September 2000

doc.: IEEE 802.11-00/277

IEEE P802.11
Wireless LANs

A Channel model implementation in OPNET for simulation of the IEEE 802.11 MAC

Date:
September 18, 2000

Author:
S. Kangude, E. R. Green, and V. S. Somayazulu

Intel’s Architecture Labs.,

 2111 NE 25th Ave., Hillsboro, OR 97123

Phone:

Fax: 503-264-3483

e-Mail: s.kangude@ieee.org, evan.r.green@intel.com, v.srinivasa.somayazulu@intel.com

Abstract

This document describes the work done at Intel on the standard (July 2000 release) 802.11 models of OPNET. Changes were mainly made to incorporate a channel model decided jointly by the ad hoc simulation group (AHSG). Some changes were made in the MAC process model to accommodate the developed channel model. The original MAC process model was designed with certain wrong assumptions and some other bugs were found. A couple of them have been fixed. This document comes with the work still in progress, with work remaining in integration of the channel models with the work done by AT&T and Philips on the MAC model. An OPNET project is available for release, which contains the model as it stands. The rest of the document is a list of changes made and the reasons thereof.

Introduction

The changes described in this document are all based on the July release of the OPNET standard 802.11 models. The first

Changes in node model at the structure level

a. Model attributes

1) “err_stt_var”: Integer with a default value of 0. It is used as the variable global to a node. It is the variable through which probabilistic channel model is implemented. The variable is always ‘0’ or greater. Any independent two state markov error process just adds ‘1’ to, or subtracts ‘1’ from the variable. Whenever a process transitions to a state denoting ‘error’, it adds ‘1’. On transition to the state of no error, it subtracts ‘1’. Whenever the attribute is ‘0’, all good packets are transparently sent to the upper layer. For positive values of the attribute, all packets received are marked bad and sent up to the MAC to be rejected. The attribute is thus the communication mechanism between, the error processes and the pipeline stages of the receiver module. Error processes write to it, while pipeline stages read it. Multiple error processes write to the same variable, and that is how the logical ‘or’ function of all the error processes is realized. Some more on this under error process modules.

2) “in_tx_state” : Integer with a default value of 0. Values possible are ‘0’ or ‘1’. This attribute denotes whether the MAC process is in ‘TRANSMIT’ state or not. ‘1’ means transmitting, ‘0’ means not. This attribute is again used as a communication mechanism between pipeline stages and MAC process model. The MAC process sets and resets the attribute while entering and exiting ‘TRANSMIT’ state respectively. Whenever a packet begins reception at a node, the ‘channel match’ pipeline stage sets a ‘transmission data attribute (TDA)’ in the packet to the value of ‘in_tx_state’. So, for all packets that are validly received by the last pipeline stage, the TDA is looked at. If it is ‘1’, then the packet is destroyed without reporting anything to the MAC. If it is ‘0’, then the packet is cleared for sending up by this function. This is done to properly reject any packet receptions during ‘TRANSMIT’ state. This function replaces the original OPNET function implemented through a flag called ‘rcvd_bad_packet’. This function was erroneous. It rejected the next packet received after the end of ‘TRANSMIT’ state, if the channel went busy during a transmission. Note that the channel going busy is no indication that a valid packet will be received. Some packets behave as noise. Also, in overlapping BSSs, multiple packets can begin reception during transmit state, and only one will get rejected according to original OPNET code. OPNET by default has a full duplex transceiver. We have to code it further to make it half duplex as in 802.11, and hence the above.

3) Other attributes that need to be set at each node before beginning simulation: Most of these are promoted attributes from process models in the node model. Three new attributes appear here for every ‘probabilistic error module’ put in the node model. Each such module runs the same process “sk_gen_err_model”, but with different parameters. And these parameters are what the three attributes as above denote. The attributes are as follows.

‘model active’ is Boolean enabled or disabled. It defines whether the module will function as ‘error process’ or will do nothing.

‘Error state- on duration distribution’ is distribution specified along with mean and/or variance. It is the distribution that determines the duration for which the error state is ‘on’.

‘Error state- off duration distribution’ is similar to the one above. The difference is that it determines the duration for which the error state is ‘off’.

b. Modules added in the node model:

In the current node model, there are two new modules. Both of them are totally disconnected from the rest of the model. They run the same process model but with possibly different parameters. These modules are optional. We can have ‘0’ or any number of such modules, each representing one error process. The inherent process is a two state markov chain process, which alternates between ‘error’ state and ‘no error’ state. In each state, the time to exit from the state is computed and a self-interrupt scheduled for that time. On every such self-interrupt, the state is changed. The ‘err_stt_var’ attribute is increased by ‘1’ on entering the ‘error’ state and is decreased by ‘1’ while going back to ‘no error’ state. All receptions when the ‘err_stt_var’ > 0, are considered erroneous. ‘err_stt_var’ is greater than ‘0’ if at least one of the error processes is in error state.

c. Statistic wires between receiver module and MAC module:

The falling edge interrupt is also enabled now. All the four statistic wires carry the channel busy/idle information for the different channels. Initially, the statwire was set to give an interrupt only on going high from a low. That is, only when the channel went busy from idle. The original MAC was not coded to have situations where the packet reception ends but the channel remains busy still, because of some other transmission somewhere, may be far of. To distinguish between end of packet reception and the channel going idle after being busy, the falling edge interrupt was also enabled for the statwire. This interrupt thus denotes the instant when the channel goes idle after being busy.

d. Packet streams between receiver and MAC modules:

A delay of 1e-10 seconds is introduced in the four packet streams. This is done to separate the interrupts denoting the channel going idle and packet reception, whenever they happen at the same time. The packet reception interrupt is delayed by an insignificant amount of time here. The time is so less that it does not affect any statistics. The two interrupts were required to be separated because the MAC process uses both of them, and unless separated, their order of execution is random. This leads to unexpected situations. Now, there is better control over code execution. This change had to be done following the change above in the statwire attribute.

Finally, the MAC process module was changed to fix some bugs and make it amenable to the new channel model.

Changes in the pipeline stages.

Major changes were made in the pipeline stages for the new channel model and for fixing a bug in the model. The changes are listed as below.

a. Receiver group: ‘sk_wlan_rxgroup’.

This stage now includes all nodes except the transmitting node in the receiver group. This stage is executed only once for each transmitter, in the beginning of simulation. Determines which all receivers will be included for the rest of the pipeline stages. Current code implies that a node will never receive a packet it transmits. Its pipeline stage will not ever know that a packet was on the medium.

b. Channel match group: ‘sk_wlan_chanmatch’.

There were major changes made in this stage. For every transmitted packet, for every receiver, the following is done.

Firstly, based on the value of the node attribute ‘in_tx_state’ (described earlier), a transmission data attribute (TDA) with index ‘MAX_INDEX +1’ is set. The attribute value is directly copied to the TDA. If the value is ‘1’, the current receiver node is in the transmit state, and hence this packet will be destroyed for this particular receiver in the later stages of the pipeline. If it is ‘0’, the packet will not be destroyed because of THIS function.

Secondly, based on the distance between the two nodes (transmitter and receiver), the ‘TDA_RA_MATCH’ reserved TDA of the packet is set to either ‘VALID’, ‘NOISE’, or ‘IGNORE’.

If the distance is more than the simulation attribute value of ‘Wireless LAN range’, then the match status is marked ‘IGNORE’. This means rest of the pipeline stages will not be executed for this packet (uniquely identified by packet, the transmitter, and the receiver). ‘IGNORE’ means no effect on the receiver.

If the distance is less than the above, but is greater than the simulation attribute value of ‘Clear reception range’, the match status is marked as ‘NOISE’. This means that pipeline stages till power stage will be executed for this packet. Such packets will cause the channel busy statistic to reflect their transmission. Their received power level is also calculated and then added as noise power for other valid transmissions. No packet reception occurs. These are packets whose presence is detected, but their contents cannot be read.

If the distance is less than the simulation attribute value of ‘Clear reception range’, the match status for the packet is marked as ‘VALID’. This implies it behave as a proper reception, with all pipeline stages getting executed for the packet. If the last pipeline stage decides to accept the packet (based on errors or other information, the packet will eventually be sent to the higher layer.

Other changes to this pipeline stage may include initializing certain TDAs to 0. And in future, it may include marking packets as noise based on name of transmitter node. This would help including dummy bluetooth or other interfering transmitters in the simulation.

c. Received power: ‘sk_wlan_power’.

This stage does the following on every invocation of its execution.

Firstly, it reads the values of the simulation attribute ‘Transmitted power’ and ‘Path loss exponent’. It then extracts the distance between the transmitter and receiver nodes concerned. Based on the values of transmitted power, path loss exponent and distance between nodes, the received power is calculated and written into the corresponding TDA of the packet. This TDA value is used by the later pipeline stages in calculating SNR. The SNR formula can be found in the code file.

d. Background noise: ‘sk_wlan_bkgnoise’.

This stage does not do anything in the new code. It merely assigns the background noise average power to ‘0’. Hence, background random noise power does not go in SNR calculations.

e. Interference Noise: ‘sk_wlan_inoise’.

This stage is not changed. It adds the interference noise powers of all the interfering packets. (Received power of different packets is added).

f. SNR: ‘sk_wlan_snr’. Not changed.

g. Bit error rate (BER): ‘sk_wlan_ber’.

In the new code, this stage does the following. It gets the value of ‘SNR threshold’ simulation attribute. If the value of SNR (calculated in the stage above) is more than ‘SNR threshold’, the BER is assigned the value of ‘0’, otherwise the BER is assigned the value of ‘1’. Hence, in segments of time, when there is an overlap of packets, and the SNR threshold condition is not met, all bits will be considered erroneous. Although this may seem strange, the model is just supposed to find if there are any errors or not. As we shall see in the next two stages, if the packet has any errors, the MAC should reject it as erroneous, so the actual number of errors is not important.

h. Error stage: ‘sk_wlan_error’.

This stage has not been changed. Depending on the BER for a packet for different segments of time, this stage calculates number of erroneous bits. It uses the value of data rate, time of segments, and BER. The code for the stage has not been changed. However, because of how the stages above are coded, the BER will be only ‘0’ or ‘1’. Hence, either all or none of the bits in the segment will be counted as errors.

i. Error correction stage: ‘sk_wlan_ecc’.

The changes in this stage are very important. Here, the pipeline finally decides whether to accept the packet or not, based on the results of other stages. The pipeline in 802.11 models can do three things. First, send the packet to the upper layer as a valid packet. Second, send the packet to the upper layer with the ‘accept’ field equal to false. This amounts to telling the upper layers that the packet has errors and they should reject it and do the needful. Third, the packet can be destroyed in this last pipeline stage and the upper layer is not sent any interrupt regarding the handing over of packet from PHY to upper layer. However, in the 802.11 model, the MAC does get the statwire interrupts whenever channel goes from busy to idle or idle to busy. These are used appropriately, but are different from end of packet reception interrupt. No packets are involved in the statwire interrupts.

The new code does the following. It gets the value of TDA with index ‘MAX_INDEX +1’. This TDA was set by channel match stage earlier. It (the TDA) notifies the last stage, whether the packet reception started with the MAC state machine in the ‘TRANSMIT’ state. If this TDA is one, it implies that the packet should not be received, as it is supposed to have started reception when the node was transmitting. If such is the case, then the packet is destroyed by the stage, and no interrupt is sent up to the MAC. If the TDA is ‘0’, then the stage will definitely send the packet to the MAC, with accept field as ‘true’ or ‘false’. If the ‘accept’ filed is true, the packet is accepted as valid by MAC, else it is rejected and appropriate action (EIFS etc.) taken.

The code also gets the value of the node attribute ‘err_stt_var’. This is the variable global to the node and written to by different probabilistic error processes as discussed earlier. If the value of the variable is greater than ‘0’, the accept field is marked as ‘false’. Else, if the value of TDA (transmission data attribute) ‘NUM_ERRORS’ is greater than ‘0’, the accept field is assigned the value ‘false’. And then the packet is sent up to the MAC. ‘NUM_ERRORS’ is the TDA to which the previous stage (‘Error stage’) writes the number of errors it computes. If both the ‘err_stt_var’ and ‘NUM_ERRORS’ are ‘0’, the accept field is marked as ‘true’ and sent to the MAC to be accepted as valid.

Thus this last stage ‘implements’ the logic of probabilistic error models, event driven SNR based error models and also the logic of not receiving while transmitting.

Changes in MAC process model:

The MAC process model was changed a little. It was not coded to suit the channel model coded and some bugs were identified. The main problem was that the original OPNET code made a few wrong assumptions about transmissions. Specifically, if a transmission began and there wasn’t a collision, the transmission was assumed to always end with a valid packet reception. In the new scenario of our channel model, packets classified as ‘NOISE’ cause channel busy attributes to change, but no valid packet is received. We discuss the issues, as we list the changes here. It should be noted that more changes might be required. Specifically, the current changes that we have made just discard a packet from other BSSs. Proper NAV setting etc. is not taken care of. Other contributors have hopefully done some of these.

a. Simulation Attributes: Four more simulation attributes were added in the process model interface. The simulation attributes are attributes/variables that are global to the simulation instance. The added attributes are used in the pipeline stages as already described and are ‘Path loss exponent’, ‘Transmitted power’, ‘SNR threshold’, and ‘Clear reception range’. Some of these attributes can be made node attributes and code in pipeline stages can be slightly modified to have similar or slightly enhanced functionality.

b. State machine outline: Condition for transition from ‘BACKOFF’ state to ‘DEFER’ state changed from ‘FRAME_RCVD’ to ‘RECEIVER_BUSY_LOW’. ‘REC … LOW’ means an interrupt meaning channel going from busy to idle. The reason is that once a channel going busy (from idle) interrupt is received, the back off should be suspended in the ‘BACKOFF’ state until the channel becomes idle again. Then we ‘DEFER’ for DIFS or EIFS etc. and continue backoff from where we suspended. So the transition should be conditioned on channel going idle, rather than packet reception. For the packets that get classified as noise in the pipeline stages, the ‘FRAME_RCVD’ interrupt will never be received. So we might enter into wrong states in the original process model. Also, in the case of overlapping BSSs or otherwise, we might get FRAME _RCVD interrupt without having the channel idle. In such cases, one should not transition to DEFER still. And hence our change is even more required.

c. Temporary variable block: An integer ‘tx_on’ is added. Used to get the value of the node attribute ‘in_tx_state’ inside the process.

d. No changes in state variables or header block.

e. Function block:

Line 1178 commented out as we are not using ‘wlan_flags->rcvd_bad_packet’. The use of this flag has been commented out at a couple of places, and is marked by ‘shantanu’ in the comments. This flag was used to not allow reception while in ‘TRANSMIT’ state. The flag was marked true whenever the channel went busy from idle, when the state machine was in the ‘TRANSMIT’ state. The idea was to reject the next received frame and then mark the flag back to false. The idea did not work if multiple packets started reception at a node while it was in the TRANSMIT state. Only one would be rejected. Also, if the packet that made the channel busy was marked as noise by the pipeline stage, it will not cause a frame to be passed to the MAC and the next possibly valid packet will be rejected wrongly. To fix this, the node attribute ‘in_tx_state’ is used along with some code change in the pipeline stages as already discussed. The TDA with index ‘MAX_INDEX + 1’ is used to communicate as also already discussed.

Line 1674 else statement is modified to allow packets from other BSSs and to avoid the aborting of simulation in case such packets come. Some more attention is required in this area, and probably AT&T’s code will modify this particular function properly.

f. WAIT_FOR_RESPONSE state:

Exit execs: Lines 5,6,7 - The condition has been changed to only FRAME_RCVD and the frame timeout event handle being valid. With the channel getting in to busy state because of ‘noise packets’ also, we suspend the timeout count only if a frame is received and not otherwise. To give a ‘breathing room’ in the timeout period for actual reception of frame, an extra ‘air_propagation_time’ amount of time is added to the timeout. This small extra time in the timeout doesn’t affect the functionality at all. So effectively, a frame reception ‘ends’ in the timeout period, or we timeout. Channel going busy doesn’t affect.

g. BACKOFF state:

Exit execs:

Line 24 – FRAME_RCVD has been changed to RECEIVER_BUSY_LOW. The piece of code here had bugs in the original version. This is executed as we come out of the backoff suspended state to defer for DIFS/EIFS etc., before continuing the backoff. Since a channel may remain busy even after a frame (good or bad) reception, the condition should rightly be receiver going low. ‘Noise packets’ may be the chief cause of such effects. Backoff timer now remains frozen till the channel goes idle again.

Line 31 – This line has been commented out. It was wrongly computing the backoff slots again, when coming out of backoff suspended state. The backoff should continue from where it left, and one should not re-compute the time to backoff.

h. TRANSMIT state:

Enter execs:

A few changes were made here to correct the code and to not use ‘rcvd_bad_packet’ flag. The flag was used in the original code to prevent receptions while transmissions. But it did not do the job correctly as explained earlier.

Whenever entering this state, the code does the following. First, it reads the value of ‘in_tx_state’ node attribute. The value of this attribute tells whether the node was in ‘TRANSMIT’ state before this transit into ‘TRANSMIT’ state. That is, if ‘in_tx_state’ is ‘1’, then this transition is a self-transition back into ‘TRANSMIT’ state. Else if it is ‘0’, then it is a transition from another state into ‘TRANSMIT’ state.

Once the code gets the value of ‘in_tx_state’, it does the following.

If in_tx_state is ‘1’, then do nothing and just stay in the state. The ‘wlan_interrupts_process’ takes care of the interrupt while exiting. Note that this transition is a self-transition back into ‘TRANSMIT’ state. The node attribute remains ‘1’ as the node is still transmitting. If the node weren’t still transmitting, the transition would have been to a different state.

If ‘in_tx_state’ is ‘0’, then set ‘in_tx_state’ to ‘1’. The node attribute specifies if the node is transmitting. The pipeline stage can read the value of this node attribute and mark packets not to be received while the node is transmitting. This transition means start of transmission.

Exit execs:

Line 7 is commented out, as we are doing nothing with the ‘rcvd_bad_packet’ flag in the new code. The reason is explained earlier in the document.

Line 15 – While finishing transmission, we set the node attribute ‘in_tx_state’ back to ‘0’. The pipeline may now start accepting packets again.

Lines 19 to 23 - The variable ‘rcv_idle_time’ stores the value of time when the medium became idle last. In the original code, the variable was assigned the value of time when the transmission ended. However, the medium may not become idle once a node finishes transmission. There might be transmissions from other BSSs and ‘noise packets’ which might cause the medium to remain busy even after the transmission ends. So, in the new code, the variable is assigned the current time only if the medium is idle. The value of RECEIVER_BUSY_INSTAT is ‘1’ if the medium is busy. Else it is ‘0’. Note that transmissions from a node do not cause this statistic to show busy for the same node. This is because the ‘receive group’ pipeline stage excludes a station from receiving whatever the same station transmits.

Lines 28 to 33 have been commented out. We are not using the ‘rcvd_bad_packet’ flag.

Conclusion and future possibilities

The code change documentation as above is just a list of changes and brief reasons thereof. Work on integration of the channel models with the work on the MAC performed by Philips and AT&T is yet to be completed.

The channel model as it stands today, can support external noise sources. That is, external elements like bluetooth node or microwave oven that emit in the same band as 802.11 nodes. The only change that the channel model needs is the following. The channel match stage of pipeline can look at the source of a transmission, and classify packets as ‘noise’ if they come from noise sources. The noise source node names can begin with a particular string/s. The channel match stage matches this string with the name of the source of each transmission. And then classifies packets as ‘noise’ if the match is there. The noise source nodes also need to be coded. It is a potential enhancement to the code discussed here.

Submission
page 9
S.Kangude et. al, Intel

