM TRANSMITTERS dBc in 1 MHz BAND CENTERED at + 2 MHz

SYSTEM	MODULATION SPLATTER	VCO NOISE	TOTAL
2 LEVEL	-72 dBc	-70 dBc	-68 dBc
4 LEVEL	-87 dBc	-70 dBc	-70 dBc

Conclusion: Improved splatter performance of 4 level SRRC modulation has limited benefit because of the sideband noise of practical VCO's

	5

Doc:

ISSUES OF ECONOMIC VIABILITY

With respect to a two level system, four level FSK systems impose the following issues relating to economic viability.

- SRRC filters in both receivers and transmitters.
- A 4 level slicer and related automatic compensation for variations in levels.
- DSP or very large gate array is appropriate for demodulation.

Submission:	1 4		J. McDonald
Jul 1993		Doc:	IEEE P802.11-93/102

ISSUES OF ECONOMIC VIABILITY CONTINUED...

- Center frequency tolerance is more critical.
- Deviation control is more of an issue.
- Phase distortion is more critical.
- Longer preamble and sync required.
- Greater sensitivity to recovered clock error.

z.		
		9:
		8

July, 1993

Doc: IEF

IEEE P802.11-93/102

 Submission:
 16
 J. McDonald

 July, 1993
 Doc: IEEE P802.11-93/102

SUMMARY

- With DSP or complex ASIC demodulator, BER performance of 2 level and 4 level CPFSK at 1 Mb/s is very close.
- DSP or complex ASIC demodulators raise issues of viability.
- Issues of tolerance susceptibility with 4 level also raise issues of economic viability.
- DSP or complex ASIC demodulators raise issues of power consumption in small battery operated equipment.
- A 2 level system provides the opportunity to operate with adiscriminator and simple slicer at about 5 or 6 dB more Eb/No.
- The apparent advantage of alternate channel selectivity available with 4 level is negated by VCO sideband noise.

CONCLUSION

Binary is the appropriate modulation for IEEE 802.11.

- It meets the data rate requirement.
- It provides for economically viable implementation.
- It provides for the options of more complex high performance demodulators.
- Binary is more forgiving of system tolerance issues.
- The option of a gear shift to a higher data rate option using four level is left in place with a baseline 1 Mb/s binary system.

Submission:

18

J. McDonald

July, 1993

Doc: IEEE

IEEE P802.11-93/102

SELECTION OF BT PRODUCT AND MODULATION INDEX

General Form of Modulation is:

- Binary 1 Mb/s
- CPFSK
- Premodulation filter is Gaussian
- 3 dB point of premodulation filter is BT. Three options mentioned are:
 - 0.39
 - 0.50
 - 0.70
- With a given BT product, the deviation is set to provide a 20 dB bandwidth of 1 MHz

¥			
			(4)
ž/			
			(3
,			

INTERPRETATIONS OF THE FCC 1 MHz RULE

• Aggressive Interpretation

99% of the power within 1 MHz bandwidth

• Conservative Interpretation

20 dB bandwidth defined relative to center frequency with a narrow resolution filter

 Based on the conservative interpretation of the FCC bandwidth rule:

What is the impact of BT and deviation on system performance?

Submission:	2 0			J. McDonald
July, 1993		Doc:	IEEE	P802.11-93/102

BT AND DEVIATION OPTIONS CORRESPONDING TO THE CONSERVATIVE INTERPRETATION OF THE FCC BANDWIDTH RULE IN TERMS OF Eb/No in dB

вт	Deviation kHz	Attenuation @ ±500 kHz dB	Sensitivity with 1 Bit Integrator & Slicer	Sensitivity with 2 Bit Integrator & 4 Level Slicer
0.39	190	20.3	20.6	15.5
0.50	175	20.5	19.3	15.5
0.70	160	20.3	18.5	16.5

			, j
			,,
¥i			
)
			1.

BT AND DEVIATION OPTIONS CORRESPONDING TO THE CONSERVATIVE INTERPRETATION OF THE FCC BANDWIDTH RULE

ALTERNATE-CHANNEL PROTECTION in dB

вт	Deviation kHz	Composite of Modulation and VCO Noise in Alternate-ChanneldBc	Alternate-Channel Protection in dB (simple slicer)	
39	190	- 69	48.4	
50	175	- 69	49.7	
7 0	160	- 6 3	44.5	

bmission:

2 2

J. McDonald

y, 3

Doc: IEEE P802.11-93/102

PROPOSAL

EE 802.11 specifies a minimum deviation based on the nservative interpretation of the FCC bandwidth rule.

sume for instance that the committee selects a BT product of 0.50.

e conservative interpretation implies that the deviation is 175 kHz. owing for tolerance, the IEEE might specify the deviation as "at st 160 kHz".

e regulating agency imposes the upper limit. Noting that the gressive interpretation has a deviation of 210 kHz, only 20% ther here is no problem with interoperability.