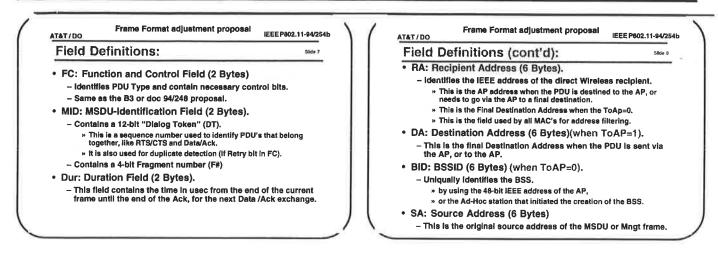
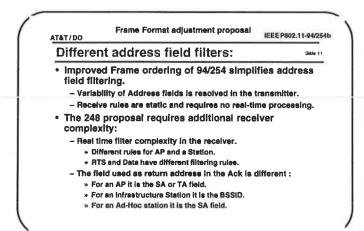
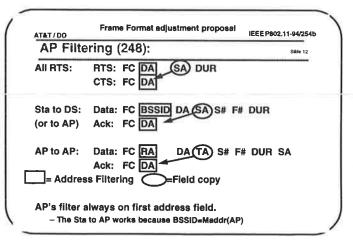

Nov 94



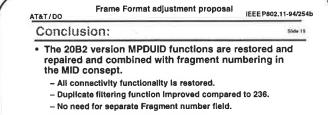
Proposal


Nov 94


IEEE P802.11-94/254b

Result	ing Frame Header Fo	ormats:	Slide 9
RTS:	FC, MID, Dur, RA		= 12
CTS:	FC, MID, Dur		= 6
Data:	FC, MID, Dur, RA, BID)/DA, SA	= 24
Ack:	FC, MID, Dur		= 6
Mngt:	FC, MID, Dur, RA, BID)/DA, SA	= 24
Poll:	FC, MID, Dur, RA, SID)	= 14
RTS + CT Data + Ac - All H	compared to Doc 94/236 an S + Data + Ack = 48 Bytes tk = 30 Bytes adder are sizes, mod 2 Bytes. and Management Header size are	(was 60 -2 (was 34 -1	'

T&T / DO	Frame Format adjustment proposal	IEEE P802.11-94/254
Resulti	ng changes compared to	20B3: Side 10
 MID fund 	ctionality restored.	
avallat	restore the AP-to-AP functionality and oth ble in 20B2, but was inadvertently lost in the	2083.
	ontains a 12 bit random number rather the ates need for 6 Byte address fields in RTS	
	ce# and Fragment# fields eliminate lows Dupilcate detection, and contains th	
	Filtering and Duration fields alwa sition in Header.	ys on fixed
 Reduced and prod 	d / Simplified address comparison cessing	requirements
- BSSID	filtering only needed on BC/MC frames.	
 Header I 	lengths have been considerably de	ecreased.


Proposal

Nov 94

IEEE P802.11-94/254b

Ctation C	Itarian (040).	Side 13
Station	iltering (248):	Salte 1:
AII RTS:	RTS: FC DA SA	DUR
	CTS: FC DA	
DS to Sta:	Data: FC SSID DA	SA S# F# DUR
	Ack: FC DA	
AP to Sta:	Data: FC BSSID DA	SA S# F# DUR
	Ack: FC DA	=AP address
Sta to Sta:	Data: FC BSSID DA	SA S# F# DUR
_	Ack: FC DA	
= Address	Filtering -Field	сору
Stations filt	r depending on type.	
	d for Ack address de	oonde op From bit

AT&T / DO	Frame Format adjustment proposal	IEEE P802.11-94/254
94/254 Fi	Itering:	Slide 14
AII RTS:	RTS: FC MID DUR RA	
	CTS: FC MID DUR	
Sta to Sta:	Data: FC MID DUR RA BID	SA
	Ack: FC MID DUR	
Sta to AP:	Data: FC MID DUR RA DA	SA
	Ack: FC MID DUR	
AP to Sta:	Data: FC MID DUR RA BID	SA
	Ack: FC MID DUR	
AP to AP:	Data: FC MID DUR RA DA	SA
	Ack: FC MID DUR	20
= Address	Filtering 🔵=Field copy 📃	= Matching
Very consis	stent filtering independent of AP	/Sta or type.

- · All other 236 changes are adopted.
- Frame format field sequence is adapted for consistent filtering implementations.
 - No unique formats needed to support all connectivity cases.

ATAT/DO Induit format adjustment proposal lieEEPeo Where are we? Connectivity problems in 236 are recognised and considered valid. - WDS support - All Station to Station cases.

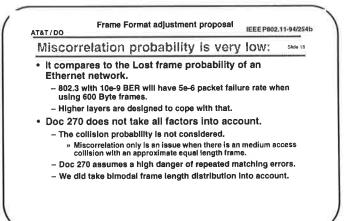
Frame Format adjustment proposal

IEEE P802.11-94/254b

Slide 16

- There are two proposals that try to correct the 236/20B3 flaws.
- Mechanisms proposed are different. - Differences In WDS support mechanism. » A separate Frame format with 6 more Bytes is suggested in 248a.
- Difference in implementation complexity.
 » especially filtering differences.
- Difference in Frame overhead.

Frame Format adjustment proposal IEEE P802.11-94/254b

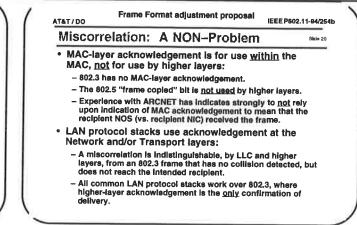

How does this compare with 248: 586-17

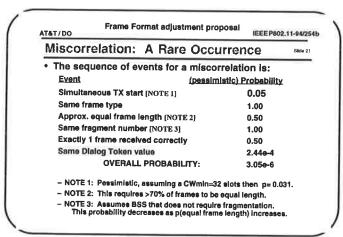
Both proposals offer the same functionality.

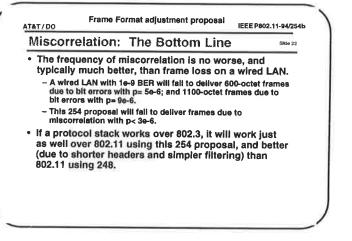
• The main difference is:

AT&T/DO

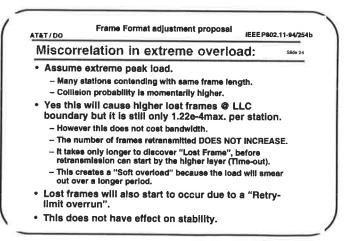
- Garanteed uniqueness versus acceptable failure mode.
- High overhead versus Low overhead.
- Differences in real time filtering complexity.
- The 248 proposal can be improved to reduce the field order to ease filtering.
 - This does not solve the separate WDS frame format, unless an extra address field is added to every frame for uniformity.


Proposal


Nov 94


Frame Format adjustment Proposal

IEEE P802.11-94/254b


Benefit Summary	Silde 1:
254	248
Supports WDS	Supports WDS
Uniform header lengths	WDS headers have 6 octets inserted and removed enroute
Simpler filtering than 20b3	Same filtering as 20b3
Lower overhead than 20b3 with RTS: 48 octets vs. 60 no RTS: 30 octets vs. 34	Same overhead as 20b3 except +6 octets for WDS
Risk of miscorrelation 1 frame in 3e5 (under rather pessimistic assumptions)	No risk of miscorrelation

Fasta and a second second	
Extreme case analyses	Silde 23
 The sequence of events for a 	miscorrelation is:
Event	(Very pesaimistic) Probability
High Simultaneous IX start (NOT)	B 1] 0.25
Same frame type	1.00
Approx. equal frame length	1.00
Same fragment number [NOTE 3]	1.00
Min 1 frame received correctly	0.50
Same Dialog Token value[Note 4]	.97e-3
OVERALL PROBABIL	ITY: 1.22e-4
- NOTE 1: This is an extreme load ce	se using exponential backoff.
– NOTE 3: Assumes BSS that does r	
– NOTE 4: Assume that 4 responses	are generated (hardly possible).

Proposal

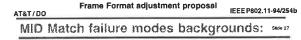
Slide 25

Nov 94

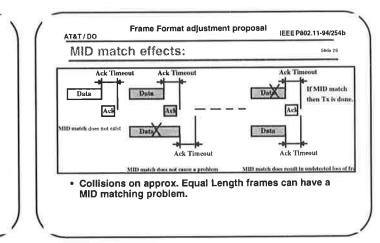
IEEE P802.11-94/254b

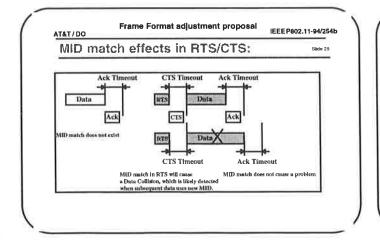
IEEE P602.11-94/254b

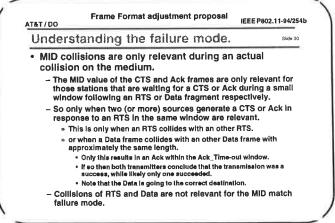
Slide 26


Conclusion:

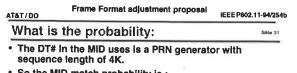
- The miscorrelation failure mode does not affect stability even in the extreme case.
 – The number of frames retransmitted DOES NOT INCREASE.
- In those cases it is possible that the "Max-retry limit" failure will be higher then the miscorrelation error.
- It does compare very well with a wired "lost frame" failures.
- We should adopt the most efficient implementation. - and reduce complexity at the same time.

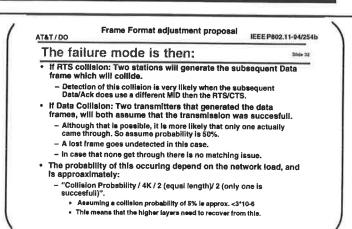

Frame Format adjustment proposal


Motion:


 Move: To adopt the Frame Formats and associated mechanisms as defined in 94/254.

- These slides show more extensively the failure mode analyses.
- This assumes:
 - Unique sequences due to station dependent seeds.
 - RTS and Data will have different MID's.



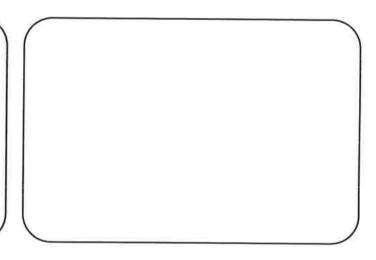

Nov 94

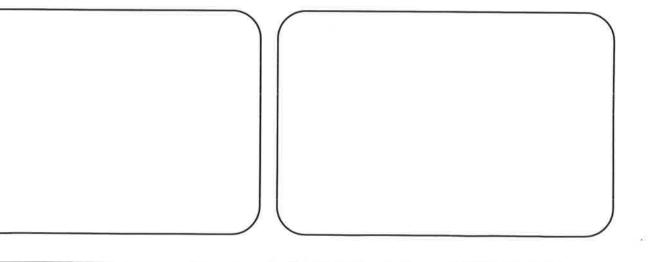
Frame Format adjustment Proposal

IEEE P802.11-94/254b

- So the MID match probability is : – "Collision Probability / 4K"
- This does not take into account the frame length distribution, which will be application dependent.
- Lets assume a File transfer environment:
 - Many small length frames with a number of lengths <64 Bytes. These are higher layer dependent.
 - Most frames >64 Bytes will be of the maximum size.
 - There will be occasional frames with lengths in between.
 - Assume that in a busy network the Long/Short frame ratio is 70%. » So the probability that two equal length frames collide is less then .5

Frame Format adjustment proposal AT&T/DO IEEE P802.11-94/254b Slide 33


Is this acceptable:


Please note that this is NOT the same as the "undetected error rate", because that concerns with the probability that a received frame is not flagged to be in error, while it is.

 The resulting error rate of less then approx. 3 out of 10^6 frames is lost at the MAC level is considered very acceptable, in a "Best effort" service scenario.

- Conclusion:
 - The MID non-uniqueness is no issue, and does not reduce the functionality.

- No special provisions are needed to resolve its effects.

Proposal