Preamble Proposal for the 2.4 GHz Frequency Hop Standard

Jim McDonald Motorola Inc. Schaumburg, II., 60173

Submission

Slide 1

J. McDonald

November, 1993

Doc: IEEE P802.11 93/209

Summary

- This submission provides specific suggestions for the three basic elements of the preamble:
 - Ramp up

8 bit periods

- Idle pattern

72 bit periods

- Synchronization word

16 bit periods

 This discussion draws heavily on the previous contributions of Jerry Socci 93/72 & 93/148 and Francois Le Maut 93/150.

Submission

Slide 2

Ramp-Up

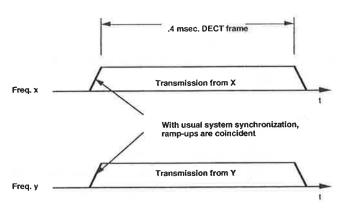
The purpose of the Ramp-up segment is:

- Provide an opportunity for the transmitter to power up and stabilize prior to transmission, and
- Control the rate of power increase to avoid transmitting power in other channels during turn on (or turn off).

Consider DECT as a point of reference:

- Physical layer characteristics are similar to 802.11 frequency hop parameters.
- The DECT ramp-up of power may occur over a 10 bit period.
- There is no specification limit on the rate of rf power ramp-up.

Submission

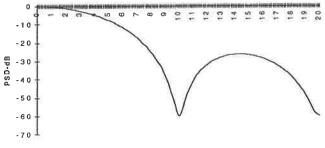

Slide 3

J. McDonald

November, 1993

Doc: IEEE P802.11 93/209

DECT Example


Since packets are coincident, splatter from ramp-ups or rampdowns do not generate interference of payload data on other frequency channels.

Submission

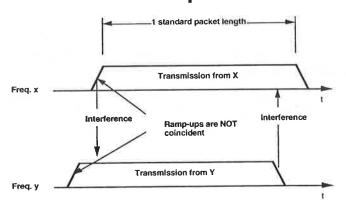
Slide 4

Splatter with 0.1 usec Ramp-Up

Splatter During Ramp-Up with a 0.1 usec Ramp

Frequency Offset - MHz

Submission

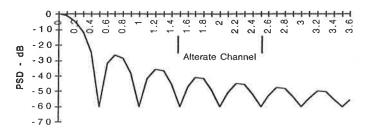

Slide 5

J. McDonald

November, 1993

Doc: IEEE P802.11 93/209

2.4 GHz Frequency Hop Example


Since packets are NOT coincident, splatter from ramp-ups or ramp-downs generate interference of payload data on other frequency channels.

Submission

Slide 6

Splatter with 2.0 usec. Ramp-Up

Frequency Offset - MHz

Submission

Slide 7

J. McDonald

November, 1993

Doc: IEEE P802.11 93/209

Proposed Ramp-Up Standard

- The premise of the ramp-up specification is control of the rate of change of the amplitude of the rf during ramp-up and thus control splatter during ramp-up.
- The ramp-up period is confined to one eight bit period. The modulation during this period should be a 0,1 idle pattern starting with a "0" on the first bit.
- The transmitter is off at the start of the first bit, i.e., less than -50 dBm.
- The transmitter power is less than 1 mW at the end of the first bit.

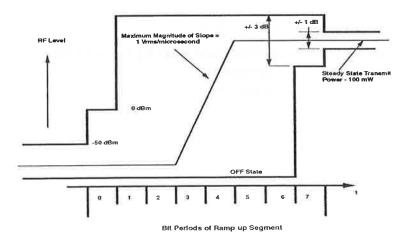
Submission

Slide 8

Proposal Cont'd

- The power at the end of the seventh bit is within 3 dB of the steady state rf power.
- The power at the end of the eighth bit is within 1 dB of the steady state rf power.
- The maximum magnitude of the rate of change of the rf power should be 1 Volt per microsecond as measured by a wideband detector based on the rms. rf voltage of the chassis output at 50 ohms.
 - 100mW @ 50 ohms is 2.236 Volts rms.
 - A 2 microsecongd slope yields 1.118 V/usec.
 - 1 V/us is the logical Spec limit.

Submission


Slide 9

J. McDonald

November, 1993

Doc: IEEE P802.11 93/209

Mask of the Proposed Ramp-Up Standard

Submission

Slide 10

Idle pattern

- The purpose of the Idle pattern is:
 - Provide the opportunity for receivers to sense the presence of a signal.
 - Provide the receiver with opportunity to perform diversity measurement and antenna selection.
 - Provide the opportunity for receivers to synchronize to the carrier and/or clock of the incoming signal.
 - Provide the opportunity for the dc and other transients to dampen prior to reception of data.
- System operation requires that these functions be accomplished without prior knowledge as to when the data packet will occur.

Submission

Slide 11

J. McDonald

November, 1993

Doc: IEEE P802.11 93/209

Idle Pattern Length Determination

- The important technical issues are implementation specific.
- Motorola has determined that 72 bits of idle pattern are sufficient for:
 - antenna diversity selection,
 - bit synchronization, and
 - receiver stabilization prior to reception of the synchronization or unique word.

Submission

Slide 12

Idle Pattern Bit Sequence

- Motorola proposes a 0,1 pattern for the idle pattern.
- The 0,1 pattern provides the maximum number of transitions and is thus most appropriate for purposes of signal detection and synchronization.
- The 0,1 pattern is not burdened with a dc offset.

Submission

Slide 13

J. McDonald

November, 1993

Doc: IEEE P802.11 93/209

Unique Word

- The purpose of the unique (or synchronization) word is to provide word synchronization, i.e., to point to the first bit of the MAC payload.
- Both 16 and 24 bit synchronization words have been proposed.
- There may be some concern that a 16 bit synchronization word may not provide adequate false alarm protection. For instance, at 1 Mb/s, the false alarm rate with random data would be 15 times per second. This may appear to be too high.

Submission

Slide 14

November, 1993 Doc: IEEE P802.11 93/209

Unique Word, cond't

- This conclusion is overly pessimistic:
 - The synchronization word detection process may be enhanced with information derived from the idle pattern period in order to reduce the false alarm rate to an acceptable level.
 - The MAC layer will detect false synchronization signals at the end of the MAC header, about 200 microseconds. The impact of false detection is thus minimal.
- It is therefore concluded that a 16 bit synchronization word is sufficient.

Submission Slide 15

J. McDonald

November, 1993

Doc: IEEE P802.11 93/209

Unique Word Proposal

- From Willard per Doc:P802.11-93/143, Table VI, five 16 bit words with "low probability of false occurrence of the pattern in the received signal" are listed.
- Word, 4657 (0000 1001 1010 1111) from that list is selected as the recommended synchronization word.

Submission Slide 16 J. McDonald

November, 1993

Preamble summary

• Ramp up 8 bit periods (see mask)

• Idle pattern 72 bit periods (0,1 pattern)

• Unique word 16 bit periods (word 4657)

• Total 96 bit periods

Submission Slide 17

	9