May 2000

doc.: IEEE 802.11-00/069

IEEE P802.11
Wireless LANs

Proposal for extension of the IEEE 802.11b PHY to higher rates (>20Mbps)

Date: May 4, 2000

Author(s): V. S. Somayazulu, S. Kandala, J. M. Kowalski, C.K. Park

Sharp Labs. Of America, Inc.
5750 NW Pacific Rim Blvd., Camas, WA 98607
zulu@sharplabs.com, srini@sharplabs.com, kowalskj@sharplabs.com, cpark@sharplabs.com
Abstract

In this document, we propose a method to extend the IEEE 802.11b WLAN standard physical layer to achieve higher data rates, i.e., rates greater than 20Mbps. Specifically, we detail the proposal to achieve 22Mbps. Extensions to higher rates are feasible. Our proposal assumes the constraint that the payload modulation should continue to employ the CCK codes employed for the 5.5 and 11Mbps rates of IEEE 802.11b. This ensures that the receiver design is changed only in minor ways. An extension of the optional high performance PBCC mode to achieve higher rates is also described briefly.

Introduction

The IEEE 802.11b standard [1] is designed as a high rate extension to the basic IEEE 802.11 DSSS (direct sequence spread spectrum) WLAN standard. The basic 802.11 DSSS provides 1 or 2 Mbps rates, while 802.11b provides for 5.5 and 11 Mbps in addition, while maintaining some backwards compatibility.

In this document, we propose a method to extend the IEEE 802.11b WLAN standard physical layer to achieve higher data rates, i.e., rates greater than 20Mbps. Specifically, we detail the proposal to achieve 22Mbps. Extensions to higher rates are feasible. Our proposal assumes the constraint that the payload modulation should continue to employ the CCK codes employed for the 5.5 and 11Mbps rates of IEEE 802.11b. This ensures that the receiver design is unchanged, except in very minor ways. An extension of the optional high performance PBCC mode to achieve higher rates is also described briefly.

Proposal

The CCK codewords employed in 802.11b are 8 chips long, and encode 4 or 8 bits (for 5.5 and 11 Mbps respectively - thus the symbol rate is 1.375Ms/s). We propose that the higher rate extensions will use the same symbol rate and codeword length, and achieve higher data rates through bandwidth efficient multilevel modulation – in this case, M-PSK (M-ary phase shift keying). We assume the same structure for the CCK codewords (including cover code) as described in IEEE 802.11b, Sec. 18.4.6.5 and shown below:

c = {exp[j((1+(2+(3+(4)], exp[j((1+(3+(4)], exp[j((1+(2+(4)], -exp[j((1+(4)], exp[j((1+(2+(3)], exp[j((1+(3)], -exp[j((1+(2)], exp[j(1]} (1)
To achieve 22Mbps data rate with a symbol rate of 1.375Ms/s, e.g., we will need 16 bits per codeword. To encode these 16 bits with the four phase parameters (1, (2, (3, (4, each of the phase parameters must encode 4 bits, and thus each needs to be a 16-PSK symbol. We propose a mapping which is based closely on the 802.11b mapping, to obtain the phase values (i from the data bits d0 … d15. First, (1 is differentially encoded using the four bits d0 to d3 as shown in Table 1. Next, for each of the remaining phases (2, (3, and (4, we obtain the mapping from successive groups of 4 input bits d4 … d7, d8 … d11, and d12 … d15 respectively, as shown in Table 2.

Input bit pattern d0 to d3
Even symbols phase change
Odd symbols phase change

0000
0
(

0001
(/8
(+(/8

0011
(/4
(+(/4

0010
3(/8
(+3(/8

0110
(/2
(+(/2

0111
5(/8
(+5(/8

0101
3(/4
(+3(/4

0100
7(/8
(+7(/8

1100
(
0

1101
9(/8
(+9(/8

1111
5(/4
(+5(/4

1110
11(/8
(+11(/8

1010
3(/2
(+3(/2

1011
13(/8
(+13(/8

1001
7(/4
(+7(/4

1000
15(/8
(+15(/8

Table 1. Encoding for phase (1.

Input bit pattern d4(i-1) to d4(i-1)+3
Phase (i

0000
0

0001
(/8

0010
(/4

0011
3(/8

0100
(/2

0101
5(/8

0110
3(/4

0111
7(/8

1000
(

1001
9(/8

1010
5(/4

1011
11(/8

1100
3(/2

1101
13(/8

1110
7(/4

1111
15(/8

Table 2. Encoding for phases (2, (3, (4.

Finally, we observe that the minimum Euclidean distance of the 22Mbps rate 16-PSK CCK codewords as described above, normalized for the same Eb, is 1.56. For comparison, the minimum Euclidean distance of the 11Mbps rate codewords (normalized) is 4. This reduced minimum distance is expected, and will result in higher Eb/N0 requirement to meet the same PER requirement. We have ongoing work to describe the exact performance of the high rate extension scheme described above. Also, we note that we have considered only the same cover code as adopted in the IEEE 802.11b standard. We have ongoing work to determine if other choices for the cover codes will yield better distance properties for the 22 Mbps case.

Finally, we also proposing an optional mode in which the PBCC mode of IEEE 802.11b can be extended to provide high performance higher rate access. In the basic PBCC mode, the modulation used to achieve 11Mbps is QPSK in conjunction with a rate ½, constraint length 7 convolutional FEC. We propose to extend this in like manner by using 16-PSK modulation in conjunction with the same FEC code.

Fast Transform based receiver implementation

In this section, we present a scheme that builds on the fast transform based receiver scheme proposed earlier for 802.11b [2], and modifies it so that similar hardware can be used for the receiver for the 16-PSK CCK codes based proposal.

In the following, we first recapitulate the development of the fast transform based receiver for the QPSK based CCK codes, to motivate the development for the 16-PSK receiver. We first rewrite the expression for the 8-chip CCK codeword below:

c = {exp[j((1+(2+(3+(4)], exp[j((1+(3+(4)], exp[j((1+(2+(4)], -exp[j((1+(4)], exp[j((1+(2+(3)], exp[j((1+(3)], -exp[j((1+(2)], exp[j(1]}
Since (1 is common to all the chips, it can be factored out. The remaining codeword has three parameters, and in the case of the 5.5/11 Mbps standard, since the (i are 4-phase values, there are 43 = 64 different codewords with which one will correlate the received 8 chip signal vector. The codeword that yields the largest correlation is selected as the transmitted codeword. The phase (1 is decoded as the differential phase of the whole codeword compared with the previous codeword.

The 64 correlations of the codewords c with the received signal vector r can be performed in an efficient manner using the following decomposition:

c.r* = (ckrk* = Sum(M4 . M3 . M2 . r*)
where the Sum(.) function computes the sum of elements of its vector argument, and M4, M3, M2 are 8x8 matrices defined as below (Note: in these definitions, all off diagonal elements, which are not shown, are zeros):

 exp(j(4)
 exp(j(4)

 exp(j(4)

 exp(j(4)

 M4 = 1

 1

 1

 1

 exp(j(3)
 exp(j(3)

M3 = 1
 1

 exp(j(3)

 exp(j(3)

 1

 1

 exp(j(2)
M2 = 1
 exp(j(2)

 -1

 exp(j(2)

 1

 -exp(j(2)

 1

The product of these three matrices can be implemented as a butterfly/fast transform, as depicted in [2] and repeated in Figure 1, which is obtained by considering the four phase values for each of the (i.

Figure 1. Fast transform structure for 8 received QPSK chips (From [2]).

Extension of the above idea to higher rates

In this sub-section, we develop the extension of the above fast transform based receiver to 16-PSK CCK codes which we have proposed using for 22Mbps. In this case, the (i take on 16-ary values defined by the set:

S = {0, (/8, (/4, 3(/8, (/2, 5(/8, 3(/4, 7(/8, (, 9(/8, 5(/4, 11(/8, 3(/2, 13(/8, 7(/4, 15(/8}

We see that a straight-forward correlation of the codewords with the received signal vector would require 163 = 4096 correlators. Since it is desirable to use the existing receiver structure employing the butterfly operations described in the previous section as much as possible, we describe a means to achieve this end next. We decompose the set S into the following four sets:
S0 = {0, (/2, (, 3(/2}

S1 = {(/8, 5(/8, 9(/8, 13(/8} = (/8 + S0
S2 = {(/4, 3(/4, 5(/4, 7(/4} = (/4 + S0
S3 = {3(/8, 7(/8, 11(/8, 15(/8} = 3(/8 + S0

Noting that S0 is the same QPSK set that is used in the 5.5/11Mbps receiver, we can write the correlation between the codewords and the received signal vector as following, based on the decomposition described earlier:

c.r* = (ckrk* = M4 . M3 . M2 . r*
Here M4, M3, M2 are, once again, 8x8 matrices as before, but they have a slightly modified structure, as defined as below (Note: in these definitions, all off diagonal elements, which are not shown, are zeros):

 exp(j((4+(4)
 exp(j((4 +(4))

 exp(j((4 +(4))

 exp(j((4 +(4))

 M4 = 1

 1

 1

 1

 exp(j((3 +(3))
 exp(j((3 +(3))

M3 = 1

 1

 exp(j((3 +(3))

 exp(j((3 +(3))

 1

 1

 exp(j((2 +(2))
M2 = 1

 exp(j((2 +(2))

 -1

 exp(j((2 +(2))

 1

 -exp(j((2 +(2))

 1

Here, each of the three (i take on one of 4 different values in the set {0, (/8, (/4, 3(/8} independently for each butterfly stage, for each combination of ((2, (3, (4), thus creating 43 = 64 different combinations of the 64 length correlations, which gives us the overall 4096 correlations for the 22 Mbps high rate extension.

Based on the above decomposition, there are two different possibilities for the implementation using similar butterfly to that used in the 802.11b receiver:

1. The received signal vector is multiplied (“pre-weighted”) with the 64 combinations defined by the triple ((2 ,(3 ,(4) and each time is presented to the same butterfly/fast transform hardware as in the 5.5/11 Mbps receiver. The “pre-weighting” vector has the same structure as the codeword in Eq. (1), except that the (i are replaced by (i. The largest result for each presentation is stored, and in a second step, the largest among this set of “local” maxima is selected, and the data bits are decoded from the associated (i and (i values for that maximum correlation result.

2. The butterfly/fast transform hardware is changed so that each stage of the butterfly has an additional “twiddle factor” exp(j(i) (multiplying the existing +/- 1, +/- j twiddle factor) which takes on one of four values as described above. The 64 combinations are produced by systematically stepping through all possible values for each (i and storing the largest of the 64 correlations that result at each step. In a second step, the largest among this set of “local” maxima is selected, and the data bits are decoded from the associated (i and (i values for that maximum correlation result. This is shown in Figure 2. Also, in Figure 3, the modified ‘butterfly’ structure for an example 2-chip buttefly is shown.

Conclusion

We present a proposal to extend the IEEE 802.11b standard to higher rates such as 22 Mbps (the example given here), through the use of bandwidth efficient higher level modulation. The receiver structures used for the IEEE 802.11b standard are preserved, and only minor changes (to accommodate 16 level as opposed to 4 level decision making) are required.

References

[1] IEEE 802.11b standard, “Higher Speed Physical Layer in the 2.4 GHz Band”.

[2] IEEE 802.11-98/331 “Harris/Lucent Description: Additional Covercode and fast transform detail”, Sep. 15, 1998.
 1 4 16 64

 (2 (3 (4
Figure 2. Complete fast transform structure for 8 received 16-PSK CCK chips for 22 Mbps. This transform is used on 8 samples output from the channel matched filter. (i are changed sequentially to cover all 64 possible values for the triple ((2 , (3 , (4) for this case. The all zero value triple is used for the 5.5/11 Mbps case.

8 Chip Butterfly ((4)

4 Chip Butterfly ((3)

2 Chip Butterfly ((2)

Select Largest Correlation Value

 8 Sample Input

2 Chip Butterfly ((2)

4 Chip Butterfly ((3)

2 Chip Butterfly ((2)

2 Chip Butterfly ((2)

1 4 16 64

8-Chip Butterfly

4-Chip Butterfly

4-Chip Butterfly

2-Chip Butterfly

2-Chip Butterfly

2-Chip Butterfly

2-Chip Butterfly



Figure 3. Modified 2-Chip Butterfly

j

1 -je

j

1 -e

j

1 je

j

1 e

Sample 1

Sample 2

Submission
page 2
V. S. Somayazulu et. al., Sharp Labs COMMENTS * MERGEFORMAT

