
January 1998

Doc: IEEE P802.11-98/11

<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header>

- To discuss the comparison criteria of modulation methods for the higher speed extension for the 2.4 GHz PHY
- Barker Code Position Modulation as proposed by Lucent Technologies
 - document 97/124
 - document 98/10
- Criteria document 97/157r1

Jan Boer, Lucent Technologies, January 1998 page 2

Receiver structure

Receiver structure cont'

- Complexity can be traded for performance
 - moderate complexity
 - CMF+TSE+MS
 - complexity of separate blocks can also be traded
 - e.g. length CMF and depth MS
 - low complexity
 - CMF only

Jan Boer, Lucent Technologies, January 1998		page 4	
	18.000 11 1 1000 18.1		

Receiver structure cont'

- Implementation
 - RF/IF complexity comparable to low rate PHY
 - same LO, same bandwidth,
 - Baseband gate count for moderate complexity receiver about twice low rate PHY
 - NO equalizer

Jan Boer, Lucent Technologies, January 1998	page 5
Receiver structure	e cont'
 Implementation 	
- Diversity implementation	n
• If DSSS preamble is used low rate PHY	d same antenna diversity as
• BCPM is not dependent	on long preamble

- shorter preamble possible, antenna diversity (not required) within one slot on implementers choice
 - serial or parallel receivers
 - transmitter diversity (throughput performance penalty)

page 6

• Multipath diversity inherent to BCPM.

- performance dependent on receiver implementation

Jan Boer, Lucent Technologies, January 1998

Immunity to multipath and noise

- Performance figures presented in November for 100 byte packet length.
- Performance figures for 64 and 1000 bytes in preparation
 - initial results

Jan Boer, Lucent Technologies, January 1998	page 7

Immunity to multipath and noise cont'

Bitrate	FER TDS >	0 ns	50 ns	100 ns	200 ns
5 TSE+MS	10-2	22	20	20	19
	10-1	16	16	16	15
5 CMF only	10-2	22	20	17	25
	10-1	17	16	15	16
8 TSE+MS	10-2	24	24	21	23
	10-1	13	13	13	13
8 CMF only	10-2	26	х	х	Х
	10-1	19	22	х	х
10 TSE+MS	10-2	22	24	30	Х
	10-1	18	18	18	х
11 TSE+MS	10-2	24	29	Х	Х
	10-1	18	19	23	х

• 100 byte packetlength

Jan Boer, Lucent Technologies, January 1998 page 8

Immunity to multipath and noise cont'

- Some initial results for 64 and 1000 bytes packetlength
 - no noise

	64 Bytes	1000 bytes
Full complexity RX	800 ns	430 ns
without MS	310 ns	210 ns

Tolerated TDS at PER 10%

Jan Boer, Lucent Technologies, January 1998	page 9
	n a contra c

Immunity to multipath and noise cont'

- Center frequency accuracy
 - 25 ppm
 - relatively easy acquisition and tracking of LO offset
 - no noticeable performance degradation if implemented

Jan Boer, Lucent Technologies, January 1998	page 10

Overhead

- Preamble Length
 - Current DSSS Preamble is proposed for full interoperability and coexistence with current Phy
 - BCPM does NOT need long preamble
 - optional short preamble
 - about 25 microsecond for synchronization and calculating the channel matched filter
 - one slottime (20 microseconds) for antenna diversity - technical feasible

Jan Boer, Lucent Technologies, January 1998

page 11

Overhead cont'

- Slot Size
 - Current slottime of 20 microseconds will be maintained
 - interoperability and coexistence with current Phy
 - CCA mechanism will not change
 - detection time and turnaround times will not change

Jan Boer, Lucent Technologies, January 1998

page 12

Overhead cont'

- SIFS time
 - current SIFS time of 10 microseconds will be maintained
 - interoperability and coexistence with current Phy
 - added to receiver delay compared with current Phy is delay of Mode Sifter (4 symbols if depth is 4); SIFS is enough to handle

Jan Boer, Lucent Technologies, January 1998		page 13	
THE REPORT OF A DESCRIPTION OF A DESCRIPTION	18181 11 181 18 1	 11 11 00 11 11 01 11	11111111

Spectral efficiency

- Power spectrum is not changed compared to the current PHY
- The same channelization scheme is employed

Jan Boer, Lucent Technologies, January 1998	page 14

Cell sharing

- 3 channels where same frequency of different cells share
- benchmarks:
 - topology should be comparable
 - 2 dimensional
 - multifloor

Jan Boer, Lucent Technologies, January 1998	page 15		

Range

- range
 - transmit power
 - -25 mW (14 dBm) Tx power
 - min receive level (Rx sensitivity)
 - - 86 dBm (SNR 15.8 dB @ BER 10-5)
 - @ noise factor and implementation loss 12dB
 - link budget 100dB 40dB isotropic loss --> 60 dB
 - 60 dB --> 1000 meter free space (theoretical !)

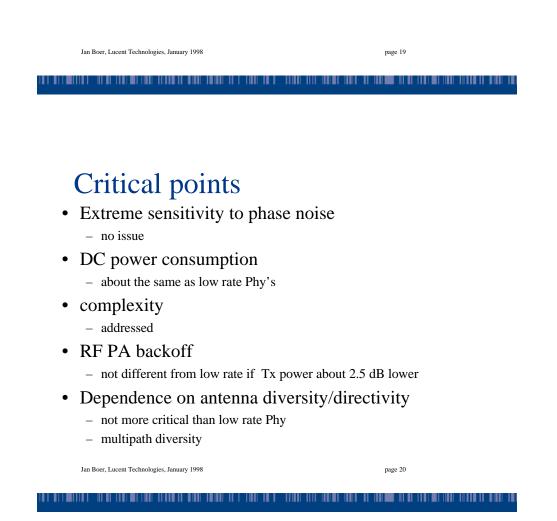
Jan Boer, Lucent Technologies, January 1998

page 16

Adjacent channel interference

- ACI must be such that a 3 channel solution is possible
- BCPM will not give 35dB as required in current standard
 - interfered devices will fall back in rate
 - system throughput more essential than the ACI figure

Jan Boer, Lucent Technologies, January 1998			page 17							


Co-channel interference

- 3 to 6 dB (dependent on delayspread)
- simulated data will be provided in March.

Jan Boer, Lucent Technologies, January 1998	page 18

Interference immunity

- simulation to be done
- comparable test to be defined:
 - worst case single tone SIR per channel?

Intellectual Property

- US patent 5,596,601 Bar-David
 - Method and apparatus for spread spectrum code pulse position modulation
- Lucent contact:

Bruce Tuch Lucent Technologies PO Box 755 3430 AT Nieuwegein, The Netherlands tel: +31 30 6097527, fax: +31 30 6097556

Jan Boer, Lucent Technologies, January 1998

page 21

Interoperability / Coexistence

- With long 802.11 header BCPM is fully coexistence and interoperable (can fall back to 1 and 2 Mbit/s), making use of multi-rate capabilities of current standard
- If 20 micros slottime is maintained also with a short header coexistence and/or interoperability is possible

Jan Boer, Lucent Technologies, January 1998	page 22

Interoperability / Coexistence cont'

- Shorter preamble is possible.
 - 24 microseconds for Rx training (synchronization, channel matched filter)
 - + time for energy detection and possibly antenna diversity
 - + time to send over header info at higher rate
 - total preamble time needed in the order of 50-70 microseconds

Jan Boer, Lucent Technologies, January 1998

page 23

Interoperability / Coexistence cont'

- short preamble for higher rate as option
- use short preamble in a high rate network
 - fall back to long preamble to be interoperable with low rate Phy's
- Coexistence
 - low possibility in a mixed system that low rate Phy does not see BCPM if not synchronized (loosely coexistence, preamble is always recognized)
 - if this affects system throughput fall back to long preamble (full coexistence)

Jan Boer, Lucent Technologies, January 1998

page 24