IEEE P802.11						
Wireless LANs						
Interference Potential of WideBand Frequency Hopping Systems on Packet						
Data Systems						
Date:	September 13, 1999					
Author:	Donald C.Johnson WLAN Consulting,Inc. Phone: 937 434-8389 Fax: 937 434-3287					
	e-Mail: JohnsDB@aol.com					

1.0 Abstract

The effect of modifying the 47 CFR Part 15.247 frequency hopping spread spectrum rules to permit a wider bandwidth is investigated relative to the interference potential on packet data transmission systems that conform to the current rules. The rules modification would permit WideBand Frequency Hopping (WBFH) systems with bandwidths of 3 MHz and 5 MHz in addition to systems operating under the current rules that limit the bandwidth to 1 MHz.

The probability of a WBFH transmission mutilating a wireless data packet is investigated in terms of the WBFH and victim power levels, the WBFH bandwidth, the duration of the victim packet interval and WBFH hop interval and potential victim receiver parameters. A WBFH system operating in accordance with the proposed revised rules and a potential victim wireless packet data system conforming to the current rules are considered to operate in the same area. The configuration analyzed consists of a victim packet data system operating in a centralized mode and an interfering WBFH system with transmitters evenly distributed within and around the victim system communication cell. The proportion of WBFH transmitters that create packet errors in the victim receiver is analyzed.

It is shown that increasing the frequency hopping rate increases the probability of interference to packet data systems. The wider bandwidth would, of itself, increase the interference probability, but it would also permit a higher hopping rate. The proposed rules modification would place a lower limit on the hopping rate, but would not impose an upper limit. The potentially higher hopping rate would further increase the interference probability.

It is shown that increasing the bandwidth of frequency hopping systems to 3 or 5 MHz greatly increases the interference to 1 MHz bandwidth frequency hopping packet data systems. The increase would require the WBFH system to use a power level as much as 20 dB below the 1 MHz system to offset the effect of the wider bandwidth alone. The potential increase in frequency hopping rate also produces a like factor.

The effect on direct sequence packet data systems is less, but is nevertheless significant. It is shown that the change would cause a 13 to 15 dB effect on a packet data system such as one conforming to IEEE p802.11. That is, the WBFH power level would have to be decreased by 13 to 16 dB to have the same interference effect on this system as does a 1 MHz bandwidth frequency hopping system.

2.0 Packet Overlap Dependence on Bandwidth and Hop Time

The relative overlap probability will be investigated independently of the relative power level of the interfering and victim systems. That is, it will be assumed that there are a fixed number of WBFH transmitters near enough to the packet receiver to interfere and that this number does not vary with bandwidth. This will later be expanded to investigate the effect of the relative power levels of the two systems, including the bandwidth effects on the interference power level.

Define the following parameters:

- $B_i =$ Bandwidth of the interfered signal.
- $B_h =$ Bandwidth of the wideband frequency hopping (WBFH) system (1, 3 or 5 MHz)
- B_{ih} = The interference bandwidth, the difference frequency range over which the WBFH signal interferes with the victim receiver. $B_{ih} >= B_i + B_h^{-1}$
- $B_t =$ Total bandwidth of the WBFH system (75 to 85 MHz.)
- $H_t = WBFH hop time$
- $P_t =$ Packet transmission time.

Refer to figure 2-1 and consider a single active wideband WBFH transmitter within range of a LAN packet receiver. If one or more on-frequency hops start in the interval $H_t + P_t$, then overlap occurs.

Probability hop is on the packet frequency = $\frac{B_{ih}}{B_t} \approx \frac{B_i + B_h}{B_t}$

Mean time between start of on-frequency hops = $\frac{H_t B_t}{R_t}$

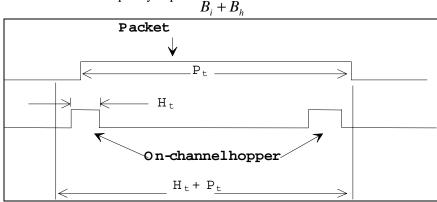


Figure 2-1. Illustration of WBFH Overlap with LAN Packet.

The mean number of hops that start in the interval $H_t + P_t$ equals the duration of this interval divided by the mean duration between hops. Let this mean number be m_1 , then

$$m_{1} = \left[\frac{H_{t} + P_{t}}{H_{t}}\right] \left[\frac{B_{ih}}{B_{t}}\right] \approx \left[\frac{H_{t} + P_{t}}{H_{t}}\right] \left[\frac{B_{i} + B_{h}}{B_{t}}\right]$$

If there is one active WBFH system in range of the packet LAN receiver, then m_1 is the probability of overlap. If there are more than one active WBFH system in range, then the overlap probability can be modeled as a binomial probability function with m_1 equal to the probability of "success" on each try (one try per frequency hop system). With N such systems in range, the overall probability of overlap is

$$\Pr(\text{overlap}) = 1 - (1 - m_1)^N$$

¹ Reference 1 shows some measurements of the interference bandwidth for two frequency hoppers using the modulation technique employed in the IEEE p802.11 frequency hopping wireless LAN. In the case of both the 1 MHz and 5 MHz bandwidth frequency hoppers the 3 dB interference bandwidth is approximately equal to the sum of the 20 dB bandwidths. The frequency hopping systems with a 20 dB bandwidth of 1 MHz had a 3 dB interference bandwidth of 2 MHz and that with the 5 MHz bandwidth had a 3 dB interference bandwidth of 9.5 MHz.

The process can be modeled as a Poisson process if the mean number of overlaps is very low relative to the possible number. With N active WBFH transmitters, the maximum number of hop signals that can start within the overlap

interval is
$$\left(2 + Int\left(\frac{P_t}{H_t}\right)\right)N$$
 where $Int(x)$ means the largest integer less than or equal to x. The mean number is m_1N , thus, if $m_1 \ll \left(2 + Int\left(\frac{P_t}{H_t}\right)\right)$ the Poisson process should be a good approximation.

In the more general case there is a larger population of WBFH transmitters, each with a relatively low probability of being active. Thus, the mean number of overlaps is very low compared to the possible number and the Poisson process applies.

If there are M frequency hopping transmitters in range and the mean probability that a transmitter is active is p, then N is a random variable with mean Mp and the Poisson distribution is appropriate.

Let λ be the mean number of on-frequency hops starting in the overlap interval. In the former case $\lambda_1 = Nm_1$ and in the second case $\lambda_2 = Mpm_1$. thus, in the more general case

$$\lambda = \lambda_2 = Mp \left[\frac{H_t + P_t}{H_t} \right] \left[\frac{B_{ih}}{B_t} \right].$$
(2-1)

Using the Poisson approximation, the probability of at least one overlap is

 $Pr(overlap) \approx 1 - \varepsilon^{-\lambda}$

Since

$$1 - \varepsilon^{-\lambda} = \lambda - \frac{\lambda^2}{2} + \frac{\lambda^3}{6} - \dots - \lambda$$

if $\lambda << 1$ then $1 - e^{-\lambda} \approx \lambda$ and

 $Pr(overlap) \approx \lambda \text{ if } \lambda \ll 1.$

Normally the packet error rate must be less than 0.1 for a good quality packet LAN.

The information throughput demand tends to track the capability, thus the factor Mp will be relatively independent of the frequency hopping bandwidth.

Two facts are obvious from the expression for λ .

<u>First</u>, the overlap probability, and thus interference probability is increased with short hop times. The first bracketed expression approaches the value P_t/H_t as the hop time approaches zero. This would imply that a minimum hop time would be a better requirement than would be a maximum hop time. Otherwise, a contest is likely to develop to optimize interference robustness by shortening the packet times. Wireless packet data systems are inefficient with very short packet times, thus a contest to match packet times to hop times would lead to inefficiency.

<u>Second</u>, increasing the frequency hopping bandwidth increases the interference potential. This is particularly severe when the victim bandwidth is low, as is the case for packet data frequency hopping systems conforming to the present bandwidth rules (such as those operating in accordance with the IEEE pp802.11 standard). The current rules require a 1 MHz maximum 20 dB bandwidth. Two frequency hopping systems complying with these rules have an interference bandwidth of less than 2 MHz even if the frequencies do not match. Widening the frequency hopping bandwidth to 5 MHz would increase the number of interference by a factor of at least 3.

Some examples of the overall effect are presented in section 5.

3.0 The Effect of the Interference Power Level

The number of transmitters in interference range of a victim packet transmission system operating in a common area depends upon the power level difference between the potential interferer and the potential victim. Lowering the WBFH power level is proposed as a means of equalizing the increased interference effect of a wider frequency hopping bandwidth. The relative power level effect on interference will be investigated here.

A transmitter will interfere with another system receiver if it is within the range in which the interference power it produces in the receiver exceeds the required carrier to interference power margin. This interference level depends in turn on the power level and transmission distance of the potentially interfered system. If the deployment area of

the interferer and victim system is smaller than the median interference area, then the majority of the transmissions will create interference. A reduced power level only helps to the extent that the reduced level reduces the interference area relative to the deployment area.

The dependence of the interference range on power level will be established.

Define the following additional parameters:

- $p_1 =$ the transmit power of system 1 (the interferer system)
- p_{21} = the transmit power of system 1 within the bandwidth of system 2 (the victim system)
- $p_2 =$ the transmit power of system 2
- γ_i = the required signal power to interference power ratio of system 2
- c = the system 2 transmission range (the communication range)
- r_i = the system 1 transmission range (the interference range)
- a_{22} = the transmit to receive power ratio at distance c (the system 2 range)
- a_{21} = the transmit to receive power ratio at distance r_i (the system 2 to system 1 range)
- α = the attenuation exponent.
- β = the proportion of interferer power within the bandwidth of the victim receiver.

$$\beta = 10 Log \left(\frac{B_h}{B_i}\right) \quad B_h > B_i$$

$$\beta = 0 \quad otherwise.$$

In the following, upper case letters will represent decibel quantities and lower case letters will represent ratios. That is,

- $\Gamma_i = 10 \text{Log} \gamma_i$,
- $A_x = 10Loga_x$ and
- $P_x = 10Logp_x$.

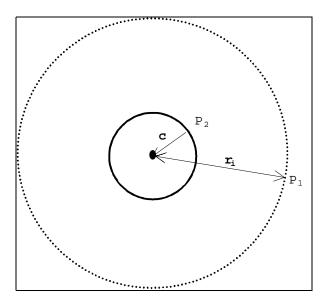


Figure 3-1. Illustration of the Interference Range Compared to the Communication Range

The dotted circle in figure 3-1 represents the interference range of a transmitter of power level P_1 to a receiver centered in a LAN cell when the transmission distance is c. The ratio of the interference range r_i to the communication range c will be examined.

The necessary condition for creating interference is

$$\frac{p_{21}a_{22}}{p_2a_{21}} \ge \gamma_i.$$

The attenuation exponent is commonly modeled as having a value of 2 up to a range of 5 to 10 meters and a larger value α beyond this range. In this model, with the $\alpha = 2$ range at 10 meters, the attenuation in deciBels can be expressed as

$$A(r) = A_f - 10\alpha + 10\alpha Logr + A_{\nu}, \qquad (3-1).$$

in which A_f is the attenuation at 10 meters and A_v is an approximately normally distributed random component with mean zero.

The condition for avoiding interference can be expressed in decibel quantities and reduced to

$$10\alpha Logr_{i} = 10\alpha Logc + P_{21} - P_{2} + \Gamma_{i} + (A_{\nu 2} - A_{\nu 1}).$$
(3-2)

On further reduction

$$\frac{r_i}{c} = 10^{\frac{P_{21} - P_2 + \Gamma_i}{10\alpha}} * 10^{\frac{A_{v1} - A_{v2}}{10\alpha}}$$
(3-3)

The first exponential is the median interference range to communication range ratio and the last factor (including the variable attenuation) is a random multiplier.

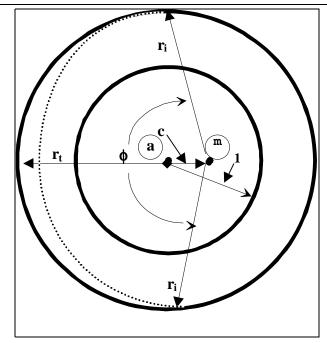
As an example, assume $\alpha = 3$ and $\Gamma_i = 13$ dB and equal power levels in each system. The median interference range is then 2.7 times the communication range. The mean transmission distance to the center of a centralized LAN cell is 0.75 times the cell radius. Thus, the median interference distance is approximately 2.7x0.75 = 2.0 times the cell radius and the median interference area is approximately 4 times the communication coverage area.

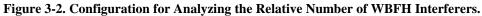
The effect of power level can better be illustrated by computing the proportion of WBFH devices in a typical deployment area that create interference to a victim transmitter-receiver combination. The victim system might be a wireless LAN system, but it may also be another type of packet based digital communication system.

Consider the region outlined in figure 3-2. Here potential victim devices and potentially interfering WBFH devices are evenly distributed over the area of radius r_t . The victim devices operate in a centralized mode in which all transmissions involve a centralized access point (a in the diagram) and a mobile device (m in the diagram). The inner concentric circle of radius 1 is the boundary of the victim system cell, that is, the victim devices within this circle communicate through the access point shown. A rectangular deployment area is more typical, but a circular deployment area and cell shape lends itself to a convenient evaluation and will serve to show the power level effect.

Building or office area size normally establishes the deployment area dimensions. Usually, a single cell will be sufficient to cover an area; a power level of 50 mW is sufficient to reliably cover a communication radius of up to 50 meters. The single cell deployment area case is represented by $r_t = 1$.

Figure 3-2 illustrates the following development.


Establish the proportion of interfering devices at a distance r_i from the mobile receiver (those within a small differential of the dotted line in figure 3-2). The receiver is a distance c from the desired transmitter. To do this rearrange equation 3-2 as follows.


$$A_{v1} - A_{v2} = A_{v1} = P_{21} - P_2 + \Gamma_i - 10\alpha Log\left(\frac{r_i}{c}\right)$$

This gives the necessary deviation from the mean of the two distance attenuation values to make the interference distance equal r_i when the communication distance is c.

 A_{v1} and A_{v2} are the fading and shadowing variation in attenuation. A_{v1} and A_{v2} are each approximately normally distributed with mean zero. The variance difference is the sum of the variances of each and the standard deviation is the square root of the variance.

Let the standard deviation of $A_{vt} = A_{v1} - A_{v2}$ be A_s . Then A_{vt}/A_s is a random variable of mean zero and standard deviation 1.

The mobile device (m) is receiving from the access point (a). The inner concentric circle is a centralized LAN cell for which the radius is normalized to 1. The deployment area is defined by the outer circle of normalized radius r_t . The normalized communication distance is c. The dotted line is a circular arc of radius r_i on which all WBFH devices are equidistant from the mobile receiver. Interfering and victim devices are evenly distributed within the area.

If the interferer bandwidth is greater than the victim bandwidth, the interferer power received by the victim is reduced by the bandwidth ratio factor β .

$$\beta = 10 Log\left(\frac{B_h}{B_i}\right) \quad B_h > B_i$$
$$\beta = 0 \quad otherwise.$$

Then $P_{21} = P_2 - \beta$ and

$$\mathbf{P}_2 - \mathbf{P}_1 = \Delta \mathbf{P}.$$

Using the above definitions, equation 3-2 can be rearranged to

$$\frac{A_{vt}}{A_s} = \frac{\Delta P - \beta + \Gamma_i}{A_s} - \frac{10\alpha}{A_s} Log\left(\frac{r_i}{c}\right)$$

The random variable A_{vt}/A_s has a mean of zero and a standard deviation of 1 and approximately obeys the normal probability distribution.

Define X as the right hand side of the equation

$$X = \frac{\Delta P - \beta + \Gamma_i}{A_s} - \frac{10\alpha}{A_s} Log\left(\frac{r_i}{c}\right)$$
(3-4)

Let $P_n(X)$ be the value of the normal distribution function for a variable of mean zero and standard deviation 1, then

$$P_n(X) = \Pr\left(\frac{A_{vt}}{A_s} > X\right)$$

equals the probability that a WBFH device at distance r_i will interfere when the victim communication distance is c. In other words, $P_n(X)$ is the proportion of devices at distance r_i which will have sufficient power level to interfere with the victim device when the communication distance is c.

If N_h is the total number of WBFH devices within the deployment area (the area bounded by r_t in figure 3-2), then the density of WBFH devices is $\frac{N_h}{\pi r_t^2}$. If these devices are evenly distributed, the number of devices within δr_i of the detted are in figure 3-2 is $\frac{N_h}{\pi r_t^2}$ (der δr_i)

the dotted arc in figure 3-2 is $\frac{N_h}{\pi r_t^2} (\phi r_i \delta r_i)$.

Further, the number which interfere with the mobile receiver $\left(\Delta N_{m}\right)$ is

$$\Delta N_m = \frac{N_h}{\pi r_t^2} \phi(r_i, c) r_i P_n(r_i, c, \Delta P, \beta, \Gamma_i) \delta r_i$$
(3-5)

The angle of the arc in figure 3-2 (ϕ) can be established to be

$$\phi = 2Cos^{-1} \left(\frac{r_i^2 - r_t^2 + c^2}{2r_i c} \right) \quad r_i \ge r_t - c$$

$$\phi = 2\pi \qquad r_i < r_t - c$$
(3-6)

Thus, the integral of equation 3-5 from 0 to r_t +c is the total number of WBFH devices that interfere with the mobile receiver when the communication distance is c.

When the LAN receiver is at the access point the number of devices that interfere is defined as N_a . In this case, ϕ is always 2π and the number of devices that interfere with the access point receiver is the integral of equation 3-5 from 0 to r_t with ϕ always equal to 2π .

The communication distance within the cell (c) is also a random variable and the number of interferers must be weighted by the probability density of c. This probability density is

$$\frac{p(x)}{\delta x} = \Pr\left(x - \frac{\delta x}{2} < c < x + \frac{\delta x}{2}\right) = 3x^2$$

The overall proportion of devices that interfere is determined by the double integral

$$N_x = 3 \int_c c^2 \int_{r_i} \Delta N_x(r_i, c, etc)$$
(3-7)

where x is either a or m.

Annex 1 gives the full equations and description of the numerical integration used.

In a typical centralized wireless LAN, such as an IEEE 802.11 standard LAN operating through an access point, the information flow is balanced to and from the access point. Some packets must flow in the opposite direction to the information flow, but these are supervisory packets and are of shorter duration than the information packet. The overall proportion of WBFH transmitters that interfere will be slightly higher because of the supervisory packet flow, however this increase will be small and it will be assumed here that the overall proportion is $(N_a + N_m)/2N_h$.

A graph of this quantity versus the power level related parameters is given in figure 3-3.

The parameters of the graph are typical values that can be expected in a relatively open office type environment. The propagation exponent α is typically about 3 in such an environment and this is used in the graph.

The attenuation variation about the regression value predicted by the exponent α is comprised of a variation due to shadowing and another due to multi-path fading. The typical variation due to shadowing is 3 to 4 dB and that due to fading is about the same. The fading component can be made negligible in the desired communication path by equalization and diversity techniques. So, a reasonable value of the overall standard deviation of the difference attenuation A_s can be derived by assuming three 4 dB components which add in an RMS manner. The value of 6.93 dB used in the graph is 4 times the square root of 3.

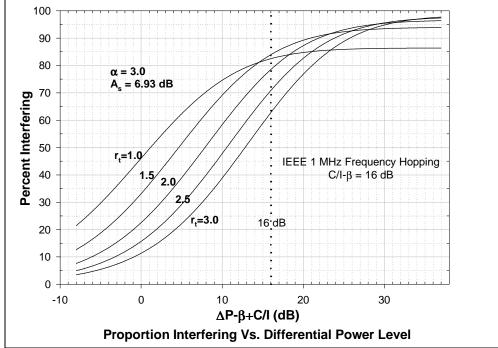


Figure 3-3.

This shows the quantity $(N_a + N_m)/2N_h$ for various ratios of deployment radius to cell radius. Typical values of the parameters α and A_s are used. The vertical dotted line at 16 dB corresponds to the case where an IEEE p802.11 standard frequency hopping wireless LAN victim system has the same power level as the interfering WBFH system.

The curves of figure 3-3 tend to become flat as the C/I requirement of the victim receiver increases. High C/I requirements are characteristic of systems with high modulation efficiency. Thus, the interference effect due to power level difference is relatively insensitive to reducing the interferer power level in high modulation efficiency devices.

4.0 Composite Interference Effect

The probability of packet overlap of a wide bandwidth frequency hopping system on a packet data system was developed in section 2 on the assumption of a fixed population of interfering transmitters all of which had sufficient power level to create interference. Section 3 then shows the effect of power level and bandwidth on the size of this population.

The overall packet interference probability can be considered to be the product of three factors

- 1. A factor dependent on the hopping frequency or period.
- This is the $(H_t+P_t)/H_t$ term of equation 2-1.
- 2. A factor dependent on the relative bandwidths. This is the $B_{ih}/Bt \approx (Bh+Bi)/Bt$ term of equation 2-1.
- 3. A factor dependent on the interference to victim power level ratio.

Equation 2-1 of section 2 gives the packet overlap probability (λ) dependence on the WBFH frequency hopping rate and bandwidth.

$$\lambda = Mp \left[\frac{H_t + P_t}{H_t} \right] \left[\frac{B_{ih}}{B_t} \right]$$
 and section 3 added the effect of power level.

The Hopping Frequency Factor

This is the factor $\frac{H_t + P_t}{H_t}$ of equation 2-1. This term increases with the hopping rate (1/H_t) of the interfering

frequency hopper. Increasing the bandwidth as proposed for the WBFH permits the hop time (H_t) to be lowered and thus permits a higher interference factor.

doc.: IEEE 802.11-99/205

The fastest hopping time is likely to be the amount of time necessary to transfer one packet of information. This will usually include an exchange of a long information packet and one or more short supervisory packets. The victim will be susceptible to interference on each packet transferred; if either packet is mutilated the information packet will need to be retransmitted.

Consider the time for the complete packet exchange associated with one information packet to be the packet time. It is reasonable to assume that the frequency hopper will hop as fast as practical and this is after each of its information packet exchanges². In this case, the hop time is the packet time of the frequency hopper. It is also reasonable to consider that both the hop time and the packet time is inversely proportional to the signaling speed. If each system uses packets containing the same amount of information (the same number of bits), then each would have a packet time bearing the same inverse proportionality to signaling rate.

Thus,

$$\frac{H_t + P_t}{H_t} = \frac{k/S_{ri} = k/k/S_{ri}}{k/S_{ri}} = 1 + \frac{S_{ri}}{S_{rv}}$$
. Sri and Srv are the signaling rate of the interferer and victim systems

respectively.

The IEEE p802.11 frequency hoping LAN has an upper signaling speed of 2 MB/s. This is two times the 20 dB bandwidth, thus it will be assumed that the signaling speed of a frequency hopper is $2B_h$ where B_h is the 20 dB bandwidth as in section 2.

The ratio of this factor with a hopping bandwidth of B_h to that when the bandwidth is 1 MHz is then

Hopping rate factor =
$$\frac{S_{rv} + 2B_h}{S_{rv} + 2}$$
.

Table 4-1 gives values of this factor for the current signaling speeds of the IEEE p802.11 standard.

 $^{^{2}}$ The IEEE p802.11 frequency hopping hop time is 100 milliseconds. This makes the hopping rate factor negligible and makes the standard frequency hopper friendlier to both other frequency hoppers and to direct sequence systems.

Victim	Frequency hopper	
signaling speed S _v (Mb/s)	bandwidth (B _h in MHz)	Hopping rate factor
any	1	1
1	3	2.33
2	3	2
5.5	3	1.53
11	3	1.42
1	5	3.67
2	5	3.00
5.5	5	2.07
11	5	1.75

Table 4-1: Values of the Hopping Rate Factor in Interference Probability The interference probability of a frequency hopping system is increased by this factor if the frequency hopping bandwidth is increased from 1 MHz to B_h , the frequency-hopping period is equal to an information packet transmission time and all packets contain the same amount of information.

Even at the highest signaling speeds now used, the hopping rate factor is very significant.

The Hopping Bandwidth Factor

This is the factor $\frac{B_{ih}}{B_t} \approx \frac{B_i + B_h}{B_t}$ of equation 2-1. The current frequency hopping bandwidth is 1 MHz and the total

hopping band (B_t) is proposed to stay the same for the WBFH. Thus, the ratio of the value of this term with a wideband frequency hopping system to the value with a 1 MHz bandwidth frequency hopping system is

Bandwidth factor =
$$\frac{B_i + B_h}{B_i + 1}$$
.

Table 4-2 compares this factor for the two bandwidths used in the IEEE p802.11 standard. The frequency hopping PHYsical layer (PHY), 20 MHz bandwidth is 1 MHz and the direct sequence PHY bandwidth is approximately 17 MHz.

Victim bandwidth (B _i)	Frequency hopping bandwidth (B _h)	Bandwidth factor
any	1	1
any	1	1
1	3	2.00
1	5	3.00
17	3	1.11
17	5	1.22

Table 4-2: Values of the Bandwidth Factor in Interference Probability

The interference probability of a frequency hopping system is increased by this factor if the frequency hopping bandwidth is increased from 1 MHz to B_h .

5.0 WBFH Interference to IEEE p802.11 Standard LANs

Wireless packet data systems conforming to the IEEE p802.11 standard for wireless LANs will be used as example systems to demonstrate the relative interference potential of wide bandwidth frequency hopping systems. The IEEE p802.11 standard specifies both a frequency hopping and a direct sequence spread spectrum wireless LAN PHYsical layer (PHY) using the 2.4 GHz band. Most systems now in operation follow this standard.

The IEEE direct sequence PHY uses a chip rate of 11 Mchips/second. The 20 dB bandwidth is not specified but is usually about 17 MHz. The direct sequence signaling speeds are 1, 2, 5.5 and 11 Mb/s. The frequency hopping PHY uses a 20 dB bandwidth of 1 MHz and signaling speeds of 1 and 2 Mb/s.

doc.: IEEE 802.11-99/205

The IEEE p802.11 wireless LAN products now typically use a power level of about 16 to 20 dBm even though the permissible level is 30 dBm. The lower power level is easier to generate and is sufficient for the inside communication distances for which the LANs are used. The petitioners seeking to increase the frequency hopping bandwidth propose to limit the WBFH power level to 23 and 25 dBm. Since this is above the levels now used, it will have likely have little effect on the WBFH power level. It can be expected that WBFH LANs will have about the same power level as current LANs if the power level limit is lowered.

This section evaluates the overall interference effect caused by increasing the frequency hopping bandwidth, taking into account the two factors of section 4 and the power level effect of section 3.

It can be expected that the most severe effect will be on 1 MHz bandwidth frequency hopping systems as opposed to that on the direct sequence systems. This is because the direct sequence systems have higher bandwidth and signaling speed and are more resistant to interference, that is, the interference distance of section 3 is lower.

Direct sequence spread spectrum systems are necessary, within the current rules, if signaling speeds above about 2 Mb/s are required.

Direct sequence systems are very sensitive to fast frequency hopping systems. The IEEE p802.11 standard uses slow frequency hopping which neutralizes the hopping rate factor between the IEEE p802.11 systems and thus makes the standard systems more compatible.

The hopping rate factor of table 4-1 is compared to a 1 MHz bandwidth system that also uses fast frequency hopping. The ratio would be much higher if a fast frequency hopping WBFH system was compared to the slow hopping system of IEEE p802.11.

IEEE p802.11 Frequency Hopping System

Widening the bandwidth without changing the interferer power level reduces the interference power level within a 1 MHz bandwidth frequency hopping receiver, thus β of section 3 is greater than 1 for a 1 MHz bandwidth frequency hopping victim. This power reduction factor (β) for the proposed interfering system bandwidths is

 $\beta = 0$ dB for the 1 MHz bandwidth,

 $\beta = 4.8 \text{ dB}$ for the 3 MHz bandwidth and

 $\beta = 7$ dB for 5 MHz bandwidth.

The IEEE standard frequency hopping LAN C/N requirement is 23 dB for 2 Mb/s and 20 dB for 1 Mb/s and the wide bandwidth signals intercepted by a narrow bandwidth receiver can be treated as gaussian noise. Thus, the C/I (Γ_i of the equations) requirement is approximately the same as the C/N requirement.

The probability of packet overlap is directly proportional to the bandwidth factor of table 4-2 times the hopping rate factor of table 4-1. The approximate value of the bandwidth factor for 3 and 5 MHz bandwidth systems compared to 1 MHz bandwidth systems is 2 and 3 respectively (table 4-2). The factor due to the potentially higher hopping rate can also be 2 or 3 respectively (table 4-1).

As an example, assume that the WBFH bandwidth is 5 MHz and the product of these factors is 3. This is the minimum value of the factor and would apply if the WBFH hop time effect was negligible due to a low hopping rate.

Refer to figure 3-3 to assess the power level effect.

For a total area equal to one communication cell ($r_t = 1$), 85.6 percent of the 1 MHz frequency hoppers will have high enough power level to interfere with the 2 Mb/s IEEE LAN ($\nabla P = 0$, $\beta = 0$ and C/I = 23 dB). 82.5 percent of the 5 MHz frequency hoppers will interfere ($\nabla P = 0$, $\beta = 7$ dB and C/I = 23 dB). Thus, the reduction in the proportion that interfere due to the reduced level of intercepted power is 82.5/85.6 = 0.96, provided the systems use the same power level.

However, three times as many devices of equal power level generate overlapping transmissions when the bandwidth is increased to 5 MHz. The proportion of devices with sufficient power level to interfere would need to be reduced to 1/3 to compensate. That is, the proportion interfering would need to be no more than 85.6%/3 = 28.5%. This would require a 21.0 dB power reduction in the 5 MHz frequency hopper transmitter relative to the 1 MHz system power level.

If the power level difference is 7 dB (as required by the proposed rules if all systems operate at maximum permissible power), the proportion of interferers becomes 72.6%. Thus, an increase of the bandwidth to 5 MHz accompanied by a 7 dB power reduction increases the number of interferers by at least a factor of 72.6x3/85.6 = 2.5.

Table 5-1 shows the shows the result of the above computation for a range of bandwidth and interference factors. The table shows the amount the WBFH power would have to be reduced relative to the 1 MHz bandwidth system power in order to maintain the same interference probability for the 3 and 5 MHz bandwidth systems as for a 1 MHz bandwidth system. The bandwidth-hopping rate factor applies to a 1 MHz bandwidth device with a C/I value of 23 dB. The bandwidth – hopping rate factor (column 3) is shown at an intermediate and a maximum value for each WBFH bandwidth.

The proportion of devices with sufficient power level to interfere decreases with larger deployment areas. However, even at very large deployment areas the increased bandwidth causes increased interference unless the power level of the WBFH systems is drastically lower than that of the 1 MHz bandwidth systems.

		Droduct of	
Tetal vedina te sell	Bandwidth ratio power	Product of bandwidth	Necessary
Total radius to cell	reduction factor β	and hopping	WBFH power
radius ratio (r _t)	(WBFH bandwidth)	rate factors	reduction
1.0	4.8 dB (3 MHz)	2	19.0 dB
1.0	66	4	> 26 dB
1.0	7 dB (5 MHz)	3	21.0 dB
1.0	٠٠	9	> 26 dB
1.5	$1.9 dD (2 MH_{\pi})$	2	14.5 dB
	4.8 dB (3 MHz)	_	
1.5		4	21.5 dB
1.5	7 dB (5 MHz)	3	13.5 dB
1.5	"	9	> 24 dB
2.0	4.8 dB (3 MHz)	2	11.5 dB
2.0	~	4	18.0 dB
2.0	7 dB (5 MHz)	3	13.5 dB
2.0	"	9	22.0 dB

Table 5-1: Necessary Power Level Difference to Equalize Interference Probability to a 1 MHz Bandwidth 2 Mb/s System.

The interference probability of a frequency hopping system of 3 and 5 MHz bandwidth is compared to that of a 1 MHz bandwidth system. The wider bandwidth system power level would need to be less than that of a 1 MHz bandwidth frequency hopping system by the amounts of the table if the interference potential is to be equalized. The victim system has a 1 MHz bandwidth and a 23 dB C/I requirement. These parameters approximately match the IEEE p802.11 2 Mb/s frequency hopping PHY.

Direct Sequence System

The IEEE p802.11 direct sequence PHY uses an 11 Mchip/second signaling rate and has a 20 dB bandwidth of approximately 17 MHz. Thus, the bandwidth factor affecting the number of overlapping transmissions is 1.11 and 1.22 for the 3 MHz and 5 MHz WBFH systems respectively (table 4-2) and the hopping rate factor is potentially 1.42 and 1.75 respectively. Thus, the potential bandwidth – hopping rate factor product is 1.6 for the 3 MHz bandwidth and 2.1 for the 5 MHz bandwidth.

A typical 11 Mb/s IEEE p802.11 direct sequence implementation has a C/N requirement of 12.5 dB and a C/I requirement for a single frequency tone of about 7 dB. When a constant amplitude interfering signal has a bandwidth in excess of that of the unspread direct sequence signal, the C/I requirement is higher than for a narrower bandwidth signal. Thus, the C/I requirement for a 1, 3 and 5 MHz bandwidth constant amplitude modulated signal is between 7 dB and 12.5 dB if the interfering signal is of constant amplitude. The requirement increases with increasing bandwidth.

There is no assurance that the WBFH system will use a constant amplitude signal. If the signal is not constant amplitude, the C/I requirement could be as high as the C/N requirement of 12.5 dB.

A C/I requirement of 10 dB will be assumed for comparison purposes. The interference effect would be worse if the WBFH signal is not of constant amplitude.

Table 5-2 shows the shows the amount the WBFH power would have to be reduced relative to that of a direct sequence system power in order to maintain the same interference probability for the 3 and 5 MHz bandwidth systems as for a 1 MHz bandwidth system. The bandwidth-hopping rate factor applies to device such as an IEEE p802.11 standard direct sequence PHYsical layer (PHY) with a bandwidth of 17 MHz, a signaling speed of 11 Mb/s and a C/I requirement of 10 dB.

Total radius to cell radius ratio (r _t)	Product of bandwidth and hopping rate factors	Necessary WBFH power reduction
1.0	1.6	10
1.0	2.1	13
1.5	1.6	7.0
1.5	2.1	10
2.0	1.6	9.0
2.0	2.1	8.5

Table 5-2: Necessary Power Level Difference to Equalize Interference Probability to a Direct Sequence Spread System.

The interference probability of a frequency hopping system of 3 and 5 MHz bandwidth is compared to that of a 1 MHz bandwidth system in which the victim system is a direct sequence spread spectrum system of 17 MHz bandwidth and 11 Mb/s signaling speed. The wide bandwidth frequency hopping system power level would need to be less than that of a 1 MHz bandwidth frequency hopping system by the amounts of the table if the interference potential is to be equalized. The victim system has a 10 dB C/I requirement. These parameters approximately match the IEEE p802.11 11 Mb/s direct sequence PHY.

The table does not take into account the effect of the higher C/I needed for wider bandwidth interferers. This effect is likely on the order of 1 to 3 dB. Thus, the overall effect is 14 to 16 dB on a direct sequence packet data system with the parameters used in the table. Other direct sequence systems may use lower bandwidth and higher C/I. The effect would be worse on such systems.

An increased bandwidth for a direct sequence system would harm the interference susceptibility from all frequency hopping systems; increasing the direct sequence bandwidth with higher spreading would not be of benefit. this would aid in the relative performance but worsen the overall performance.

Conclusions of Section 5

The specific systems evaluated serve to illustrate the effect of a wider frequency hopping bandwidth on a range of current packet data systems. The effect of increasing the frequency hopping bandwidth is most severe on the 1 MHz bandwidth frequency hopping packed data system because of the low bandwidth and the high C/I ratio. It is less on the direct sequence system because the bandwidth is higher and the C/I is lower for this system.

These specific systems are critical however. IEEE p802.11 has spent 8 years establishing these standards based on the current spread spectrum rules.

6.0 Summary and Conclusions

The effect of the frequency hopping spread spectrum bandwidth and hopping rate on interference generation was first analyzed separately form power level, then the effect of power level was investigated.

A particular physical configuration including a WBFH system and a potential victim system in a common area was analyzed for the influence of power level on interference. The necessary reduction in power level of a wide bandwidth frequency hopping system compared to a system following the current rule in order to maintain equal interference probability was evaluated.

Lowering the regulation limits by 5 to 7 dB for wider bandwidth frequency hopping, as proposed, will not ensure any relative power level reduction on current systems. Current spread spectrum wireless LANs utilize power levels 10 to 13 dB below the allowable limits. This is all that is necessary to operate at the normal inside ranges and propagation conditions now encountered. The regulations would need to lower the limits by at least 10 dB in addition to the values determined here in order to assure the interference potential of the wide bandwidth systems is not higher than that of the current rules.

It was shown that the interference potential increases with the frequency hopping rate as well as bandwidth; and a higher bandwidth permits a faster hopping rate. An upper limit on the frequency hopping rate would be better than a lower limit. The proper upper limit would lower the interference potential of 1 MHz bandwidth systems as well as that of higher bandwidth systems.

Lowering power has little effect on systems with high modulation efficiency. Such systems have a high C/I requirement and the median interference range exceeds most deployment area sizes.

Increasing the frequency hopping bandwidth to 3 or 5 MHz, as proposed, was shown to have a very severe effect on low bandwidth systems with a high C/I requirement such as systems conforming to the current frequency hopping rules. A packet data system conforming to the IEEE p802.11 frequency hopping standard was used as the example of such a system. The necessary power level reduction for this system with slow frequency hopping is on the order of 20 dB compared to a 1 MHz frequency hopping system. It is in excess of 26 dB for fast frequency hopping.

The effect on a typical direct sequence system was also evaluated. This was shown to be about 13 to 16 dB. Most of this effect is due to the potential effect of fast frequency hopping. There is a severe effect on direct sequence systems from any fast frequency hopping system. IEEE p802.11 alleviates this effect by requiring slow frequency hopping in the standard frequency hopping PHY.

Interference from any frequency hopping system to a direct sequence system increases with increasing direct sequence bandwidth, even though relative interference of wide bandwidth systems and 1 MHz bandwidth systems decreases with frequency hopping bandwidth. Thus, increasing the spreading gain is not a reasonable option for lowering the interference effect.

References

1. Effect of Overlapping Channels on WBFH Systems Reliability. Jim Zyren, Don Sloan and Ad Kamerman, doc.: IEEE p802.11-99/170, July, 1999.

Annex 1 : Evaluation of the Relative Numbers of Interferers

This section shows the detailed equations used to evaluate the proportion of WBFH devices that interfere as a function of the power level, bandwidth and victim receiver parameters. The parameters below are defined in the main text.

The quantity $P_n(X)$ is common to the equations for both the mobile and the access point victim devices in a centralized LAN cell. In each case

$$X = \frac{\Delta P - \beta + \Gamma_i}{A_s} - \frac{10\alpha}{A_s} Log\left(\frac{r_i}{c}\right) \text{ and }$$

 $P_n(X)$ is the normal probability distribution function for a mean of zero and standard deviation of 1.

The proportion of WBFH devices that interfere with the <u>mobile</u> device was evaluated using the following summation.

$$\frac{N_m}{N_h} = \frac{3}{\pi r_t^2 N_{mx} M_{mx}} \sum_{n=1}^{N_{mx}} (c)^2 \sum_{m=1}^{M_{mx}} (r_i) (r_i + c) \phi(r_i, c) P_n(X)$$
(A1)

in which

$$r_{i} = \frac{m - .5}{M_{mx}} (r_{t} + c),$$

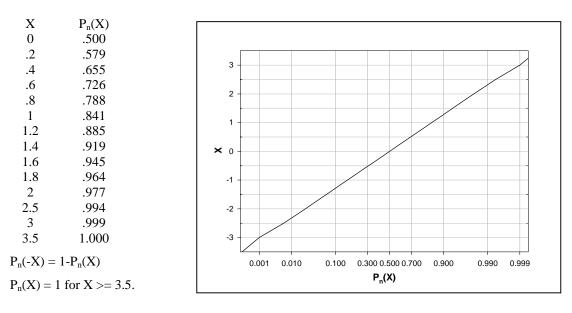
$$c = \frac{n - .5}{N_{mx}} \text{ and}$$

$$\phi = 2Cos^{-1} \left(\frac{r_{i}^{2} - r_{t}^{2} + c^{2}}{2r_{i}c} \right) \quad r_{i} \ge r_{t} - c$$

$$\phi = 2\pi \qquad r_{i} < r_{t} - c$$

 N_{mx} and M_{mx} determine the number of steps used in the numerical integration. Computations compared within 1% with N_{mx} , $M_{mx} = 10$ and 25. N_{mx} , $M_{mx} = 25$ was used in the evaluation.

The proportion of WBFH devices that interfere with the <u>access point</u> was evaluated using the summation.


$$\frac{N_a}{N_h} = \frac{6}{r_t^2 N_{mx} M_{mx}} \sum_{n=1}^{N_{mx}} (c)^2 \sum_{m=1}^{M_{mx}} r_i r_t P_n(X)$$
(A2)

in which

$$r_i = \frac{m - .5}{M_{mx}} r_t$$
$$c = \frac{n - .5}{N_{mx}}$$

Equation A2 differs from equation A1 in the definition of r_i and the fact that ϕ is a constant equal to 2π radians for the access point.

The table below was used to determine $P_n(X)$. Linear interpolation was used between the points of the table.

