Doc: IEEE P802.11-94/

Fragmentation / Reassembly at the MAC Layer

Presented by Mark Demange Motorola Wireless Data Group

Presentation

Slide

Mark Demange, Motor

March 1994

Doc: IEEE P802.11-94/

Background

- Foundation MAC doesn't specify fragmentation capability
- Fragmentation enhances system performance
 - Improves performance in presence of microwave ovens
 - Improves performance with hidden stations within BSA
 - Allows optimal hopping FH PHYs
 - Reduces or Eliminate Variation in Start of Time Bounded Services Superframe
- Authors believe MAC without fragmentation is a broken MAC

Presentation

Silde 2

Doc: IEEE P802.11-94/

Goals

- Include Fragmentation in MAC (issue 20.6)
- Adopt Proposal Given In doc: IEEE P802,11-94/37 as basis for inclusion in MAC

Presentation

Silde 3

Mark Demange, Motor

March 1994

Doc: IEEE P802.11-94/

Outline Of Presentation

- Advantages of Fragmentation
- Cost of Fragmentation
- Fragmentation Proposal
- Conclusion

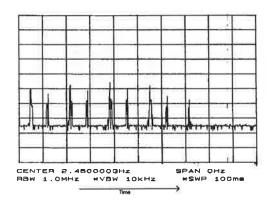
Presentation

Doc: IEEE P802.11-94/

Advantages of Fragmentation -Enhanced Performance in Presence of Microwave Oven Interference

- Characteristics Of Microwave Oven Interference
 - Pulse Amplitude Modulated Signal
 - 60 Hz Square Wave 8.3 ms. ON, 8.3 ms.
 - Typically Occupies 10 to 20 MHz of the band at any time
 - Rising and Failing Edges of Pulse 'splatter' Across the Band
 - Center Frequency of Oven Drifts By Up to 10 MHz
- Impact of Oven Interference
 - Both DS and FH Systems Effected
 - » Systems Effected if Desired Signal to Interfered Signal Ratio is too Small
 - Any Frames Greater than 8.3 ms
 Guaranteed Not To Be Received
 Correctly (1100 Byte Ethernet Packet =
 8.8 ms @ 1 Mbps)

Presentation

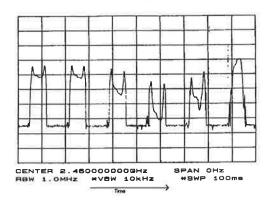

Silde 5

Mark Demange, Motor

March 1994

Doc: IEEE P802.11-94/

Advantages of Fragmentation -Enhanced Performance in Presence of Microwave Oven Interference



Presentation

Silde 6

Doc: IEEE P802.11-94/

Advantages of Fragmentation -Enhanced Performance in Presence of Microwave Oven Interference

Presentation

Silde 7

Mark Demange, Motor

March 1994

Doc: IEEE P802.11-94/

Advantages of Fragmentation -Enhanced Performance in Presence of Microwave Oven Interference

Framee per 1100 Byte Packet	% of packet received successfully during OFF time of oven	
	1 Mbps Data Rate	2 Mbpe Data Rate
1 - no fragmentation	0%	0% to 100%
2	0 % - 50%	50% - 100%
3	33% - 66%	66% - 100%
4	50% - 76%	75% - 100%

Presentation

Slide 8

Doc: IEEE P802.11-94/

Advantage of Fragmentation – Better Performance With Hidden & Sleeping Stations

- DS and FH Systems Vulnerable to Interference From Hidden Stations
- RTS/CTS Helps IF Stations Are Awake To Hear RTS/CTS Transmissions
- Consider System With No RTS/CTS:

Station A and B are hidden from each other and are both AWAKE Station A starts to transmit data frame to Access Point Station B senses channel as CLEAR (station A is hidden)

Fit:
Station B transmits to AP and compts AP reception of data frame from station
Station A's transmission corrupts AP reception of data frame from station B
Both stations required to retransmit

DS: Station B transmits to AP and is not acknowledged by AP Station B required to retransmit

Decembellas

Slide 9

Mark Demange, Motor

March 1994

Doc: IEEE P802.11-94/

Advantage of Fragmentation – Better Performance With Hidden & Sleeping Stations

• Consider System With RTS/CTS:

Station A transmits RTS to Access Point Access Point transmits CTS to station A Station A starts to transmit data frame Station (9 values up and senses channel as CLE.

FH: Station B transmits to AP and compits AP reception of data frame from station / Station A's transmission corrupts AP reception of data frame from station B Both stations required to retransmit

DS: Station B transmits to AP and is not admowledged by AP Station B required to retransmit

Presentation

Slide 10

Doc: IEEE P802.11-94/

Advantage of Fragmentation --**Removes Constraints On Dwell/Superframe Times**

- . 'MAC Should Maximize Use Of Bandwidth In Each Hop Interval' – January 1993 PHY Committee (Passed)
- Three Options To Achieve Above Goal more details in submission
 - Fix Dwell/Superframe No Fragmentation
 - Requires Long Dwells To Compensate For Wasted Bandwidth Long Dwells Undestrable For Effective FH
 - Stretched Dwell/Superframe

 - High Retransmission Rate Due To Unsynchronized Hopping
 Does not meet PHY Motion January 1993 "The hop rate shall be configurable in the MAC but fitted within a given BSA. It does not have to adapt." PASS 20-1-1
 - Fix Dwell/Superframe With Fragmentation
 - » Allows Short Dwells Without Lost Bandwidth Penalty
 - Eliminates Unsynchronized Hopping And Its Drawbacks
 - Eliminates Variation in Start Time Of Time Bounded Services Supperframe

Presentation

Silde 11

Mark Demange, Motor

March 1994

Doc: IEEE P802.11-94/

Advantage of Fragmentation -**Removes Constraints On Dwell Times**

- Fixed Dwell Duration with Fragmentation
 - Transmit Frames That Will Fit Within **Current Dwell**
 - Dynamically Adjust Frame Length To Fully Utilize End Of Dwell

	Maximum wasted bandwidth in each hop interval			
Frame elze	20 ms. hop interval	50 ms. hop interval	100 ma. hop interval	
1518 bytee - no fragmentation	80.7%	24.3 %	12.1%	
759 bytee	30.4%	12.1%	6.1%	
506 bytes	20.2%	8.1%	4.0%	
380 bytes	15.2%	6.1%	3.0%	
Dynamic	approx. 0%	approx. 0%	approx. 0%	

Silde 12

Doc: IEEE P802.11-94/

Cost Of Fragmentation

- Stations in Fringe Areas (No Interference or Hidden Stations)
 - 10 % Of Stations in Outer 5% of Coverage Radius
 - Frame Error Rate (FER) approximated from BER (1 * 10 *)
 - Expected Bytes Transmitted per 1100 Byte MSDU

nee per 1100 byte MSDU	FER per frame (30 bytes overhead per frame)	Average Bytes TX'd per frame	Total Bytes T) per packet
fragmentation	8.6%	1237	1237
i0 + 30 OH) bytes	4.5%	807	1215
17 + 30 OH) bytee	3.1%	409	1228
'5 + 30 OH) bytee	2.4%	313	1250

Presentation

Slide 13

Mark Demange, Motor

March 1994

Doc: IEEE P802.11-94/

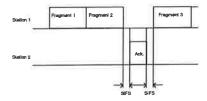
Cost Of Fragmentation

- Stations Not in Fringe Areas (No Interference or Hidden Stations)
 - BER of PHY Better Than 1 ° 10 6 Yields FER < 1%
 - Expected Throughput Typical Stations
 - xpected Introgripht typical Stations

 Table Assumes Network Level Request-Reply
 protocol with 190 byte packets, 100 byte
 acknowledgments, client response time of 3
 ms., server response time of 3 ms., and MAC
 level windowing of frames. Table does not
 include effects of interference.

Frames per 1100 Byte Packet	Maximum Throughput et 1 Mbps	Meximum Throughput at 2 Mbps
1 - no fragmentation	547 Kbps	800 Kbps
2 - (560 + 30 OH) bytes	540 Khpe	786 Khpa
3 - (367 + 30 OH) bytee	533 Khpa	779 Kbps
4 - (275 + 30 OH) bytee	624 Khpe	772 Kbps

Fragmentation yields less than 5 % degradation in performance Fragmentation yields less than 4% degradation in performance


Presentation

Slide 14

Doc: IEEE P802.11-94/

Fragmentation Proposal

- Control Of Channel
 - Fragmentation Protocol Must Ensure Control Of the Channel Is Maintained
 - Current Foundation MAC Provides A Mechanism To Provide Channel Control
 - Channel Control With Windowing

Presentation

Slide 15

Mark Demange, Motor

March 1994

Doc: IEEE P802.11-94/

Fragmentation Proposal

- Fragmentation Rules
 - Payload Of A Packet Shall Typically Be Some Fixed Number Of Bytes: (max_payload) (except when near the end of a dwell)
 - The Payload Of A Packet Shall Typically Be Greater Than Some Fixed Number Of Bytes: (min_payload) (except when fewer than min_payload bytes are remaining in the packet)
 - The Number Of Bytes in A Payload Can Be Reduced From max_payload To Allow More Efficient Usage Of The Time Near The End Of A Dwell.
 - When A Data Packet Needs To Be Transmitted, The Number Of Bytes in The Payload Of A New Fragment is Determined By:
 - The Time Remaining in The Current Dwell.
 - The Number Of Bytes in The Packet That Have Not Yet Been Transmitted For The First Time.

Presentation

Slide 16

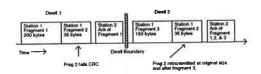
Doc: IEEE P802.11-94/

Fragmentation Proposal

- Fragmentation Rules (continued)
 - Once The Payload Of A Fragment Has Been Established, That Fragment Will Remain Fixed Until The Fragment Is Successfully Delivered To The Immediate Destination.
 - An Access Point Relaying A Packet Will Be Allowed To Re-Fragment The Packet.
 - Devices Must Transmit Only if There is Enough Time Remaining in The Dwell To Allow The Transmission Plus The Acknowledgment if One is Due.
 - if A Fragment Requires Retransmission Near The End Of A Dwell And There Is Not Enough Time Left For The Fragment Plus The Ack: The Device Must Defer Until The Next Dwell.

Presentation

Slide 17


Mark Demange, Motor

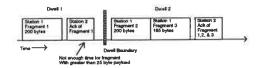
March 1994

Doc: IEEE P802.11-94/

Fragmentation Proposal

- Fragmentation Rules (continued)
 - Fragmentation Near Dwell Boundary:

Maximum Frame Size = 200 Bytee, Minimum Frame Size = 25 Byte

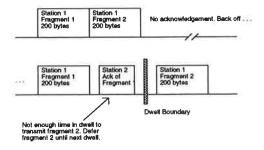

Presentation

Slide 18

Doc: IEEE P802.11-94/

Fragmentation Proposal

- Fragmentation Rules (continued)
 - Fragmentation Near Dwell Boundary: (another example)


Maximum Frame Size = 200 Bytes, Minimum Frame Size = 25 Bytes, I

Presentation Slide 19 Mark Demange, Motor

March 1994 Doc: IEEE P802.11-94/

Fragmentation Proposal

- Fragmentation Rules (continued)
 - Retransmission of Window Due To Lost Acknowledgment

Presentation

Slide 20

Doc: IEEE P802.11-94/

Fragmentation Proposal

- Packet Reassembly
 - Each Data Frame Requires Sufficient Information To Allow Reassembly At Receiving Station
 - » Frame Type (data, acknowledgment, etc.)
 - » Source Address
 - Destination Address

 - Packet Sequence Number
 Pregment ID Number fragments of MSDU sequentially numbered
 End-Of-Packet indicator indicates current fragment ID number corresponds to total frames in MSDU

Presentation

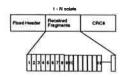
Silde 21

Mark Demange, Motor

March 1994

Doc: IEEE P802.11-94/

Fragmentation Proposal


- Frame Formats
 - Data Frame
 - 1 additional element required

Fregment ID # is a binary field - not bit-mapped

-Acknowledgment Frame

»Bitmap Field Of Fragmenta Received is Required

Presentation

Silde 22

Doc: IEEE P802.11-94/37a

March 1994

Doc: IEEE P802.11-94/

Conclusion

- Fragmentation enhances system performance
 - Improves performance in presence of microwave ovens
 - Improves performance with hidden stations
 - Allows optimal hopping FH PHYs
 - Reduces or Eliminate Variation in Start of Time Bounded Services Superframe
- Benefits Of Fragmentation Offsets Minimal Overhead
 - 1 Element Per Frame of OH
 - Frame Windowing Minimizes Additional Acknowledgments
- Fragmentation Proposal Easily Integrated Into Foundation MAC
 - Mechanism To Control Channel Already Exists
 - Data Frames and Acknowledgment Frames Altered Slightly

Presentation

Slide 23

Mark Demange, Motor

March 1994

Doc: IEEE P802.11-94/

Conclusion

- Goals:
 - Close Issue 20.6 "Is there a need for fragmentation/reassembly at the MAC layer?" — YES
 - Motion: Use the proposal given in this submission as a basis for implementation in the draft standard? YES

Presentation

Silde 24