Analysis of 802.11 Multirate Throughput

Submission

Bob O'Hara Informed Technology, Inc.

November 1997

Doc: IEEE 802.11-97/78a

Effective Transmission Rate

• For a single acknowledged frame:

$$R_{effective} = \frac{Length_{frame}}{2 \times \left(R_{header} \times Length_{header}\right) + R_{frame} \times Length_{frame} + t_{IFS} + R_{ACK} \times Length_{ACK}}$$

Method of Operation	Rheader	$\mathbf{R}_{\mathrm{frame}}$	R _{ACK}
Full Compatibility	1 Mbit/s	10 Mbit/s	1 Mbit/s
Modified Compatibility	1 Mbit/s	10 Mbit/s	10 Mbit/s
Medium Efficient	10 Mbit/s	10 Mbit/s	10 Mbit/s

Submission

Single Frame - Compatibility

Submission

Bob O'Hara Informed Technology, Inc.

November 1997

Doc: IEEE 802.11-97/78a

Single Frame - Modified

Submission

Single Frame - Efficient

Submission

Bob O'Hara Informed Technology, Inc.

November 1997 Doc: IEEE 802.11-97/78a

Effect of Contention

• Determining the time spent in backoff:

$$t_{backoff} = t_{slot} \times \sum_{i=1}^{n} \left(p_{collision}^{i} \times \frac{CW_{i}}{2} \right)$$

- Where:

 t_{slot} is the slot time,

 $p_{collision}$ is the probability of collision, and $\frac{CW_i}{2}$ is the mean number of slots chosen in the *i*th backoff.

Submission

Effect of Contention

November 1997 Doc: IEEE 802.11-97/78a

Bring in the Real World

 Workgroup frame size distribution, from work done at 3Com, AMD and Sun

Total Throughput in a BSS

- Using the mean frame size from the workgroup distribution (607 bytes)
- Combining equations for effective transmit rate and probability of collision
- Determining probability of collision based on number of competing stations in a BSS:

$$p = 1 - p' = 1 - \left(1 - \frac{1}{CW}\right)^n$$

Submission

Bob O'Hara Informed Technology, Inc.

November 1997

Doc: IEEE 802.11-97/78a

Probability of Collision

Submission

Number of Stations Bob O'Hara Informed Technology, Inc.

Mean Throughput in a BSS

Submission

Bob O'Hara Informed Technology, Inc.

November 1997

Doc: IEEE 802.11-97/78a

Conclusion

- The current multirate mechanism in 802.11 fails to deliver the benefits of using higher rates at the physical layer
- A PHY that does deliver the benefits of higher PHY rates is desirable
- Suggestion: design a PHY that delivers both compatibility AND efficiency by being modal:
 - Standalone mode: highly efficient
 - Compatibility mode: backward compatible

Submission