Proposed Text Changes for Clause 12

1. 2.4 GHz ISM Band Direct Sequence Spread Spectrum Physical Layer Specification

1.1. Introduction

This section describes the physical layer for the Direct Sequence Spread Spectrum (DSSS) system. The Radio Frequency LAN system is initially aimed for the 2.4 GHz ISM band as provided in the USA according to Document FCC 15.247 and in Europe by ETS 300-328. Other countries have similar regulations.

The DSSS system provides a wireless LAN with both a 1 Mb/s and a 2 Mb/s data payload communication capability. According to the FCC regulations_x, <u>t</u>The DSSS system must provide a processing gain of at least 10 dB. This is accomplished by chipping the baseband signal at 11 MHz with an 11-chip Barker sequence. The DSSS system uses baseband modulations of Differential Binary Phase Shift Keying (DBPSK) and Differential Quadrature Phase Shift Keying (DQPSK) to provide the 1 and 2 Mb/s data rates, respectively.

Key characteristics resulting from spreading of DSSS systems are the low-radiated power per spectral band, robustness against interference, processing gain, and insensitiveness to multipath effects of the channel.

1.1.1.Scope

This section describes the physical layer services provided to the 802.11 wireless LAN MAC by the 2.4 GHz Direct Sequence Spread Spectrum system. The DSSS PHY layer consists of two protocol functions:

- a) A physical layer convergence function which adapts the capabilities of the physical medium dependent system into the Physical Layer service. This function is supported by the Physical Layer Convergence Procedure (PLCP) which defines a method of mapping the 802.11 MAC layer Protocol Data Units (MPDU) into a framing format suitable for sending and receiving user data and management information between two or more stations using the associated physical medium dependent system.
- b) A Physical Medium Dependent (PMD) system whose function defines the characteristics and method of transmitting and receiving data via wireless media between two or more nodes.

Each physical medium dependent sublayer for the DSSS PMD may require the definition of a unique PLCP. If the PMD sublayer already provides the defined Physical Layer services, the physical layer convergence function might be null.

1.1.2.DSSS Physical Layer Functions

The 2.4 GHz DSSS PHY architecture is shown in Figure 12-1. The DSSS physical layer contains three functional entities: the physical medium dependent function, the physical layer convergence function, and the layer management function. Each of these functions is described in detail in the following subsections.

The DSSS Physical Layer service is provided to the Media Access Control through the physical layer service primitives described in Section 9.

Figure 12-1: Protocol Reference Model

1.1.2.1. Physical Layer Convergence Procedure Sublayer

In order to allow the 802.11 MAC to operate with minimum dependence on the PMD sublayer, a physical layer convergence sublayer is defined. This function simplifies the physical layer service interface to the 802.11 MAC services.

1.1.2.2. Physical Medium Dependent Sublayer

The physical medium dependent sublayer provides a means to send and receive data between two or more stations. This section is concerned with the 2.4 GHz ISM bands using Direct Sequence modulation.

1.1.2.3. Physical Layer Management Entity (LME)

The Physical LME performs management of the local Physical Layer Functions in conjunction with the MAC Management entity.

1.1.3.Acronyms

CCA	Clear Channel Assessment
CRC	Cyclic Redundancy Check
DBPSK	Differential Binary Phase Shift Key
DQPSK	Differential Quadrature Phase Shift Key
DSSS	Direct Sequence Spread Spectrum
ED	Energy Detection
FCS	Frame Check Sequence
FER	Frame Error Rate
LME	Layer Management Entity
LSB	Least Significant Bit
MAC	Media Access Control

MIB	Management Information Base
MPDU	MAC Protocol Data Unit
MSB	Most Significant Bit
PHY_SAP	Physical Layer Service Access Point
PLCP	Physical Layer Convergence Procedure
PLME	PHY Layer Management Entity
PMD	Physical Medium Dependent
PMD_SAP	Physical Medium Dependent Service Access Point
PN	Pseudo Noise (PN code sequence)
PPDU	PHY Protocol Data Unit
RSSI	Received Signal Strength Indication
SAP	Service Access Point
SFD	Start Frame Delimiter
SQ	Signal Quality (PN code correlation strength)
TXE	Transmit Enable

1.1.4. Service Specification Method and Notation

The models represented by figures and state diagrams are intended to be illustrations of functions provided. It is important to distinguish between a model and a real implementation. The models are optimized for simplicity and clarity of presentation, the actual method of implementation is left to the discretion of the 802.11 DSSS PHY compliant developer.

The service of a layer or sublayer is a set of capabilities that it offers to a user in the next higher layer (or sublayer). Abstract services are specified here by describing the service primitives and parameters that characterize each service. This definition is independent of any particular implementation.

1.2. DSSS Physical Layer Convergence Procedure Sublayer

1.2.1.Introduction

This section provides a convergence procedure in which MPDUs are converted to and from PPDUs. During transmission, the MPDU is prepended with a PLCP preamble and header to create the PPDU. At the receiver, the PLCP preamble and header are processed to aid in demodulation and delivery of the MPDU.

1.2.2. Physical Layer Convergence Procedure Frame Format

Figure 12-2 shows the format for the PPDU including the PLCP preamble, the PLCP header and the MPDU. The PLCP preamble contains the following fields: synchronization (SYNC) and Start Frame Delimiter (SFD). The PLCP header contains the following fields: 802.11 signaling (SIGNAL), 802.11 service(SERVICE), length(LENGTH), and CCITT CRC-16. Each of these fields shall be described in detail in section 12.2.3.

Figure 12-2: PLCP Frame Format

1.2.3.PLCP Field Definitions

The entire PLCP preamble and header shall be transmitted using the 1 Mb/s DBPSK modulation described in section 12.4.7. All transmitted bits shall be scrambled using the feedthrough scrambler described in section 12.2.4.

1.2.3.1. PLCP Synchronization (SYNC)

The synchronization field shall consist of 128 bits of scrambled 1_bits. This field is provided so that the receiver can perform the necessary operations for synchronization.

1.2.3.2. PLCP Start Frame Delimiter (SFD)

The Start Frame Delimiter is provided to indicate the start of PHY dependent parameters within the PLCP preamble. The SFD is a 16 bit field, hF3A0 (MSB to LSB). The LSB shall be transmitted first in time.

1.2.3.3. PLCP 802.11 Signal Field (SIGNAL)

The 8 bit 802.11 signal field indicates to the PHY the modulation which will be used for transmission (and reception) of the MPDU. The data rate is equal to the Signal Field value multiplied by 100Kb/s. The DSSS PHY currently supports two mandatory modulation services given by the following 8 bit words, where the LSB is transmitted first in time:

- a) h0A (MSB to LSB) for 1 Mb/s DBPSK
- b) h14 (MSB to LSB) for 2 Mb/s DQPSK

The DSSS PHY rate change capability is described in section 12.2.5. This field is protected by the CCITT CRC-16 frame check sequence described in section 12.2.3.6.

1.2.3.4. PLCP 802.11 Service Field (SERVICE)

The 8 bit 802.11 service field is reserved for future use. The value of h00 signifies 802.11 device compliance. The LSB shall be transmitted first in time. This field is protected by the CCITT CRC-16 frame check sequence described in section 12.2.3.6.

1.2.3.5. PLCP Length Field (LENGTH)

The PLCP length field is an unsigned 16 bit integer which indicates the number of octets (4 to 2¹⁶ as defined by aMPDU_<u>Max_Lngth_1M or aMPDU_Max_Lngth_2Mmaximum</u> [per 10.1.<u>1.2</u>4.23]) to be transmitted in the MPDU. The transmitted value is provided by the LENGTH parameter in the <u>TXVECTOR issued with the</u> PHY_<u>TXSTARTDATA</u>.request primitive described in section 9. The LSB (least significant bit) shall transmitted first in time. This field is protected by the CCITT CRC-16 frame check sequence described in section 12.2.3.6.

1.2.3.6. PLCP CRC Field (CCITT CRC-16)

The 802.11 SIGNAL, 802.11 SERVICE, and LENGTH fields shall be protected with a CCITT CRC-16 FCS (frame check sequence). The CCITT CRC-16 FCS is the ones complement of the remainder generated by the modulo 2 division of the protected PLCP fields by the polynomial:

 $x^{16} + x^{12} + x^{5} + 1$

The protected bits will be processed in transmit order. All FCS calculations shall be made prior to data scrambling.

As an example, the SIGNAL, SERVICE, and LENGTH fields for a DBPSK signal with a packet length of 192 bytes would be given by the following:

0101 0000 0000 0000 0000 0011 0000 0000 (left most bit transmitted first in time)

The ones complement FCS for these protected PLCP preamble bits would be the following:

0101 1011 0101 0111 (left most bit transmitted first in time)

Figure 12-3 depicts this example.

gure 12-3: CCITT CRC-16 implementation

An illustrative example of the CCITT CRC-16 FCS using the above information follows:

Data	CR	C Registers	
	MSB	LSB	
	1111111	111111111	; Initialize Preset to 1's
0	1110111	111011111	
1	1101111	110111110	
0	1010111	101011101	
1	0101111	010111010	
0	1011110	101110100	
0	0110101	011001001	
0	1101010	110010010	
0	1011101	100000101	
0	0110011	000101011	

0	1100110001010110
0	1000100010001101
0	000000100111011
0	000001001110110
0	0000010011101100
0	0000100111011000
Õ	0001001110110000
õ	0010011101100000
õ	010011101100000
ñ	100111011000000
0	1001110110000000
0	0010101100100001
0	0101011001000010
0	1010110010000100
1	0101100100001000
1	1010001000110001
0	0101010001000011
0	1010100010000110
0	0100000100101101
0	1000001001011010
0	0001010010010101
0	001010010010101010
0	010100100101010100
Ň	10100100101010100
U	101001001010101000
	01011011010101111

; 1's Complement, Result = CRC FCS Parity

1.2.4. PLCP / DS PHY Data Scrambler and Descrambler

The polynomial $G(z) = z^{-7} + z^{-4} + 1$ shall be used to scramble ALL bits transmitted by the DSSS PHY. The feedthrough configuration of the scrambler is self initializing. No prior initialization of the scrambler is required for receive processing. Figures 12-3 and 12-4 show typical implementations of the data scrambler and descrambler. Other implementations are possible.

The scrambler should be initialized to any state except all ones when transmitting.

Descrambler Polynomial; G(z)=Z -7 +Z -4 +1

1.2.5. PLCP Data Modulation and Modulation Rate Change

The PLCP preamble shall be transmitted using the 1 Mb/s DBPSK modulation. The 802.11 SIGNAL field will indicate the modulation which will be used to transmit the MPDU. The transmitter and receiver will initiate the modulation indicated by the 802.11SIGNAL field starting with the first symbol (1bit for DBPSK or 2 bits for DQPSK) of the MPDU. The MPDU transmission rate is set by the <u>SIGNALRATE</u> parameter in <u>the TXVECTOR</u> issued with the PHY_TXSTART.request primitive described in section 9.PHY_DATA.request primitive.

1.2.6. PLCP Transmit Procedure

The PLCP transmit procedure is shown in Figure 12-5.

In order to transmit data, PHY_TXSTART.request must be enabled so that the PHY entity is in the transmit state. Further, the PHY must be set to operate at the appropriate CHNL_ID through Station Management via the PLME. Other transmit parameters such as RATE, TX antenna, and TX power are set via the PHY-SAP.

Based on the status of CCA indicated by PHY_CCA.indicate, the MAC will assess that the channel is clear. A clear channel is indicated by PHY_<u>CCA</u>DATA.indicate(<u>IDLEEND OF ACTIVITY</u>). If the channel is clear, transmission of the MPDU is initiated by issuing the PHY_<u>TXSTARTDATA</u>.request (<u>TXVECTORSTARTOFACTIVITY</u>) primitive. The TXVECTOR elements for the

PHY_<u>TXSTART</u>DATA.request(<u>START_OF_ACTIVITY</u>) are the PLCP header parameters SIGNAL, SERVICE and LENGTH and the PMD parameters of ANT_STATE, <u>CHNL_ID</u>, and TXPWR_LEVEL.

The PLCP will issue PHY_ANTSEL, PHY_RATE, PHY_CHANNEL, and PHY_TXPWRLVL primitives to configure the PHY. The PLCP will then issue a PHY_TXSTART.request and the PHY entity will immediately initiate data scrambling and transmission of the PLCP preamble based on the parameters passed in the PHY_TXSTARTDATA.request primitive. The time required for TX power on ramp described in section 12.4.7 is included in the PLCP synchronization field. Once the PLCP preamble transmission is completed, data is exchanged between the MAC and the PHY by a series of PHY_DATA.request(DATA, octet) primitives issued by the MAC. The modulation rate change, if any, is initiated with the first data symbol of the MPDU as described in section 12.2.5. The PHY proceeds with MPDU transmission through a series of data octet transfers from the MAC. At the PMD layer, the data octets are sent in LSB to MSB order and presented to the PHY layer through PHY_DATA.request(END_OF_DATA). PHY_TXSTART is disabled by with the end of activity and the issuance of the PHY_TXEND.request. NormalThe termination occurs after the transmission of the final bit of the last MPDU octet according to . The number of octets transmitted must equal-the number supplied in the DSSS PHY preamble LENGTH_field. The packet transmission is completed and the PHY entity enters the receive state (i.e. PHY_TXSTART is disabled). It is recommended that chipping continue during power down.

Figure 12-5: PLCP Transmit Procedure

1.2.6.1. Transmit State Machine

A typical state machine implementation of the PLCP transmit procedure is provided in Figure 12-6.

Figure 12-6: PLCP Transmit State Machine

1.2.7. PLCP Receive Procedure

The PLCP receive procedure is shown in Figure 12-7.

In order to receive data, PHY_TXSTART, request must be disabled so that the PHY entity is in the receive state. Further, the PHY must be set to operate at the appropriate CHNL_ID through Station Management via the PLME, the PHY is set to the appropriate CHNL_ID and the CCA method is chosenLayer Management Service Access Point (LMSAP). Other receive parameters such as RSSI, SQ (signal quality), and indicated RATE may also be accessed via the PHY-SAPLMSAP.

Upon receiving the transmitted energy, <u>according to the selected CCA mode</u>, the PHY_ED will be enabled (according to section 12.4.8.4) as the RSSI strength reaches the ED_THRESHOLD_and/or PHY_CS will be enabled <u>after code lock is established</u>. If the transmitted energy is associated with a DSSS PHY PLCP and if the PHY entity acquires PN code lock based on the SQ_THRESHOLD, then PHY_CS will be enabled. Based on the CCA (see <u>section 12.4.8.4</u>)_tThese conditions <u>arecan</u> be used to indicate activity to the MAC via PHY_CCA.indicate <u>according to section 12.4.8.4</u>. PHY_CCA-DATA.indicate(<u>BUSYSTART_OF_ACTIVITY</u>) is issued for energy detection or code lock prior to correct reception of the PLCP frame. The PMD primitives PHY_SQ and PHY_RSSI are issued to update the-RSSI and SQ parameters reported to the MAC.

<u>After PHY_CCA.indicate is issued</u>, Fthe PHY entity begins searching for the SFD field. Once the SFD field is detected, CCITT CRC-16 processing is initiated and the PLCP 802.11 SIGNAL, 802.11 SERVICE, and LENGTH fields are received. The CCITT CRC-16 FCS will be processed. If the CCITT CRC-16 FCS check fails, the PHY receiver will return to the RX* Idle state as depicted in Figure 12-8. Should the status of CCA return to the IDLE state code lock be lost-during reception prior to completion of the full PLCPMPDU processing, the PHY receiver will return to the RX Idle state.as indicated by the LENGTH field, the PLCP will issue a PHY-DATA.indicate(END-OF-DATA, carrier_lost).

If the PLCP headerpreamble reception is successful, a

PHY_<u>RXSTARTDATA</u>.indicate(<u>RXVECTORSTART_OF_DATA</u>) will be issued. The RXVECTOR associated with this primitive includes the SIGNAL field, the SERVICE field, the LENGTH field, the antenna used for receive, PHY RSSI, and PHY SQ.

The received MPDU bits are assembled into octets and presented to the MAC using a series of PHY_DATA.indicate(DATA, octet) primitive exchanges. The rate change indicated in the 802.11 SIGNAL field is initiated with the first symbol of the MPDU as described in section 12.2.5. The PHY proceeds with MPDU reception. After the reception of the final bit of the last MPDU octet indicated by the PLCP preamble LENGTH field, the receiver is returned to the RX Idle state as shown in Figure 12-8. A

PHY <u>RXEND</u>DATA.indicate(END-OF-DATA, <u>N</u>no_Eerror) primitive is issued. A

PHY_<u>CCADATA</u>.indicate(<u>IDLEEND-OF-ACTIVITY</u>) primitive is issued following a change in PHY_CS <u>and/or</u> PHY_ED_according to the selected CCA method.

In the event that a change in PHY_CS or PHY_ED would cause the status of CCA to return to the IDLE state before the complete reception of the MPDU as indicated by the PLCP LENGTH field, Should code lock / synchronization be lost prior to the end of the MPDU as indicated in the PLCP LENGTH field, the error condition PHY_RXENDDATA.indicate(END_OF_DATA, carrier_lost) will be reported to the MAC.<u>The DSSS PHY shall</u> ensure that the CCA will indicate a busy medium for the intended duration of the transmitted packet.

1.2.7.1. Receive State Machine

A typical state machine implementation of the PLCP receivetransmit procedure is provided in Figure 12-8.

Figure 12-8: PLCP Receive State Machine

1.3. DSSS Physical Layer Management Entity (PLME)

1.3.1. PLME_SAP Sublayer Management primitives

The following message may be sent between the PHY sublayer entities and intra layer of higher Layer Management Entities (LME).

Primitive	Request	Indicate	Confirm	Response
PLME_CCA_MODE	X			
PLME_CHNL_ID	X			
PLME_DIVERSITY	X			
PLME_DOZE	X			
PLME_SLEEP	X			
PLME_RESET	X		X	

Table 12-1: PLME_SAP Sublayer Management Primitives

1.3.2. PLME_SAP Management Service Primitive Parameters

There are currently no parameters associated with the PLME_SAP service primitives. Table 12-2 shows the parameters used by the PLME_SAP primitives.

Parameter	Associated Primitive	Value	
CCA_MODE	PLME_CCA_MODE.request	ED_Only, CS_Only, ED+CS	
ED_THRESHOLD	PLME_CCA_MODE.request	ED Threshold if required for	
		CCA operation	
CHNL_ID	PLME_CHNL_ID.request	<u>1-11 for FCC, 3-11 for ETSI, 12</u>	
		<u>for Japan</u>	
ANT_LIST	PLME_DIVERSITY_request	list of valid antennas to search	
DIV_MODE	PLME_DIVERSITY.request	Enabled or Disabled	
Table 12-2: PLME SAP Primitive Parameters			

1.3.3. PLME_SAP Detailed Service Specification

1.3.3.1._-PLME_RESET.request

Function

This primitive is a request by the LME to reset the PHY. The PHY is always reset to the receive state to avoid accidental data transmission.

Semantics of the Service Primitive

The primitive shall provide the following parameters:

PLME_RESET.request

There are no parameters associated with this primitive.

When Generated

This primitive is generated at any time to reset the PHY.

Effect of Receipt

Receipt of this primitive by the PHY sublayer will cause the PHY entity to reset both the transmit and the receive state machines and place the PHY into the receive state.

1.3.3.2. PLME_CCA_MODE.request

Function

This primitive is a request by the LME to establish a particular CCA mode operation for the PHY.

Semantics of the Service Primitive

The primitive shall provide the following parameters:

PLME CCA MODE.request(CCA MODE, ED THRESHOLD)

CCA_MODE shall indicate one of three CCA operational modes of energy detect only, carrier sense only, or a combination of energy detect and carrier sense.

When Generated

This primitive is generated at any time to change the CCA mode used by the PHY.

Effect of Receipt

<u>Receipt of this primitive by the PHY sublayer will cause the PHY entity to use the specified CCA_MODE with the ED Threshold set as appropriate for the mode of operation.</u>

1.3.3.3. PLME_CHNL_ID.request

Function

This primitive is a request by the LME to set the operational frequency of the PHY.

Semantics of the Service Primitive

The primitive shall provide the following parameters:

PLME_CHNL_ID.request(CHNL_ID)

The CHNL ID parameter will be 1-11 for FCC, 3-11 for ETSI, or 12 for Japan.

When Generated

This primitive is generated at any time to alter the frequency of operation of the PHY.

Effect of Receipt

Receipt of this primitive by the PHY sublayer will cause the PHY entity to change the frequency of operation according to the CHNL_ID parameter.

1.3.3.4. PLME_DOZE.request

Function

This primitive is a request by the LME to place the PHY into the DOZE state.

Semantics of the Service Primitive

The primitive shall provide the following parameters:

PLME_DOZE.request

There are no parameters associated with this primitive.

When Generated

This primitive is generated at any time to place the PHY into the DOZE state.

Effect of Receipt

Receipt of this primitive by the PHY sublayer will cause the PHY entity to place itself into the DOZE state.

1.3.3.5. PLME_SLEEP.request

Function

This primitive is a request by the LME to place the PHY into a SLEEP state.

Semantics of the Service Primitive

The primitive shall provide the following parameters:

PLME_SLEEP.request

There are no parameters associated with this primitive.

When Generated

This primitive is generated at any time to place the PHY into the SLEEP state.

Effect of Receipt

Receipt of this primitive by the PHY sublayer will cause the PHY entity to place itself into the SLEEP state.

1.3.3.6. PLME_DIVERSITY.request

Function

This primitive is a request by the LME to enable or disable the PHY from using antenna diversity.

Semantics of the Service Primitive

The primitive shall provide the following parameters:

PLME_DIVERSITY.request(DIV_MODE,ANT_LIST)

DIV_MODE will cause the diversity function to be enabled or disabled. ANT_LIST will contain the antenna numbers which are valid to search.

When Generated

This primitive is generated at any time to change the operating mode of antenna diversity.

Effect of Receipt

<u>Receipt of this primitive by the PHY sublayer will cause the PHY entity to change the operating state of the antenna</u> <u>diversity function according to the parameters DIV_MODE and ANT_LIST.</u>

1.3.3.7. PLME_RESET.confirm

Function

This primitive is a confirmation of request by the LME to reset the PHY.

Semantics of the Service Primitive

The primitive shall-provide the following parameters:

PLME_RESET.confirm

There are no parameters associated with this primitive.

When Generated

This primitive is generated as a response to the PLME_RESET request once the PHY has successfully completed the reset.

The effect of the receipt of this primitive by the LME is unspecified.

1.3.4. DSSS Physical Layer Management Information Base

All DSSS Physical Layer Management Information Base variables are defined in Section 10 with specific values defined in <u>T</u> table 12-32.

Managed Object	Default Value / Range	Operational Semantics
agPhyOneration grn		Schlanics
aPHV Type	DSSS-2 4 (02)	Static
aReg Domains Suprt	implementation dependent	Static
aCurrent Reg Domain	implementation dependent	Static
aSlot Time		Static
aCCA Asmnt Time	< 15 usec	Static
aRxTx Turnaround Time	< 5 usec	Static
aTx PLCP Delay	implementation dependent	Static
aRxTx Switch Time	< 5 usec	Static
aTxRamp On Time	implementation dependent	Static
aTx RF Delay	implementation dependent	Static
aSIFS Time	10 usec	Static
aRx RF Delay	implementation dependent	Static
aRx PLCP Delay	implementation dependent	Static
aMAC prc Delav	not applicable	n/a
aTxRamp Off Time	implementation dependent	Static
agPhyRate grp		
aSuprt Data Rates	00.01.02	Static
aMPDU Max Lngth_1M	$4 \le x \le (2^{16} - 1)$	Static
aMPDU Max Lngth 2M	$4 \le x \le (2^{16} - 1)$	Static
agPhyAntenna_grp		
aSuprt_Tx_Antennas	implementation dependent	Static
aCurrent Tx Antenna	implementation dependent	Dynamic
aSuprt_Rx_Antennas	implementation dependent	Static
aDiversity_Suprt	implementation dependent	Static
aDiversity_Slct_Rx	implementation dependent	Dynamic
agPhyTxPwr grp		
aNbr Suprtd Pwr Lvls	implementation dependent	Static
aTx Pwr Lvll	implementation dependent	Static
aTx Pwr Lvl2	implementation dependent	Static
aTx Pwr Lvl3	implementation dependent	Static
aTx_Pwr_Lvl4	implementation dependent	Static
aTx_Pwr_Lvl5	implementation dependent	Static
aTx_Pwr_Lvl6	implementation dependent	Static
aTx_Pwr_Lvl7	implementation dependent	Static
aTx_Pwr_Lvl8	implementation dependent	Static
aCurrent_Tx_PwrLvl	implementation dependent	<u>D</u> dynamic
agPhyStatus_grp		
aSynthesizer_Locked	implementation dependent not applicable	<u>Dynamicn/a</u>
		Å.
agPhyDSSS grp		

.

type1, type2 implementation dependent	Static
implementation dependent	Dynamic
implementation dependent	<u>Static</u>
implementation dependent	<u>Dynamic</u>
implementation dependent	<u>Dynamic</u>
implementation dependent	Static
implementation dependent	Static
	type1, type2 implementation dependent implementation dependent implementation dependent implementation dependent implementation dependent implementation dependent

able 12- <u>3</u> 2:	MIB	Variable	Parameters
----------------------	-----	----------	------------

1.4. DSSS Physical Medium Dependent Sublayer

1.4.1. Scope and Field of Application

This section describes the PMD services provided to the PLCP for the DSSS Physical Layer. Also defined in this section are the functional, electrical, and RF characteristics required for interoperability of implementations conforming to this specification. The relationship of this specification to the entire DSSS PHY Layer is shown in Figure 12-9.

Figure 12-9 PMD Layer Reference Model

1.4.2. Overview of Service

The DSSS Physical Medium Dependent Sublayer accepts Physical Layer Convergence Procedure sublayer service primitives and provides the actual means by which data is transmitted or received from the media. The combined function of DSSS PMD sublayer primitives and parameters for the receive function results in a data stream, timing information, and associated received signal parameters being delivered to the PLCP sublayer. A similar functionality is provided for data transmission.

1.4.3. Overview of Interactions

The primitives associated with the 802.11 PLCP sublayer to the DSSS PMD falls into two basic categories:

- a) Service primitives that support PLCP peer-to-peer interactions.
- b) Service primitives that have local significance and support sublayer-to-sublayer interactions.

1.4.4. Basic Service and Options

All of the service primitives described in this section are considered mandatory unless otherwise specified.

1.4.4.1. PMD_SAP Peer-to-Peer Service Primitives

The following table indicates the primitives for peer-to-peer interactions.

Primitive	Request	Indicate	Confirm	Response
PHY_RXSTART		X		
PHY_RXEND		X		
PHY_CCA		X		
PHY_TXSTART	X			
PHY_TXEND	X			
PHY_DATA	X	X		

Table 12-43: PMD_SAP Peer-to-Peer Service Primitives

1.4.4.2. PMD_SAP Sublayer-to-Sublayer Service Primitives

Primitive	Request	Indicate	Confirm	Response
PHY_TXSTART	Х			
PHY_TXEND	X			
PHY_ANTSEL	X	Х		
PHY_DIVERSITY	X			
PHY_TXPWRLVL	X			
PHY_CHANNEL	X			
PHY_RATE	X	X		
PHY_RSSIPHY_RSSI		XX		
PHY_SQ		X		
PHY_CS		Х		
PHY_ED	X	X		
PHY_CCA		X		

Table 12-54: PMD_SAP Sublayer-to-Sublayer Service Primitives

Parameter	Associate Primitive	Value
DATA	PHY_DATA.request PHY_DATA.indicate	octet value: 00-FFh
TXVECTOR	PHY_DATA.request	a set of parameters
RXVECTOR	PHY_DATA.indicate	a set of parameters
TXD_UNIT	PHY_DATA.request	One(1), Zero(0): DBPSK di bit combinations 00,01,11,10: DQPSK
RXD_UNIT	PHY_DATA.indicate	One(1), Zero(0): DBPSK di bit combinations 00,01,11,10: DQPSK
RF_STATE	PHY_TXE.request	Receive, Transmit
ANT_STATE	PHY_ANTSEL.indicate PHY_ANTSEL.request	1 to 256
DIV_CONTROL	PHY_DIVERSITY.request	On, Off
TXPWR_LEVEL	PHY_TXPWRLVL	0,1,2,3 (max of 4 levels)
CHNL_ID	PHY_CHANNEL.request	1 to 12
RATE	PHY_RATE.indicate PHY_RATE.request	h0A for 1 Mb/s DBPSK h14 for 2 Mb/s DQPSK
RSSI	PHY_RSSI.indicate	0-7 <u>8</u> bits of RSSI
SQ	PHY_SQ.indicate	0- <u>8</u> 7 bits of Signal Quality

1.4.4.3. PMD_SAP Service Primitive Parameters

Table 12-65: List of Parameters for the PMD Primitives

1.4.5. PMD_SAP Detailed Service Specification

The following section describes the services provided by each PMD primitive.

1.4.5.1. PHY_DATA.request

Function

This primitive defines the transfer of data from the PLCP sublayer to the PMD entity.

Semantic of the Service Primitive

The primitive shall provide the following parameters:

PHY_DATA.request(TXD_UNIT)

The TXD_UNIT parameter takes on the value of either ONE(1) or ZERO(0) for DBPSK modulation or the di-bit combination 00, 01, 11, or 10 for DQPSK modulation. This parameter represents a single block of data which in turn is used by the PHY to be differentially encoded into a DBPSK or DQPSK transmitted symbol. The symbol itself is spread by the PN code prior to transmission.

When Generated

This primitive is generated by the PLCP sublayer to request transmission of a symbol. The data clock for this primitive is supplied by PMD layer based on the PN code repetition.

Effect of Receipt

The PMD performs the differential encoding, PN code modulation, and transmission of the data.

1.4.5.2. PHY_DATA.indicate

Function

This primitive defines the transfer of data from the PMD entity to the PLCP sublayer.

Semantic of the Service Primitive

The primitive shall provide the following parameters:

PHY_DATA.indicate(RXD_UNIT)

The RXD_UNIT parameter takes on the value of ONE(1) or ZERO(0) for DBPSK modulation or as the di-bit 00, 01, 11, or 10 for DQPSK modulation. This parameter represents a single symbol which has been demodulated by the PMD entity.

When Generated

This primitive generated by the PMD entity, forwards received data to the PLCP sublayer. The data clock for this primitive is supplied by PMD layer based on the PN code repetition.

Effect of Receipt

The PLCP sublayer either interprets the bit or bits which are recovered as part of the PLCP convergence procedure or pass the data to the MAC layer as part of the MPDU.

1.4.5.3. PHY_TXSTART.request

Function

This primitive, generated by the PHY PLCP sublayer, initiates PPDU transmission by the PMD layer.

Semantic of the Service Primitive

The primitive shall provide the following parameters:

PHY_TXSTART.request

When Generated

This primitive is generated by the PLCP sublayer to initiate the PMD layer transmission of the PPDU. The PHY_DATA.request primitive must be provided to the PLCP sublayer prior to issuing the PHY_TXSTART command.

Effect of Receipt

PHY_TXSTART initiates transmission of a PPDU by the PMD sublayer.

1.4.5.4. PHY_TXEND.request

Function

This primitive, generated by the PHY PLCP sublayer, ends PPDU transmission by the PMD layer.

Semantic of the Service Primitive

The primitive shall provide the following parameters:

PHY_TXEND.request

When Generated

This primitive is generated by the PLCP sublayer to terminate the PMD layer transmission of the PPDU.

Effect of Receipt

PHY_TXEND terminates transmission of a PPDU by the PMD sublayer.

1.4.5.5. PHY_ANTSEL.request

Function

This primitive, generated by the PHY PLCP sublayer, selects the antenna used by the PHY for transmission or reception (when diversity is disabled).

Semantic of the Service Primitive

The primitive shall provide the following parameters:

PHY_ANTSEL.request(ANT_STATE)

ANT_STATE selects which of the available antennas should be used for transmit. The number of available antennas is determined from the MIB table by the PHY ??? parameter aSuprt Rx Antennass NO ANT.

When Generated

This primitive is generated by the PLCP sublayer to select a specific antenna for transmission (or reception when diversity is disabled).

Effect of Receipt

PHY_ANTSEL immediately selects the antenna specified by ANT_STATE.

1.4.5.6. PHY_ANTSEL.indicate

Function

This primitive, generated by the PHY PLCP sublayer, reports the antenna used by the PHY for reception of the most recent packet.

Semantic of the Service Primitive

The primitive shall provide the following parameters:

PHY_ANTSEL.indicate(ANT_STATE)

ANT_STATE reports which of the available antennas was used for reception of the most recent packet.

When Generated

This primitive is generated by the PLCP sublayer to report the antenna used for the most recent packet reception.

Effect of Receipt

PHY_ANTSEL immediately reports the antenna specified by ANT_STATE.

1.4.5.7. PHY_DIVERSITY.request

Function

This primitive, generated by the PHY PLCP sublayer, selects whether antenna diversity is enabled or disabled during reception.

Semantic of the Service Primitive

The primitive shall provide the following parameters:

PHY_DIVERSITY.request(DIV_CONTROL)

DIV_CONTROL selects whether the diversity function is enabled or not.

When Generated

This primitive is generated by the PLCP sublayer to change the operating state of the receive state machine to select a specific antenna for reception or to allow diversity function.

Effect of Receipt

PHY_DIVERSITY immediately alters the receive state machine to operate according to the DIV_CONTROL parameter.

1.4.5.8. PHY_TXPWRLVL.request

Function

This primitive, generated by the PHY PLCP sublayer, selects the power level used by the PHY for transmission.

Semantic of the Service Primitive

The primitive shall provide the following parameters:

PHY_TXPWRLVL.request(TXPWR_LEVEL)

TXPWR_LEVEL selects which of the optional transmit power levels should be used for the current packet transmission. The number of available power levels is determined by the MIB parameter NO_TXPWRLVLS. Section 12.4.7.3 provides further information on the optional DSSS PHY power level control capabilities.

When Generated

This primitive is generated by the PLCP sublayer to select a specific transmit power. This primitive is applied prior to setting PHY_TXSTART into the transmit state.

Effect of Receipt

PHY_TXPWRLVL immediately sets the transmit power level given by TXPWR LEVEL.

1.4.5.9. PHY_CHANNEL.request

Function

This primitive, generated by the PHY PLCP sublayer, selects the channel frequency which will be used by the DSSS PHY for transmission or reception.

Semantics of the Service Primitive

The primitive shall provide the following parameters:

PHY_CHANNEL.request(CHNL_ID)

CHNL_ID selects which of the DSSS PHY channel frequencies will be used for transmission or reception. Section 12.4.6.2 provides further information on the DSSS PHY channel plan.

When Generated

This primitive is generated by the PLCP sublayer to change or set the current DSSS PHY channel.

Effect of Receipt

The receipt of PHY_CHANNEL immediately changes the operating channel as set by the CHNL ID parameter.

1.4.5.10. PHY_RATE.request

Function

This primitive, generated by the PHY PLCP sublayer, selects the modulation RATE which will be used by the DSSS PHY for transmission.

Semantic of the Service Primitive

The primitive shall provide the following parameters:

PHY_RATE.request(RATE)

RATE selects which of the DSSS PHY data rates will be used for MPDU transmission. Section 12.4.6.4 provides further information on the DSSS PHY modulation rates. The DSSS PHY rate change capability is fully described in section 12.2.

When Generated

This primitive is generated by the PLCP sublayer to change or set the current DSSS PHY modulation rate used for the MPDU portion of a PPDU.

Effect of Receipt

The receipt of PHY_RATE selects the rate which will be used for all MPDU transmissions. This rate will be used for transmission only. The DSSS PHY will still be capable of receiving all the required DSSS PHY modulation rates.

1.4.5.11. PHY_RATE.indicate

Function

This primitive, generated by the PMD sublayer, indicates which modulation rate was used to receive the MPDU portion of the PPDU. The modulation is indicated in the PLCP preamble 802.11 SIGNALING field.

Semantic of the Service Primitive

The primitive shall provide the following parameters:

PHY_RATE.indicate(RATE)

In receive mode, the RATE parameter informs the PLCP layer which of the DSSS PHY data rates was used to process the MPDU portion of the PPDU. Section 12.4.6.4 provides further information on the DSSS PHY modulation rates. The DSSS PHY rate change capability is fully described in section 12.2.

When Generated

This primitive is generated by the PMD sublayer when the PLCP preamble 802.11 SIGNALING field has been properly detected.

Effect of Receipt

This parameter is provided to the PLCP layer for information only.

1.4.5.12. PHY_RSSI.indicate

Function

This <u>optional primitive</u>, generated by the PMD sublayer, provides to the PLCP and MAC entity the Received Signal Strength.

Semantic of the Service Primitive

The primitive shall provide the following parameters:

PHY_RSSI.indicate(RSSI)

The RSSI is a measure of the RF energy received by the DSSS PHY. RSSI indications of up to 8 bits (256 levels) are supported.

When Generated

This primitive is generated by the PMD when the DSSS PHY is in the receive state. It is continuously available to the PLCP which in turn provides the parameter to the MAC entity.

Effect of Receipt

This parameter is provided to the PLCP layer for information only. The RSSI may be used in conjunction with SQ as part of a Clear Channel Assessment scheme.

1.4.5.13. PHY_SQ.indicate

Function

This <u>optional primitive</u>, generated by the PMD sublayer, provides to the PLCP and MAC entity the Signal Quality of the DSSS PHY PN code correlation. The signal quality is sampled when the DSSS PHY achieves code lock and held until the next code lock acquisition.

Semantic of the Service Primitive

The primitive shall provide the following parameters:

PHY_SQ.indicate(SQ)

The SQ is a measure of the PN code correlation quality received by the DSSS PHY. SQ indications of up to 8 bits (256 levels) are supported.

When Generated

This primitive is generated by the PMD when the DSSS PHY is in the receive state and code lock is achieved. It is continuously available to the PLCP which in turn provides the parameter to the MAC entity.

Effect of Receipt

This parameter is provided to the PLCP layer for information only. The SQ may be used in conjunction with RSSI as part of a Clear Channel Assessment scheme. SQ may also be used as a code lock indication based on the SQ THRESHOLD parameter in section 12.4.5.11.

1.4.5.14. PHY_CS.indicate

This primitive, generated by the PMD, indicates to the PLCP layer that the receiver has acquired (locked) the PN code and data is being demodulated.

Function

This primitive, generated by the PMD, indicates to the PLCP layer that the receiver has acquired (locked) the PN code and data is being demodulated.

Semantic of the Service Primitive

The PHY_CS (Carrier Sense) primitive in conjunction with PHY_ED provide CCA status through the PLCP layer PHY_CCA primitive. PHY_CS indicates a binary status of ENABLED or DISABLED. PHY_CS is ENABLED when the correlator signals quality indicated in PHY_SQ is greater than the CS_THRESHOLD parameter. PHY_CS is DISABLED when the PHY_SQ falls below the correlation threshold.

When Generated

This primitive is generated by the PHY sublayer when the PHY is receiving PPDU and the PN code has been acquired.

Effect of Receipt

Submission: revised section 12

This indicator is provided to the PLCP for forwarding to the MAC entity for information purposes through the PHY_CS indicator. This parameter indicates that the RF media is busy and occupied by a DSSS PHY signal. The DSSS PHY should not be placed into the transmit state when PHY_CS is ENABLED.

1.4.5.15. PHY_ED.indicate

Function

This <u>optional primitive</u>, generated by the PMD, indicates to the PLCP layer that the receiver has detected RF energy indicated by the PHY_RSSI primitive which is above a predefined threshold.

Semantic of the Service Primitive

The PHY_ED (Energy Detect) primitive along with the PHY_SQ provide CCA status at the PLCP layer through the PHY_CCA primitive. PHY_ED indicates a binary status of ENABLED or DISABLED. PHY_ED is ENABLED when the RSSI indicated in PHY_RSSI is greater than the ED_THRESHOLD parameter. PMD_ED is DISABLED when the PHY_RSSI falls below the energy detect threshold.

When Generated

This primitive is generated by the PHY sublayer when the PHY is receiving RF energy from any source which exceeds the ED_THRESHOLD parameter.

Effect of Receipt

This indicator is provided to the PLCP for forwarding to the MAC entity for information purposes through the PHY_ED indicator. This parameter indicates that the RF media may be busy with an RF energy source which is not DSSS PHY compliant. If a DSSS PHY source is being received, the PHY_CS function will be enabled shortly after the PHY_ED function is enabled.

1.4.5.16. PHY_ED.request

Function

This optional primitive, generated by the PHY PLCP, sets the energy detect ED THRESHOLD value.

Semantics of the Service Primitive

The primitive shall provide the following parameters:

PHY_ED.request(ED_THRESHOLD)

ED_THRESHOLD sets the threshold which the RSSI indicated must be greater than in order for PHY_ED to be enabled.

When Generated

This primitive is generated by the PLCP sublayer to change or set the current DSSS PHY energy detect threshold.

Effect of Receipt

The receipt of PHY_ED immediately changes the energy detection threshold as set by the ED_THRESHOLD parameter.

1.4.5.17. PHY_CCA.indicate

Function

This primitive, generated by the PMD, indicates to the PLCP layer that the receiver has detected RF energy which adheres to the CCA algorithm.

Semantic of the Service Primitive

The PHY_CCA primitive provides CCA status at the PLCP layer to the MAC.

When Generated

This primitive is generated by the PHY sublayer when the PHY is receiving RF energy from any source which exceeds the ED_THRESHOLD parameter (PHY_ED is active) and optionally is a valid correlated DS-PHY signal whereby PHY_CS would also be active.

Effect of Receipt

This indicator is provided to the PLCP for forwarding to the MAC entity for information purposes through the PHY_CCA indicator. This parameter indicates that the RF media may be busy with an RF energy source which may or may not be DSSS PHY compliant. If a DSSS PHY source is being received, the PHY_CS function will be enabled shortly after the PHY_ED function is enabled.

1.4.6. PMD Operating Specifications General

The following sections provide general specifications for the DSSS Physical Medium Dependent sublayer. These specifications apply to both the receive and the transmit functions and general operation of a DSSS PHY.

1.4.6.1. Operating Frequency Range

The DSSS PHY shall operate in the frequency range of 2.4 to 2.4835 GHz as allocated by regulatory bodies in the USA and Europe <u>orand</u> in the 2.471 to 2.497 GHz frequency band has been allocated by regulatory authority in Japan.

1.4.6.2. Number of Operating Channels

For the 2.4 to 2.4835 GHz frequency band, 11 channels are specified. The channel center frequencies and CHNL_ID numbers shall be as shown in Table 12.75 for FCC (North America) and ETSI (Europe). For Japan, operation is specified as 2.471 to 2.497 GHz. CHNL_ID 12 is specified for operation in Japan. For the FCC domain all channels 1-11 must be supported and for the ETSI domain channels 3-11 must be supported.

CHNL_ID	FCC Channel Frequencies	ETSI Channel Frequencies	Japan Frequency
1	2412 MHz	N/A	N/A

2	2417 MHz	N/A	N/A
3	2422 MHz	2422 MHz	N/A
4	2427 MHz	2427 MHz	N/A
5	2432 MHz	2432 MHz	N/A
6	2437 MHz	2437 MHz	N/A
7	2442 MHz	2442 MHz	N/A
8	2447 MHz	2447 MHz	N/A
9	2452 MHz	2452 MHz	N/A
10	2457 MHz	2457 MHz	N/A
11	2462 MHz	2462 MHz	N/A
12	N/A	N/A	2484 MHz

Table 12-76: DSSS PHY Frequency Channel Plan

In a multiple cell network topology, <u>overlapping and/or</u> adjacent cells using different channels can operate simultaneously without interference if the distance between the center frequencies is at least 30 MHz. Channel 12 is designated specifically for operation in Japan.

1.4.6.3. Spreading Sequence

The following 11 chip Barker sequence shall be used as the PN code sequence:

+1, -1,+1,+1, -1,+1, +1, +1, -1, -1, -1

The left most chip is output first in time. The first chip is aligned ats the start of a transmitted symbol. The symbol duration is exactly 11chips long.

1.4.6.4. Modulation and Channel Data Rates

Two modulation formats and data rates are specified for the DSSS PHY: a Basic Access Rate and an Enhanced Access Rate. The Basic Access Rate is based on 1 Mb/s DBPSK modulation. The DBPSK encoder is specified in Table 12.86. The Enhanced Access Rate is based on 2 Mb/s DQPSK. The DQPSK encoder is specified in Table 12.97. (In the tables, $+j\omega$ is defined as counterclockwise rotation.)

Bit Input	Phase Change (+jω)
0	0
1	π

Table 12-87: 1 Mb/s DBPSK Encoding Table

Dibit pattern (d0,d1) d0 is first in time	Phase Change (+jø)	
00	0	
01	π/2	
11	π	
10	$3\pi/2$ (- $\pi/2$)	

Table 12-98: 2 Mb/s DQPSK Encoding Table

1.4.6.5. Transmit and Receive In Band and Out of Band Spurious Emissions

The DSSS PHY shall conform with in-band and out-of-band spurious emissions as set by regulatory bodies in the USA and Europe. For the USA, refer to FCC 15.247, 15.205, and 15.209. For Europe, refer to ETS 300-328.

1.4.6.6. Transmit to Receive Turnaround Time

The TX to RX turnaround time shall be less than 10 usec including the power down ramp specified in section 12.4.7.7.

The TX to RX turnaround time shall be measured at the air interface from the trailing edge of the last transmitted symbol to valid CCA detection of incoming signal. The CCA should occur within 25 usec (10 usec for turnaround time plus 15 usec for energy detect) or by the next slot boundary occuring after the 25 usec has elapsed (refer to 12.4.8.4). A receiver input signal 3dB above the ED threshold described in section 12.4.8.4 shall be present at the receiver.

1.4.6.7. Receive to Transmit Turnaround Time

The RX to TX turnaround time is measured at the MAC/PHY interface, using PHY_DATA.request(START-OF-DATA) and shall be less than or equal to 5 usec. This includes the transmit power up ramp described in section 12.4.8.6.

1.4.6.8. Slottime

The slot time for the DSSS PHY is the sum of the RX to TX turnaround time (5 usec) and the energy detect time (15 usec specified in section 12.4.8.4). The propagation delay, which is in the order of 1 usec, is regarded to be included in the energy detect time.

1.4.6.9. Transmit and Receive Antenna Port Impedance

The transmit and receive antenna port(s) impedance shall be 50Ω if the port is exposed.

1.4.6.10. Transmit and Receive Operating Temperature Range

Two temperature ranges for full operation compliance to the DSSS PHY are specified. Type 1 is defined as 0° C to 40° C is designated for office environments. Type 2 is defined as -30° C to $+70^{\circ}$ C and is designated for industrial environments.

1.4.7. PMD Transmit Specifications

The following sections describe the transmit functions and parameters associated with the Physical Medium Dependent sublayer.

1.4.7.1. Transmit Power Levels

The maximum <u>allowable output</u> Equivalent Isotropically Radiated pPower (EIRP) as measured in accordance with practices specified by the regulatory bodies is shown in Table 12-<u>108</u>. In the USA, the radiated emissions should also conform with the ANSI uncontrolled radiation emission standards (ANSI document C95.1 published in 1991).

Maximum <u>Output</u> <u>Power EIRP</u>	Geographic Location	Compliance Document
1000 mW	USA	FCC 15.247
100 mW <u>(EIRP)</u>	EUROPE	ETS 300-328
10 mW/MHz	JAPAN	MPT ordinance 78

Table 12-109: Transmit Power Levels

1.4.7.2. Minimum Transmitted Power Level

The minimum transmitted power shall be no less than 1 mW.

1.4.7.3. Transmit Power Level Control

Power control shall be provided for transmitted power greater than 100 mW. A maximum of 4 power levels may be provided. At a minimum, a radio capable of transmission greater than 100 mW shall be capable of switching power back to 100 mW or less.

1.4.7.4. Transmit Spectrum Mask

The transmitted spectral products shall be less than -30 dBr (dB relative to the SINx/x peak) for f_c -22 MHz < f < f_c -11 MHz and f_c +11 MHz < f < f_c + 22 MHz and -50 dBr for f < f_c -22 MHz and f > f_c + 22 MHz where f_c is the channel center frequency. The transmit spectral mask is shown in figure 12-10. The measurements shall be made using 100 KHz resolution bandwidth.

Figure 12-10: Transmit Spectrum Mask

1.4.7.5. Transmit Center Frequency Tolerance

The transmitted center frequency tolerance is +/- 25 ppm maximum.

1.4.7.6. Chip Clock Frequency Tolerance

The PN code chip clock frequency tolerance shall be better than +/- 25ppm maximum.

1.4.7.7. Transmit Power On and Power Down Ramp

The transmit power on ramp for 10% to 90% of maximum power shall be no greater than 2 usec. The transmit power on -ramp is shown in figure 12-11.

Figure 12-11: Transmit Power On Ramp

The transmit power down ramp for 90% to 10% maximum power shall be no greater than 2 usec. The transmit power down ramp is shown in figure 12-12.

Figure 12-12: Transmit Power Down Ramp

The transmit power ramps shall be constructed such that the DSSS PHY emissions conform with spurious frequency product specification defined in section 12.4.6.5.

1.4.7.8. RF Carrier Suppression

The RF carrier suppression, measured at the channel center frequency, shall be at least 15 dB below the peak SIN(x)/x power spectrum. The RF carrier suppression shall be measured while transmitting a repetitive 01 data sequence with the scrambler disabled using DQPSK modulation. A 100 KHz resolution bandwidth shall be used to perform this measurement.

1.4.7.9. Transmit Modulation Accuracy

The transmit modulation accuracy requirement for the DSSS PHY is based on the difference between the actual transmitted waveform and the ideal signal waveform. Modulation accuracy shall be determined by measuring the peak vector error magnitude measured during each chip period. Worst case vector error magnitude shall not exceeded 0.35 for the normalized sampled chip data. The ideal complex I and Q constellation points associated with DQPSK modulation (0.707, 0.707), (0.707, -0.707), (-0.707, 0.707), (-0.707, -0.707) shall be used as the

reference. These measurements shall be from baseband I and Q sampled data after recovery through a reference receiver system.

Figure 12-13 illustrates the ideal DQPSK constellation points and range of worst case error specified for modulation accuracy.

Figure 12-13: Modulation Accuracy Measurement Example

Error vector measurement requires a reference receiver capable of carrier lock. All measurements shall be made under carrier lock conditions. The distortion induced in the constellation by the reference receiver shall be calibrated and measured. The test data error vectors described below will be corrected to compensate for the reference receiver distortion.

The 802.11 vendor compatible radio shall provide an exposed TX chip clock which is used to sample the I and Q outputs of the reference receiver.

The measurement is made under the conditions of continuous DQPSK transmission using scrambled all 1's.

The EYE pattern of the I channel will be used to determine the I and Q sampling point. The chip clock provided by the vendor radio will be time delayed such that the samples fall at a 1/2 chip period offset from the mean of the zero crossing positions of the EYE (see figure 12-14 below). This is the ideal center of the EYE and may not be the point of maximum EYE OPENING.

Figure 12-14: Chip Clock Alignment with Baseband Eye pattern

Using the aligned chip clock, 1000 samples of the I and Q baseband outputs from the reference receiver are captured. The vector error magnitudes shall be calculated as follows:

Calculate the DC offsets for I and Q samples.

$$I_{\text{mean}} = \sum_{n=0}^{1000} I(n) / 1000$$
$$Q_{\text{mean}} = \sum_{n=0}^{1000} Q(n) / 1000$$

Calculate the DC corrected I and Q samples for all N =1000 sample pairs.

 $I_{DC}(n) = I(n) - I_{mean}$

$$Q_{DC}(n) = Q(n) - Q_{mean}$$

Calculate the average magnitude of I and Q samples.

$$I_{mag} = \sum_{n=0}^{1000} |I_{DC}(n)| / 1000$$
$$Q_{mag} = \sum_{n=0}^{1000} |Q_{DC}(n)| / 1000$$

Calculate the normalized error vector magnitude for the $I_{DC}(n)/Q_{DC}(n)$ pairs.

 $V_{ERR}(n) = \text{sqrt}[\frac{1}{2} * (\frac{|I_{DC}(n)|}{I_{mag}})^2 + (|Q_{DC}(n)|}{Q_{mag}}^2)] - V_{CORRECTION}$ with $V_{CORRECTION} = \text{error induced by the reference receiver system}.$

A vendor DSSS PHY implementation shall be compliant if for all N =1000 samples the following condition is met:

 $V_{ERR}(n) < 0.35$

1.4.8. PMD Receiver Specifications

The following sections describe the receive functions and parameters associated with the Physical Medium Dependent sublayer.

1.4.8.1. Receiver Minimum Input Level Sensitivity

The Frame Error Rate (FER) shall be less than $8*10^{-23}$ at a Frame length of 1024 bytes for an input level of -80 dBm measured at the antenna connector. This FER is specified for 2 Mb/s DQPSK modulation_ed with the 11 chip Barker spreading sequence. The test for the minimum input level sensitivity shall be conducted with the energy detection threshold set less than or equal to -80 dBm.

1.4.8.2. Receiver Maximum Input Level

The receiver shall provide a maximum FER of $8*10^{-23}$ at a maximum input level of -4 dBm measured at the antenna. This FER is specified for 2 Mb/s DQPSK modulation.ed with the 11chip Barker spreading sequence.

1.4.8.3. Receiver Adjacent Channel Rejection

Adjacent channel rejection is defined between the two channels in each channel group defined in section 12.4.6.2.

The adjacent channel rejection shall be equal to or better than 35 dB with a FER of $8*10^{-23}$ using 2 Mb/s DQPSK modulationed with the Hehip Barker spreading code described in section 12.4.6.3.

The adjacent channel rejection shall be measured using the following method:

Input a 2 Mb/s DQPSK <u>modulated</u> signal spread with the 11chip Barker spreading code at a level 6 dB greater than specified in section 12.4.8.1. In an adjacent channel (greater than 30 MHz separation as defined by the channel numbering), input a signal modulated in a similar fashion which adheres to the transmit mask specified in section 12.4.7.43 to a level 41 dB above the level specified in 12.4.8.1. The adjacent channel signal must be derived from a separate signal source. It cannot be a frequency shifted version of the reference channel. Under these conditions, the FER shall be no worse than $8*10^{-23}$.

1.4.8.4. Clear Channel Assessment

The DSSS PHY shall provide the capability to perform Clear Channel Assessment (CCA) according to at least one of the following three methods:-

<u>CCA Mode 1: Energy above threshold.</u> <u>CCA will report a busy medium upon detecting any energy above the ED threshold.</u>

<u>CCA Mode 2: Carrier sense only. CCA will report a busy medium only upon the detection of a DSSS signal. This signal may be above or below the ED threshold.</u>

CCA Mode 3: Carrier sense with energy above threshold. CCA will report a busy medium upon the detection of a DSSS signal with energy above the ED threshold.

The CCA shall be based on the status of energy detection above a given threshold and by detection of code lock based on correlation quality (i.e. carrier sense). The energy detection status is given by the PMD primitive, PHY_ED. The carrier sense status is given by PHY_CS. The status of PHY_ED and PHY_CS are used in the

PLCP convergence procedure to indicate activity to the MAC through the PHY interface primitive PHY_CCA.indicate. The primitive class indicates the CCA status.

A Busy channel is indicated by PHY_DATA.indicate of class START-OF-ACTIVITY, END-OF-DATA, or DATA.

Clear Channel is indicated by PHY_DATA.indicate of class END-OF-DATA-AND-ACTIVITY or END-OF-ACTIVITY.

The PHY MIB variable aCCA_Mode_Suprt will indicate the appropriate operation modes. The PHY will be configured through the PHY MIB variable aCurrent_CCA_Mode.

The CCA shall be TRUE if there is no energy detect or carrier sense. If ED is active without carrier sense being active, then CCA is allowed to go TRUE. _The CCA parameters are subject to the following criteria:

- a) The energy detection threshold shall be less than or equal to -80 dBm for TX power > 100 mW, -76 dBm for 50 mW < TX power <= 100 mW, and -70 dBm for TX power <= 50 mW.
- b) The worst case latency With a valid signal (according to the CCA mode of operation) present at the receiver antenna within 5 usec from a slot boundary, the CCA indicator shall report channel busy before the end of the slot time of the detection of an energy change across the ED threshold incident on the receiver antenna to the reporting of channel busy shall be less than or equal to 15 usec or by the next slot boundary occuring after the 15 usec has elapsed. This implies that the CCA signal is available as an exposed test point.
- c) The CCA state machine shall be reset upon transition from the TX state to the RX state.

c) In the event that a correct PLCP Header is received, the DSSS PHY shall hold the CCA signal inactive (channel busy) for the full duration as indicated by the PLCP LENGTH field. Should a loss of carrier sense occur in the middle of reception, the CCA will indicate a busy medium for the intended duration of the transmitted packet.

Conformance to DSSS PHY CCA shall be demonstrated by applying a DSSS compliant signal (above and below the appropriate <u>EDenergy detect</u> threshold (a), such that all conditions described in (b) and (c) above are demonstrated.