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Abstract

We explore the characteristics of communications waveforms for which a pseudonoise spreading code multiplies a
Walsh function as selected by the input data to be conveyed over the communications link.  The group structure of
Walsh functions enables the selection of direct-sequence spreading codes to be combined with Walsh functions in
this orthogonal signaling technique.  For any particular code selected for spreading, all possible data patterns result
in a composite code which is from the same coset.  The cosets can be analyzed for their properties, giving us a
means for constraining aspects of the link design.

We enumerate the cosets of 16-bit spreading codes, and determine correlation properties within and between cosets
which provide minimum undesired correlations.  The selection of 16-bit codes offers 2048 cosets among which to
search for “good” codes; for 8-bit codes there are only 16 cosets, and these do not provide codes with the properties
of the 16-bit codes.  Some properties derive from the number of code bits being an even power of 2.
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Walsh Function Cosets and Their Properties

We explore the characteristics of communications waveforms for which a pseudonoise spreading code multiplies a
Walsh function as selected by the input data to be conveyed over the communications link.  The group structure of
Walsh functions enables the selection of direct-sequence spreading codes to be combined with Walsh functions in
this orthogonal signaling technique.  For any particular code selected for spreading, all possible data patterns result
in a composite code which is from the same coset.  The cosets can be analyzed for their properties, giving us a
means for constraining aspects of the link design.  We enumerate the cosets of 16-bit spreading codes, and
determine correlation properties within and between cosets which provide minimum undesired correlations.  The
selection of 16-bit codes offers 2048 cosets among which to search for “good” codes; for 8-bit codes there are only
16 cosets, and these do not provide codes with the properties of the 16-bit codes.  Some properties derive from the
number of code bits being an even power of 2.

1. Walsh Functions

Walsh functions and Rademacher functions are square-wave-like continuous-time functions with orthogonality
properties analogous to sines and cosines familiar to engineers.  We begin by defining the Rademacher functions,
which  are “squared-up” sinusoids:
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Figure 1 - Rademacher Functions.
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The first five Rademacher functions are shown in figure 1.  The Nth Rademacher function has 2N sub-elements
(bits), and each new function has a full ±1 excursion in a sub-element of the previous function.  These functions
are clearly orthogonal; however, since they possess odd symmetry about the origin they cannot be complete.

The Walsh functions, constructed from
products of the Rademacher functions,
are the complete orthogonal set of
square-wave-like functions.  This construction of Walsh functions is called dyadic ordering; it is most convenient

for mathematical manipulation.  For Walsh function WM(t) the binary representation of M is used 2 b   = M k
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The first 16 Walsh functions are shown in Figure 2.  The Walsh functions exhibit interesting structure.  The first J
Rademacher functions generate the first 2J-1 Walsh functions; if the J+1st Rademacher is included, then it forms a
total of 2J Walsh functions by multiplying each of the previous 2J-1 Walsh functions.  The Walsh functions form a
group; the product of any two of the 16 Walsh is another of them.  This may be seen by
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Figure 2 - Walsh functions.

10)2(sin()( ≤≤= ttsigntR N
N π

1...1,0|)(
/

−=≡ +=
NntWW

NntNNn

(t)W = )(tR  = )(tR  = )(tR  )(tR  tWtW J
c

k
k

b+a
k

k

b
j

j

a
i

i
MN

kkkji ∏∏∏∏=)()(



November 1997 Doc: IEEE P802.11-97/117

Submission page 4 John H. Cafarella, MICRILOR, Inc.

Thus, the index of the Walsh function produced by multiplying two other Walsh functions is obtained by bit-wise
Exclusive Or (XOR) of the binary representations of their indices.1  A direct-sequence spread-spectrum modulator
converts the composite code from a sequence of binary bits {0,1} into a continuous baseband waveform with
amplitude {±1}.  To explore the characteristics of spreading waveforms formed by combining
direct-sequence codes with Walsh functions, we consider discrete Walsh functions which are the
sequences formed by sampling the Walsh functions once per sub-element.

We adopt this dual-index notation with possible suppression of the second index for convenience.
Thus, WK represents the identity of the Kth Walsh function.  When we must consider the 16 values
taken on by the sub-elements of WK we use the second subscript WKn.  The actual value and
meaning of the single number WKn, for some specific K and n, are subject to the same ambiguity as
is the case for spreading codes: there is an isomorphism between logic values over {0,1},
baseband amplitudes over {±1}, and carrier phase values over {0,ð}.  For example, when
designing digital logic, the values of both spreading codes and Walsh functions are boolean
{0,1}; consideration of waveform correlation properties requires algebraic interpretation of the
sub-element values {±1}.  This isomorphic relationship is routinely handled in design of
spread-spectrum systems, and is normally clear by context.  However, for discussion purposes
we must still select the specific isomorphism, that is, which of the two elements in {0,1} corresponds to which of
{±1}.  We select the correspondence shown.  For enumerating the spreading codes and Walsh functions, we will
interpret the 16-bit binary pattern of the boolean values as a binary number; selecting the correspondence between
boolean 0 and +1 amplitude simply means that W0 is at the beginning of the numerical order (0) instead of at 216-
1.  When we describe a Walsh function we use its Hexadecimal numerical value, since this quickly conveys the
actual bit pattern if needed.  With this digression concerning the discrete representation of the Walsh functions,
and the meaning of the sub-element values, we now return to exploring cosets.

2. Coset Decomposition

Because the Walsh functions form a proper sub-group of the 16-bit codes, it is possible use them to perform a coset
decomposition.  We begin with the 16 Walsh functions as the base sub-group; then, select any other 16-bit code C1

as coset leader, and the product2 of this with each of the Walsh functions generates a coset.  For each new coset we
must select as coset leader some code which has not yet appeared in any of the previous cosets.  We are guaranteed
by group theory that this decomposition will enumerate all codes, and that each will appear in only a single coset.

W0 W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12 W13 W14 W15

C1 C1W1 C1W2 C1W3 C1W4 C1W5 C1W6 C1W7 C1W8 C1W9 C1W10 C1W11 C1W12 C1W13 C1W14 C1W15

C2 C2W1 C2W2 C2W3 C2W4 C2W5 C2W6 C2W7 C2W8 C2W9 C2W10 C2W11 C2W12 C2W13 C2W14 C2W15

Etc.

Because of this, any spreading code PK may be selected as a coset leader multiplying {W1,W2,....W16} to form the
coset {PKW0,PKW1,....PKW16}.  Each of these is, in turn, a legitimate spreading code, and any could be selected as
the coset leader with the result of re-ordering the coset.  The importance of this ordering into cosets is that
properties of codes within a coset, or mutual properties between codes of different cosets, may be evaluated in order
to enable selection of “good” cosets for radio transmission.  For example, if it were considered important for

                                                       
1 Note that this gives a trivial proof of the orthogonality of Walsh functions.  All but W0 integrate to zero; but only

the product of a Walsh function with itself can produce W0.  Thus, MN dttWtW δ∫ =)()(

π
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transmitted waveforms to have low autocorrelation side lobes, then a coset could be selected for which all members
had low side lobes (by computer search).  Then, no matter which member of the coset were selected for the
spreading code, and no matter what the data (which Walsh function selected), then the side lobes would be
bounded by the worst-case values for the coset.

To enumerate the cosets, we first limit interest to the 215 codes which have leading 0s; the other half of the total 216

codes are simply complements of the first half, and are not distinct since they will occur with a π flip of the carrier
phase.  Furthermore, the correspondence between boolean 0 and amplitude +1 results in binary  interpretation of
the Walsh functions having leading 0s.  The 16 Walsh functions, in hexadecimal notation, are shown in the top
text box at right.  Because each coset has 24=16 members, there must be 211=2048 cosets to account for the 215

codes.  In hexadecimal notation, the coset leaders CK are listed in the bottom text box at right.  Each range of coset
leaders contains 128 members, and there are 16 such ranges for a total of 2048 coset
leaders.

3. Cosets Whose Codes Have Low Correlation Side
Lobes

For many applications it is desirable to select codes having low autocorrelation and/or
crosscorrelation side lobes for near-in shifts.  For Walsh-Orthogonal signaling we must
find cosets for which all members satisfy whatever constraint is being imposed.  Computer search has
identified several interesting sets of cosets: 3

-Cosets with autocorrelation side lobes ≤4 over four side
lobes, and ≤5 in the 5th.

- Cosets with autocorrelation side lobes ≤3 over the first five
side lobes; call these set A.

- Cosets with cross-correlation side lobes <8 over four side lobes, and ≤9 in the 5th;
call these set C.

                                                       
3 The codes appearing in bold font are “RL” to be discussed later.

 0000-007F     1000-107F
 0100-017F     1100-117F
 0200-027F     1200-127F
 0300-037F     1300-137F
 0400-047F     1400-147F
 0500-057F     1500-157F
 0600-067F     1600-167F
 0700-077F     1700-177F

0272   0356   0359   036A  0475  0539    0563   0635
064A  0652   0653   065C  0735   074A  103A  105D
114B  114D   121D  1228   122E  1247   1262  1272
1274   131D   1362  1412   141A  141B   1427  1441
1448   144E   147D  172D  1742

0563  0653  065C  114B
1247  1274  141B  1427

0158  020E  0461  0737
1049  131F  1570  1626
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4. Cosets with Low Inter-Coset Main-Lobe Correlation

Within a coset all members have zero cross-correlation by construction.  We now seek pairs of cosets for which low
main-lobe cross-correlation exists between all members of one coset and all members of the other.  We use the
spreading-code coset leaders PK identified above, but the reader should remember that any coset member also could
be used.  We consider two M-Orthogonal streams Xn and Yn, independent but time-aligned.4

The selection of the indices J and L convey four bits each, and it is desired to select the cosets (PK and PM) to
minimize crosscorrelation between the two streams independent of the data (J and L).  ÃKJML is given by

Since the product of any two of the 16 Walsh functions is

another of them, we really seek to select K and M to minimize5

We define a subset RL of the coset leaders such that we can constrain PK=PMRL.  This lets us bound the peak
magnitude of

Hence, we can minimize the worst-case crosscorrelation between codes from coset
PK and codes from coset PM.  A computer search identified as members of the set
RL the 28 coset leaders shown in the text box at right.  Interestingly, to minimize
the maximum correlation, these project with equal magnitude on all the Walsh
functions at ±4 units compared to a peak autocorrelation of 16 for main-lobe
autocorrelation.  Thus, the crosscorrelation at the is fixed at -12 dB in all
channels, and this level is non-fluctuating in magnitude.6

                                                       
4 By changing coset from symbol to symbol using codes defined in this section, toleration of delay spreads larger
than a symbol duration can be enhanced.
5 As stated earlier, we have not restricted the selection of spreading codes to coset leaders, we may now recognize
that PK and PM above may be one of the coset leaders exclusive ORed with any Walsh function, and we may also
absorb those Walsh functions into WN.

6  This result is readily understood by recognizing the form to be minimized as a Walsh transform.  Applying
Parseval’s theorem, minimizing the peak value requires equal dispersement of the transform over the basis
functions.  This is only possible if the square root of the order of the Walsh functions is an integer; that is, the
number of chips per symbol must be an even power of 2.
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0356 0359 0365 036A
0536 0539 0563 056C
0635 063A 0653 065C
111E 112D 114B 1178
121D 122E 1247 1274
141B 1427 144E 1472
1718 1724 1742 177E
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5. Low Intra- and Inter-Coset Correlation Side Lobes

The cosets of section 3 indicated in bold are also members of the set RL.  Note that the eight best cosets A, in terms
of autocorrelation side lobes, share this property.  The best eight cosets C, in terms of intra-coset crosscorrelation,
do not at first appear to be related to cosets RL.

Since both sets of 8 cosets (A and C) seem interesting for various applications, we explore them further for useful
relationships.  We begin by forming the bit-wise XOR of the coset leaders with other coset leaders: the set A with
itself, the set C with itself, and the set A with the set C.  The text box on the next page shows these three 8x8
arrays of bit-wise XORs.  The rows and columns are labeled with the coset leaders being used, respectively.  There
is clearly some structure here within the autocorrelation
cosets and within the crosscorrelation cosets, but not
between the two.

The XOR of the C cosets has four RL per row (hence,
column).  Of interest is the fact that any coset combined
with the others generates a permutation of the same set
of codes.

The XOR of the A cosets has two or three RL per row
(hence, column).  There is no other structure observable.

The A cosets taken with the C cosets exhibits no obvious
structure.

A coset XORed with any RL produces a coset whose codes have relatively low crosscorrelation at zero shift with
codes from the original coset.  We explore the set C XORed with the four RL which showed up in the C\C portion
of the previous table.  We label the rows with the coset leaders of the set C, and the columns with the apparently
special RL {0356,0539,1247,177E}.

C\C   0158  020E  0461  0737  1049  131F  1570  1626
0158 0000   0356  0539  066F  1111  1247  1428  177E
020E 0356  0000  066F   0539 1247  1111  177E  1428
0461 0539  066F  0000    0356 1428  177E 1111   1247
0737 066F  0539  0356   0000  177E 1428  1247   1111
1049 1111  1247  1428   177E  0000  0356  0539  066F
131F 1247  1111  177E  1428   0356  0000  066F  0539
1570 1428  177E  1111  1247   0539  066F  0000  0356
1626 177E 1428  1247   1111   066F  0539  0356  0000

A\A   0563  0653  065C  114B  1247  1274  141B  1427
0563  0000  0330  033F  1428   1724  1717  1178   1144
0653  0330  0000  000F  1718   1414  1427  1248   1274
065C 033F  000F  0000  1717   141B 1428  1247   127B
114B 1428  1718  1717  0000   030C  033F  0550  056C
1247  1724  1414  141B 030C  0000   0033  065C 0660
1274  1717  1427  1428  033F  0033   0000  066F  0653
141B  1178 1248  1247  0550   065C  066F  0000  003C
1427  1144  1274  127B 056C  0660   0653  003C 0000

C\A   0563  0653  065C  114B  1247  1274  141B  1427
0158  043B 070B  0704  1013   131F 132C  1543   157F
020E  076D 045D 0452  1345   1049 107A  1615   1629
0461  0102  0232  023D 152A  1626  1615  107A   1046
0737  0254  0164  016B 167C   1570 1543  132C   1310
1049  152A 161A 1615  0102   020E  023D 0452   046E
131F  167C  154C 1543 0254   0158  016B  0704   0738
1570  1013  1323  132C 043B  0737  0704   016B   0157
1626  1345  1075  107A 076D  0461  0452  023D   0201
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In this text box we display the matrix of XOR results.  The rows have been re-
ordered to exhibit more clearly the structure.  Define the following sets of codes for
discussion:
X={0158,0461,131F,1626}
Y={020E,0737,1049,1570}
Ã={0539,1247,177E}

The code 0356 XORed with the coset leaders X produce the coset leaders Y, and
with the coset leaders Y produce the coset leaders X.  The codes Ã XORed with any
coset from X produce another coset from X; and the same is true for Ã with cosets
from Y.  We now have two interesting sets of four coset leaders each.  This also
indicates that the set of 8 cosets C has good inter-coset correlation side-lobe
properties, not just intra-coset.

      0356  0539  1247  177E
 C
0158  020E  0461  131F  1626
0461  0737  0158  1626  131F
131F  1049  1626  0158  0461
1626  1570  131F  0461  0158

020E  0158  0737  1049  1570
0737  0461  020E  1570  1049
1049  131F  1570  020E  0737
1570  1626  1049  0737  020E


