July 7, 1998	doc.: IEEE 802.11-98/267
A Reviev 11Mb	v of the Alantro ops Proposal
Chr	is Heegard
	Alantro
Submission	Slide 1 Heegard
July 7, 1998	doc.: IEEE 802.11-98/267

The Alantro Proposal

- QPSK @ 11Msps
- Basic Rate: 11Mbps (R = 1/2), 64 state BCC
 - Coding Gain of ~ 7dB
- Variable rate via puncturing (500kbps possible)
- Excellent Multipath performance with reasonable complexity

OAlantro

Heegard

July	7.	1998
oury	••	1//0

doc.: IEEE 802.11-98/267

OAlantro

Heegard

How did Alantro get here?

• Objective: create a standard that will realistically meet the goal of robust, cost effective, transmission in excess of 10Mbps

Slide 3

- Studied existing proposals (summer '97)
- · Decided Harris was best starting point
 - MBOK "code" weak
 - Small coding gain
 - Problems with joint M.P./Decoding
- Studied BCC
 - Larger gain
 - Reasonable Complexity

```
    Good match to joint M.P./decoding
```

Submission

July 7, 1998

doc.: IEEE 802.11-98/267

Trellis of a Block Code

- (n=8, k=4, d=4) F₂
- The irregular trellis structure makes it difficult to jointly demodulate/decode

July 7, 1998

doc.: IEEE 802.11-98/267

Code Performance

- Free Distance (AWGN tolerance)
 - Coding Gain
 - BER vs Eb/No
- Complexity
 - Additions/bit
 - Comparisons/bit
- Multipath Robustness
 - Joint Demodulation/Decoding
 - BER vs Eb/No with Delay Spread

Submission

Slide 8

July 7, 1998	doc.: IEEE 802.11-98/267
Examples	
 (n=2, k=1, v=2) [4 state BCC] d = 5 (3.97 dB), adds = 12, cmps = 4 (n=8, k=4) E.H.C F₂ [MBOK] d = 4 (3.01 dB), adds = 14, cmps = 3.75 (n=8, k=4) Z₄ [CCK] [(n=16, k=8) F₂] d = 4 (3.01 dB), adds = 32, cmps = 8 (n=2, k=1, v=6) [64 state BCC] d = 10 (6.99 dB), adds = 132, cmps = 64 	
	OAlantr

July 7, 1998 doc.: IEEE 802.11-98	/267	
Block versus Convolutional		
Coding		
• BCC's are a well established technique that dominates successful standards	t	
– v 34 v 90 HDTV DirectTV CDMA cell		

Slide 9

Heegard

- v.34, v.90, HDTV, DirectTV, CDMA cell phones, 802.14, HDSL-2, ...
- Block codes???

Submission

Submission

• BCC's have a consistent trellis structure that compliments the trellis of the multipath

July 7, 1998

802.11 Code selection

- Consider which coding options will provide for the best trade-off between AWGN performance, complexity and multipath robustness
- Comparison of coding techniques should be made on a quantitative technical basis
- Programmable code??? (v.34, HDSL-2,...)

		OAlantro
Submission	Slide 11	Heegard