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Measurement Procedure 
by Andy Molisch and Johan Karedal 
 
Multipath profiles are to be measured at various locations, so that the statistics can be 
determined. We have to distinguish four different scales: 
 
1) Small-scale fading: 
In order to determine this, a sufficient number of measurement points has to be taken in an 
area where large-scale parameters like shadowing are identical. Experience shows that 
some 50 measurement points per area are a minimum. the measurement point must be 
spaced lambda/2 or more apart, to allow the measurement points to experience independent 
fading (though for a small angular spread, this is not guaranteed with this spacing). The 
different realizations of the channel can be achieved by moving either the TX and/or the 
RX. Note that if the measurements are done in the 100-900 MHz range, it might be difficult 
to fit 50 measurement points into a small-scale area when only one of the link ends is 
moved. It is also important that the statistics within the measurement area are stationary. 
For example, the situation should not occur where one measurement point has a LOS, while 
another is shadowed behind an obstacle. 
 
2) Large-scale fading: 
Different areas within one building should be measured, that are far enough apart that 
large-scale propagation processes (including shadowing) are different from area to area. 
However, the absolute distance between TX and RX should be the same for the different 
areas. 
 
3) Large-scale areas with different distances between TX and RX should be measured. 
 
4) Variations from building to building should be measured. 
 
The statistics for all of the different scales should be extracted. 
 
When measurements of the angular spectra are also desired, this complicates the situation. 
The reason for this is the different requirement for the spacing of the (small-scale) 
measurement points. For the extraction of the small-scale statistics, we want the 
measurement points as far apart as possible - at a minimum, lambda/2 for the LOWEST 
involved frequency. For the determination of the angular spectra, we need the measurement 
points no farther apart than lambda/2 for the HIGHEST involved frequency. The main 
emphasis of the measurements for the 4a channel model will lie on the small-scale statistics, 
not on angular spectra. 
 
 
 



*********************************************************** 
 
Parameters that must be determined 
   -  Frequency range 
   -  Number of frequency points 
   -  Number of array elements 
   -  Array element spacing 
   -  Transmit power 
   -  Number of measurement points 
   -  IF bandwidth 
   -  Estimated runtime for one measurement 
 
Equipment to bring 
 
   -  Network analyser 
   -  Spectrum analyser (to check interference level) 
   -  (At least) 2 HF antenna cables of desired length – with calibration (attenuation) curves 
   -  2 antennas - with calibration curves 
   -  2 virtual arrays -with stepper motors 
   -  2 tripods of the same (achievable) height 
 
Information of the measurement site 
 
   -  Maps - with lengths, scale and material information 
   -  Pre-determined measurement positions, marked on the map 
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Small Scale Fading Phenomena in Ultra-Wideband
Channels: Channel Sounding and Signal Processing

Ulrich G. Schuster,Member, IEEE,

Abstract— The abstract goes here.

I. I NTRODUCTION

NO introduction available yet — let’s get down to business
immediately.

II. L INEAR TIME VARYING SYSTEMS

Modeling Radio channels is a complicated task. The com-
plexity of the solution to Maxwell’s equations needs to be
reduced to a couple of parameters and some mathematically
amenable formulas. The two most important steps towards
this goal are the assumption of a linear channel and the
description by stochastic methods. Linearity follows from
Maxwell’s theory as long as the materials are linear. This is a
good assumption in general. A stochastic description helps to
overcome the complexity of the real propagation environment.
The tradeoff here is between the optimal utilization of site-
specific propagation features and system robustness. A system
designed with full knowledge of the propagation conditions
at a certain site would be able to exploit these conditions,
resulting in superior performance, whereas a system design
based on a stochastic channel model will only achieve average
performance — but it will achieve this performance at a wide
variety of sites whereas the former will not.

A. The System Functions

The most general description within the framework outlined
is thus a stochastic linear time-varying (LTV) system. In a
classical paper, Bello [1] derived the canonical representation
in terms of system functions. The input-output relation is
described by the two-dimensional linear operatorH with
kernelh0(t, t′) as1

y(t) = (Hx)(t) =
∫

h0(t, t′)x(t′)dt′. (1)

The kernel represents the response of the system at timet
to a unit impulse launched at timet′. A more convenient
representation for the following derivations can be obtained
by changing the time origin2:

h(t, τ) = h0(t, t− τ), (2)

Ulrich G. Schuster is with the Communication Technology Laboratory,
Swiss Federal Institute of Technology (ETH), Zurich, Switzerland. Email:
schuster@nari.ee.ethz.ch

1Unless otherwise indicated, integrals are from−∞ to +∞.
2The following choice of the time origin is just one possibility. For an in

depth discussion see the report by Artés et al. [2]

representing the response of the system at timet to a unit
impulse launchedτ seconds earlier. This representation is
commonly referred to as thetime-varying impulse response.
The input-output relation now reads

y(t) =
∫

h(t, τ)x(t− τ)dτ. (3)

Equivalent representations can be obtained by Fourier trans-
forms of the time-varying impulse response.

LH(t, f) :=
∫

h(t, τ)e−j2πfτdτ (4)

SH(ν, τ) :=
∫

h(t, τ)e−j2πνtdt (5)

HH(ν, f) :=
∫

h(t, τ)e−j2fτe−j2πνtdtdτ (6)

where LH is often referred to as thetime-varying transfer
function or Weyl Symbol, SH is denoted the(delay-Doppler)
spreading functionandHH theoutput Doppler-spread function
or bi-frequency function[1], [2]. A graphical representation is
shown in Figure 1. There are various interpretations of the

h(t, τ)
Ft

yyrrrrrrrrrr
Fτ

%%LLLLLLLLLL

SH(ν, τ)

Fτ %%LLLLLLLLLL
LH(t, f)

Ftyyrrrrrrrrrr

HH(ν, f)

Fig. 1. Relationship between the system functions of an LTV

system functions in terms of a continuum of infinitesimal
scatterers giving rise to different delays, Doppler shifts and
amplitudes. This physical interpretation is often appropriate
for tropospheric scattering channels, but does not necessarily
hold for the mobile radio channel.

B. Stochastic Characterization

For a stochastic description, the system functions are mod-
eled as random processes. A complete characterization via
associated joint distributions is far too complicated to be of
practical interest, hence the description is normally confined
to first and second order statistics. If the processes are Gaus-
sian and the channel hence Rayleigh fading, a second order
description is indeed a complete statistical characterization.
According to the four equivalent system functions, there are
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four equivalent correlation functions

Rh(t, t′, τ, τ ′) := E [h(t, τ)h?(t′, τ ′)] (7)

RS(ν, ν′, τ, τ ′) := E [SH(ν, τ)S?
H(ν′, τ ′)] (8)

RL(t, t′, f, f ′) := E [LH(t, f)L?
H(t′, f ′)] (9)

RH(ν, ν′, f, f ′) := E [HH(ν, f)H?
H(ν′, f ′)] . (10)

These correlation functions depend on four parameters and
are still difficult to handle. A further simplification arises if
two additional assumptions are introduced: (1) The system is
wide-sense stationary(WSS) in time and (2) the system is
WSS in frequency. The second assumption is also referred
to as uncorrelated scattering(US), since the fading gains
for different delaysτ , representing different scatterers, are
uncorrelated. Hence the correlation functions simplify

Rh(t, t′, τ, τ ′) = Rh(t− t′, τ)δ(τ − τ ′) (11)

RS(ν, ν′, τ, τ ′) = RS(ν, τ)δ(ν − ν′)δ(τ − τ ′) (12)

RL(t, t′, f, f ′) = RL(t− t′, f − f ′) (13)

RH(ν, ν′, f, f ′) = RH(ν, f − f ′)δ(ν − ν′) (14)

Because of their importance, some functions are given special
names.CH(ν, τ) := RS(ν, τ) is called thescattering function
of the channel andRH(∆t, ∆f) := RL(t − t′, f − f ′) is
denoted thetime-frequency correlation function.

The WSS assumption is generally accepted, at least locally
over a reasonable time frame. If shadowing effects come into
play, the overall channel is of course no longer WSS. The US
assumption however needs to be questioned for UWB channels
since it is obvious that channel correlation properties change
with frequency. One solution to this problem is to separate
the nonstationary behavior from the small scale fading, as
for example proposed by Kunisch and Pamp [3]; another
possibility is the use of local scattering functions as proposed
by Matz [4].consequences

of non-
WSSUS
channels?
modeling
error if
WSSUS
is
assumed
neverthe-
less?

C. UWB Channel Models

The system functions do not depend on the bandwidth and
are thus readily applicable to UWB channels. The correlation
functions however only contain all statistical information if
the channel process is assumed Gaussian. The notion of an
infinite continuum of scatterers is approximately satisfied for
narrowband channels since many reflections are not resolvable
and hence the superposition of many arrivals justifies the
invocation of the central limit theorem. In real world UWB
channels, the number of scatterers does not necessarily scale
linearly with the bandwidth and the Gaussian assumption
becomes questionable due to insufficient averaging.

In narrowband channels, a model often used is a tapped
delay line expression, where the channel impulse response is
described as [5]

h(t, t′) =
N(t′)∑
i=1

ci(t)δ(t′ − τi(t))ejθi(t). (15)

N(τ) is the number of multipath components,ci(t) the time-
varying amplitude,τi(t) the time-varying path delay andθi(t)
the time-varying phase. The underlying assumption here is that

each arrival can be associated with a single propagation path,
like in a ray-tracing model. This is no longer true for UWB
channels since diffraction and dispersion leads to a frequency
dependent distortion of every echo. One way to get around this
problem is to include linear filters in every path, as in the paper
by Qiu [6]. The other possibility is to continue using a tapped
delay-line model but dispose of the physical intuition relating
distinct paths to channel taps and consider the tapped delay
line model just as the standard discretization of a bandlimited
random process without ascribe any physical meaning to the
individual terms.

III. VNA C HANNEL MEASUREMENTS

Because of the wide bandwidth, UWB channel measure-
ments have been performed predominantly in the frequency
domain using a vector network analyzer (VNA) [3], [7]–
[11]. Because the sweep time is quite long, the channel
has to remain stationary throughout the whole measurement,
practically precluding the sounding of time-variant channels.
It is thus sufficient to consider a time invariant channel model
with impulse responseh(τ) and frequency responseH(f). The
VNA samples the channel at different frequencies. However,
the measurement points returned are not true samples of the
channel transfer function.

A. VNA Measurement System response

An idealized VNA transmits a sinusoid for a fixed amount
of time according to

x(t) = 2gT (t) cos 2πkFt (16)

wheregT is a time-windowing function modeling the limited
sample time,F is the frequency step size andk indicates
the current measurement point. In the frequency domain, the
transmitted signal is thus

X(f) = GT (f − kF ) + GT (f + kF ). (17)

The channel output as measured at the receiving end is given
by

V (f) =
(
GT (f − kF ) + GT (f + kF )

)
H(f). (18)

The VNA filters the signal with an RF prefilter of bandwidth
(−BRF /2, BRF /2) and baseband equivalent transfer function
GRF (f), to obtain

YRF (f) =
(
GT (f − kF ) + GT (f + kF )

)
×H(f)

(
GRF (f − kF ) + G?

RF (−f − kF )
)
.

(19)

Let

H0(f − kF ) =
(
GT (f − kF )GRF (f − kF )

+ GT (f + kF )GRF (f − kF )
)
H(f).

(20)

ThenYRF (f) can be expressed asH0(f−kF )+H?
0 (−f−kF ).

Note that inH0(f − kF ), the first term contains the wanted
signal whereas the second term denotes the self-interference
due to aliasing of the filters. Depending on the choice of
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the time window, this aliasing contribution can normally be
neglected. The receiver performs quadrature demodulation3,
hence the resulting baseband signal is

YBB(f) = H0(f) + H?
0 (−f − 2kF ) (21)

The baseband lowpass filterGBB(f) bandlimits the signal
further to (−BBB/2, BBB2). Assuming that the RF filter
and the baseband filter are perfectly bandlimiting and non-
overlapping, the remaining terms at twice the carrier frequency
are suppressed completely.

Y (f) = YBB(f)GBB(f)
= H(f + kF )GRF (f)GBB(f)

×
[
GT (f) + GT (f + 2kF )

]
+H(f + kF )G?

RF (−f − 2kF )GBB(f)

×
[
GT (f) + GT (f + 2kF )

]
= H(f + kF )GRF (f)GBB(f)

×
[
GT (f) + GT (f + 2kF )

]
.

(22)

Furthermore, it is reasonable to assume that the RF filter
bandwidth is larger than the basband filter bandwidth and that
the RF filter has a flat passband, such thatGRF (f)GBB(f) =
GBB(f), and hence

Y (f) = H(f + kF )GBB(f)
[
GT (f)+GT (f +2kF )

]
. (23)

Finally the VNA correlates the baseband signal with the re-
ceive windowgR(t), which is time-limited to(−TR/2, TR/2),
yielding

Y [k] =
∫

y(t)gR(t)dt

=
∫

Y (ϕ)GR(f − ϕ)dϕ
∣∣∣
f=0

=
∫

Y (ϕ)GR(−ϕ)dϕ

=
∫

H(ϕ + kF )GBB(ϕ)

×
[
GT (ϕ) + GT (ϕ + 2kF )

]
GR(−ϕ)dϕ

≈
∫

H(ϕ + kF )GBB(ϕ)GT (ϕ)GR(−ϕ)dϕ,

(24)

neglecting the self-interference term. The receive and transmit
windows are real; if they are furthermore matched such that
gR(t) = gt(t), thenGR(−f) = G?

T (f), and (24) simplifies to

Y [k] =
∫

H(ϕ + kF )GBB(ϕ)|GR,T (ϕ)|2dϕ. (25)

It can be seen that one sample of the VNA actually contains
a weighted average of the channel impulse response within a
frequency band determined by the baseband filter bandwidth.
Note that I removed any amplifier gain and any path loss

3The demodulation step is actually an approximation, since the LO signal
at the receiving end is also time-windowed. Assuming infinite sinusoids, as
implicitly done here, is for mathematical convenience. This approximation is
justified if the baseband time window is completely contained in the window
gating the demodulation signal.

in the preceding calculations and normalized the up- and
downconversion steps. To take into account not only the small-
scale response, the path loss can be reintroduced through a
multiplicative constant.

B. VNA Measurement Noise

Using the standard assumption of white Gaussian noise
introduced at the receiver front end with power spectral density
(PSD)N0/2, the PSD after the RF filtering stage is

N0

2
|GRF (f − kF ) + GRF (−f − kF )?|2, (26)

and after demodulation and baseband filtering

N0

2
|GRF (f)|2|GBB(f)|2

=
N0

2
|GBB(f)|2,

(27)

again assuming that the basband filter is contained within
the flat part of the RF filter transfer function with unit gain.
Note that the total amount of noise corrupting the measured
signal is reduced if the filter bandwidth is small. The baseband
noise process, denotedn(t), is now correlated with the receive
window, yielding

N [k] =
∫

n(t)gR(t)dt. (28)

Let the correlation function ofn(t) be denotedRn(τ), given
by the inverse Fourier transform of (27). Then the sampled
noise is characterized by the correlation

E [N [k]N?[k′]] = δk,k′

∫∫
E [n(t)n?(t′)] gR(t)g?

R(t′)dtdt′

= δk,k′

∫∫
Rn(t− t′)gR(t)g?

R(t′)dtdt′.

(29)

The noise samples are uncorrelated between the different
frequency points since the measurements are performed se-
quentially, assuming enough time between each sample point
to let the filters settle again.

IV. CHANNEL TAP DISTRIBUTION

As already mentioned in Section II-C, the central limit
theorem does not necessarily hold for UWB channels since
there might not be enough unresolvable arrivals. It is thus
important to characterize the distribution of the channel taps.
The samples measured by the VNA are not ideal, hence
any statement about densities and distributions of these VNA
samples does not necessarily carry over to the original physical
channel. If the channel process can be modeled as Gaussian,
then the VNA samples from equation (25) will also be Gaus-
sian. However, since the VNA samples are a smoothed version
of the channel frequency response, they might still apear
Gaussian due to the inherent averaging, even if the channel
frequency response can no longer be described by a Gaussian
process. In addition to the averaging effect, the receiver noise
is always present, adding another Gaussian component. Hence
to get close to the original channel, the baseband bandwidth
BBB should be chosen as small as practically possible, and
high SNR conditions should always be ensured.
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A. Time Domain Channel Tap Distribution

The frequency domain representation and the time domain
representations are linked via the discrete Fourier transform
(DFT). Because only a finite bandwidthB = KF is measured,
the frequency samples are implicitly windowed. To reduce
sidelobes due to the rectangular window, further windowing
is often performed in practice. LetW [k] denote the window
function, then the IDFT is given by

y[n] =
1
K

K−1∑
k=0

W [k]Y [k]ej2π n
K k

=
1
K

K−1∑
k=0

W [k]ej2π n
K k

×
∫

H(ϕ + kF )GBB(ϕ)|GR,T (ϕ)|2dϕ

(30)

For ease of notation, defineG(f) := GBB(f)|GR,T (f)|2 with
inverse Fourier transfromg(t). ExpressingH(f) as the Fourier
transform ofh(t), (30) reads

y[n] =
1
K

K−1∑
k=0

W [k]ej2π n
K k

×
∫∫

h(t)e−j2πkFte−j2πϕtG(ϕ)dtdϕ

=
∫

1
K

K−1∑
k=0

W [k]ej2π n
K ke−j2πk B

K th(t)

×
∫

e−j2πϕtG(ϕ)dϕdt.

(31)

With the definition

w[n, t] :=
1
K

K−1∑
k=0

W [k]ej2π n
K ke−j2πk B

K t (32)

the time domain impuls response can finally be expressed ascompute
w[n, t]
if W [k]
is rectan-
gular y[n] =

∫
w[n, t]g(−t)h(t)dt. (33)

Hence all ofh(t) contributes to a single sample of the channel
consequences
for mod-
eling?
How to
check for
the dis-
tribution
of the
continu-
ous time
channel?

impulse response, and thus the same comments apply as for
the frequency domain case.

B. Testing Distributions

The tap gain distribution commonly refers to the distribution
of the tap magnitude. Because the phase undergoes rapid

this is
only to
check
the dis-
tribution
of the
measured
channel
— what
about the
under-
lying
continu-
ous time
channel?

changes whenever the path distance changes by more than a
fraction of a wavelength, the standard assumption is a uniform
phase distribution. For UWB signals with lower frequency
bound over 1 GHz, this assumption still seems to be valid,
hence in the following I will focus on the distribution of the
|y[n]| only.

The empirical probability density function (PDF) and cu-
mulative distribution function (CDF) of a measured channel
tap |y[n]| can be obtained from the histogram, provided that
a sufficient number of independent samples is available. Esti-
mating the true distribution however is more a philosophical
problem as to be of practical interest, since the concept of

a true distribution drawn from which samples are observed,
requires a probability model within which to operate. Hence
the notion of a single true distribution is not relevant — the
goal is to find a model that is supported by the measured data
and at the same time amenable for analytical and simulation
use. The goal is then to test a certain number of predefined
mathematical models against the data. The choice of candidate
PDFs in this case is based on experience and mathematical
convenience. The more degrees of freedom a PDF has the
better the fit in general, but the higher the complexity. Thus
the right way to proceed is not to find the model with the best
fit but the model attaining a prescribed goodness of fit with
the least complexity. Typical candidat PDFs for mobile radio
channels are Rayleigh, Rice, Nakagami, Gamma, Lognormal
and to a lesser extend Weibull. This is a hypothesis testing
problem with multiple hypothesis. However, all these PDFs
have one or more free parameters, so the hypothesis is the
statement that the channel tap random variable is drawn from a
distribution belonging to the Rayleigh, the Rice, the Nakagami
etc. family. A short summary of hypothesis testing and a
discussion of goodness-of-fit tests is contained in Appendix
II.

Some researchers propose to first estimate the parameters
of all candidate PDFs and then perform the simple hypothesis
test only for these parametrized PDFs. Yet though intuitively
appealing, this method is not well justified for some tests.

1) The Kolmogorov-Smirnov Test:A common hypothesis
test for distributions is theKolmogorov-Smirnovtest for con-
tinuous CDFs. It is based on the fact that the test statistic√

nDn :=
√

n supx|Fn(x) − F (x)| has a limiting CDF for
n → ∞ which does not depend on the test CDFF and the
empirical CDFFn, derived fromn samples of the process.
Now, if a CDF with estimated parameters is used instead of
the fixed CDF, this theorem no longer holds and the test result
is meaningless [12].

2) χ2 Test: The χ2 test was originally developed to test
a sample against a discrete distribution. The procedure can
be extended to continuous distributions and it even works to
some extend for distributions where the parameters need to be
estimated. Some theory and explanations are summarized in
Appendix II. The general procedure is as follows:
• Partition the range of the random variable in intervals

Cj . There is no rule how to choose these intervals, but
a equidistant partition seems to make sense. Even for
distributions with unlimited range, only a limited number
r of intervals are needed, since only intervals containing
measured data points are necessary.

• Count the numberNj of measurements that lie in each
interval j.

• Either estimate the parametersθ of the distribution under
test from the unpartitioned or the partitioned data. See
Appendix II for elaboration.

• Compute the test statistic according to (61) or (64),
depending on the type of parameter estimate.

• compare the statistic to the integral over the right tail
of the χ2

r−1−k PDF at confidence levelα and with r −
1 − k degrees of freedom, or equivalently the value of
the CDFQ(1− α). Herek is the number of parameters
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estimated from the data. Hence the number of degrees
of freedom of the distribution is reduced if parameters
need to be estimated first. If the test statistic is larger
than the probability obtained by evaluating the integral,
the hypotheses must be rejected.

C. Kullback-Leibler Information Divergence

where does this one fit in?

D. Least Squares Fit

and this one?

V. PARAMETER ESTIMATION

A. Mean and Variance

B. Nakagamim Parameter

compute from correlation function or use non=parametric estimate?

C. Delay Spread

frequency dependence of delay spread?

VI. ESTIMATING THE CORRELATION FUNCTIONS

A. Correlation Function Estimates
how to
estimate
the
eigenval-
ues?

nonparametric
esti-
mates?

B. Testing the US Assumption

In Section II-C, I noted that the US assumption is ques-
tionable for UWB channels. In order to test it, the only data
available is the measured frequency response. However, since
the measurements are only performed over a limited range
of frequencies and with filters and averages introducing some
measurement uncertainty, it is not clear a priori how the US
assumption about the underlying continuous time channel can
be assessed.need cor-

relation
function
estimate
first; link
to con-
tinuous
channel
corre-
lation
function

APPENDIX I
COMMON DENSITIES

The following is a short summary of probability density
functions and associated parameters for the common channel
tap models and the distributions used in some of the tests.
The formulas are compiled from the books by Papoulis [13],
Proakis [14] and Weisstein [15].

A. Rayleigh

• PDF
fX(x) =

x

σ2
e−

x2

2σ2 (34)

• CDF
FX(x) = 1− e

x2

2σ2 (35)

• domain[0,∞)
• mean

E [X] =

√
πσ2

2
(36)

• variance
Var[X] =

(
2− π

2

)
σ2 (37)

• higher moments

E
[
Xk

]
=

(
2σ2

) k
2 Γ

(
1 +

1
2
k

)
(38)

B. Rice

• PDF
fX(x) =

x

σ2
e−

x2+s2

2σ2 I0

(xs

σ2

)
(39)

with the modified Bessel function of the first kindI0

• CDF
FX(x) = 1−Q1

( s

σ
,
x

σ

)
(40)

with the Marcum Q-function

Q1(a, b) = e−
a2+b2

2

∞∑
k=0

(a

b

)k

Ik(ab), b > a > 0

(41)
• domain[0,∞)
• mean

E [X] = σ

√
π

2

((
1 +

s2

2σ2

)
I0

(s

2

)
+ sI1

(s

2

))
e−

s
2

(42)

C. Nakagami

• PDF
fX(x) =

2
Γ(m)

(m

Ω

)m

x2m−1e−
mx2
Ω (43)

• mean

E [X] =
Γ(m + 1/2)

Γ(m)

√
Ω
m

(44)

• variance

Var[X] = Ω

[
1− 1

m

(
Γ(m + 1/2)

Γ(m)

)2
]

(45)

• higher moments

E [Xn] =
Γ
(
m + 1

2n
)

Γ(m)

(
Ω
m

)n
2

(46)

• domain(0,∞)
• remarks: the parameters are defined as follows

– Ω = E
[
X2

]
–

m =
Ω2

E [(X2 − Ω)2]
, m ≥ 1

2
(47)

m is called thefading figure

for m = 1, (43) reduces to the Rayleigh PDF (34).

D. Lognormal

• PDF
fX(x) =

1
x
√

2πσ2
e−

(ln(x)−µ)2

2σ2 (48)

• CDF

FX(x) =
1
2

[
1 + erf

(
ln(x)− µ√

2σ2

)]
(49)

• domain(0,∞)
• mean

E [X] = eµ+ σ2
2 (50)

• variance
Var[X] = eσ2+2µ

(
eσ2

− 1
)

(51)
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E. Centralχ2 with n Degrees of Freedom

The centralχ2 distribution arises as the distribution of the
sum ofn independent zero mean Gaussian random variables. If
the variance is normalized to unity, the following expressions
are obtained.

• PDF

fX(x) =
x

n
2−1

2
n
2 Γ

(
n
2

)e−
x
2 (52)

• CDF

FX(x) = 1−
Γ
(

1
2n, 1

2x2
)

Γ
(

1
2n

) (53)

• domain[0,∞)
• meanE [X] = n
• varianceVar[X] = 2n

A slightly different result is obtained for the sum of Gaussian
random variables with varianceσ2.

•

fX(x) =
x

n
2−1

σn2
n
2 Γ

(
n
2

)e−
x

2σ2 (54)

• meanE [X] = nσ2

• varianceVar[X] = 2nσ4

F. Non-centralχ2

The non-centralχ2 distribution arises as the distribution of
the the sum ofn independent Gaussianrunning

out of
time....

APPENDIX II
HYPOTHESISTESTING

The following is a short summary about hypothesis testing,
extracted from the books by Papoulis [13], Bartoszyński [12]
and Dixon [16]. Hypothesis testing is part of decision theory.
The simplest case is the binary hypothesis testing problem,
where some assumption, called thenull hypothesisH0 is
tested against thealternate hypothesisH1. The null hypothesis
might be for example the assumption that the distribution of
a random variableX has parameterθ = θ0. The alternate
hypothesis would then beθ 6= θ0. Hypothesis testing is
not about determining whetherH0 or H1 is true. It is to
establish if the evidence in form of available data supports the
hypothesis or not. Therefore the sample space is partitioned
into the critical region Dc and theregion of acceptanceDc

c.
Depending on the location of the data pointsX within the
sample space, the hypothesis of the test is rejected or not.
Some basic terminology in hypothesis testing is summarized
as follows.

• If H0 is true andX ∈ Dc, H0 is rejected, called aType
I error. The probability

α = P(X ∈ Dc |H0) (55)

is called thesignificance levelof the test.
• If H0 is false andX /∈ Dc, H0 is accepted, called aType

II error . The probability of error is a functionβ(θ), called
the operating characterisitc(OC) of the test.

• The differenceP (θ) := 1 − β(θ) is the probability of
rejectingH0 when false, called thepowerof the test.

For so called “goodness-of-fit” tests,H0 does not involve
parameters. The hypothesis is, that a given functionF0(x)
equals the distributionF (x) of a random variableX, H0 :
F (x) ≡ F0(x) againstH1 : F (x) 6= F0(x). These types of
tests normally rely on some limiting behavior of a function
of the data and the distribution under test, called thetest
statistic. The distribution of this test statistic converges to
some other distribution if the data is indeed drawn according
to the distribution under test. If not, then the test statistic
will yield a value that would occur only with low probability
according to the limiting distribution. This probability is set
by the confidence levelα of the test, and hence hypothesis
where the test statistic exceeds the value of the CDFQ(α)
need to be rejected.

A. The Kolmogorov-Smirnov Test

Let Fi(x) be the empirical estimate of the CDF of the
random variableX from the samplei and letFn(x) be the
empirical CDF obtained fromn independent samples. Then
the distance

Dn := sup
x
|Fn(x)− F (x)| (56)

converges to zero a.s. forn → ∞. Hence for largen, Dn is
close to zero ifH0 is true and close tosupx|Fn(x) − F (x)|
if H − 1 is true. The distribution of

√
nDn can be shown to

converge to the Kolmogorov distribution

lim
n→∞

P(
√

nDn ≤ z) = 1− 2
∞∑

k=1

(−1)k−1e−2k2z2
=: Q(z).

(57)
The test should rejectH0 if the observed value of the statistic√

nDn exceeds the critical value determined from the right tail
of the distribution according to the significance level.Q(z) is
tabulated in any standard textbook, eg. [12, Table A7]. The
test has power 1 against any alternative in the limitn →∞.

The test only applies if the distributionF (x) of the null
hypothesis is fixed. If the parameters need to be estimated
from the samples, the corresponding distributionF ∗(x) is now
random, depending on the same samples as the ones used
to determine the empirical distributionFn, and the limiting
distribution of

√
n supx|Fn(x)−F ∗(x)| is not given byQ(z).

B. Theχ2 Test

1) Discrete Distribution: LetX be a discrete random vari-
able defined on some finite alphabetX with associated proba-
bilities pi = P(X = xi). In a random sample of sizeN , each
letter appears with frequencyNi, such that

∑
Ni = N . The

vector[N1, . . . , Nr] is called thecount vector. The hypothesis
to test is

H0 : pi = p0
i , i = 1, . . . , r (58)

against the general alternativeH1: H0 is false. Herep0 =
[p0

1, . . . , p
0
r] is some fixed distribution. The test statistic

Q2 :=
r∑

j=1

(Nj − np0
j )

2

np0
j

(59)
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has the limiting distributionχ2
r−1, i.e. a centralχ2 distribution

with r − 1 degrees of freedom, if the distribution ofX
equals the distribution of the null hypothesis. To obtain a
good approximation, the counts should exceed 10. When there
are many letters in the alphabet, the approximation is good
enough even if few expected frequencies are as small as 1. The
critical region of the test is the right tail of theχ2 distribution
with confidence levelα, denotedχ2

α,r−1 and tabulated in any
standard statistics textbook [12, Table A4]. If now the test
statistic exceeds this value, then the distribution of the sample
can be only be drawn according to the distribution under
test with low probability (with probability less thanα to be
precise). Hence this hypothesis has to be rejected.

2) Continuous Distribution:The above outlined test can be
adapted to continuous distributions by partitioning the range
of the random variableX, i.e. by creatingr setsC1, . . . , Cr

that are disjoint and cover the whole range4. If f(x) is the
density ofX specified by the null hypothesis, then

p0
j =

∫
Cj

f(x)dx, j = 1, . . . , r. (60)

The test now depends also on the choice of partition.
3) Discrete Parametric Distribution:Often the Distribution

of the null hypothesis is not completely specified, such that
just the family (e.g. Bernoulli, Poisson etc.) is known and the
parameters are not. Denote thek-dimensional parameter vector
by θ. Then the distribution of the discrete random variableX
is given byp(θ) = [p1(θ), . . . , pr(θ)] with pj(θ) > 0. Let the
maximum likelihood estimate (MLE) ofθ be denoted bŷθ.
Then the statistic

Q2 :=
r∑

j=1

(
Nj − npj(θ̂)

)2

npj(θ̂)
(61)

has the limitingχ2 distribution with r − 1 − k degrees of
freedom asn → ∞. Thus the test proceeds as before, but to
compute the critical region, the distribution with the reduced
number of degrees of freedom needs to be used.

4) Continuous Parametric Distribution:If the parametric
distribution is continuous, the test methodology remains the
same, i.e. the range ofX needs to be partitioned and the
respective probabilities are computed via the integral over the
density function. However, the MLE of the parameter vector is
now in general very hard to obtain. The key point is thatθ̂ is
no longer the the same for the continuous distribution and the
discrete distribution obtained through partitioning. However,
it is the latter MLE that is required to form the statistic
(61). In most cases,̂θ can only be obtained numerically.
An example borrowed from Bartoszyński [12] illustrates this
problem. AssumeX ∼ N (µ, σ2) and Nj is the count of
observations in the interval[tj−1, tj). The MLE is the solution
to the system of equations

∂ log L

∂µ
= 0,

∂ log L

∂(σ2)
= 0 (62)

4The sets need not necessarily be intervals.

with the likelihood function

L =
r∏

j=1

 1√
2πσ2

tj∫
tj−1

e−
(x−µ)2

2σ2 dx


Nj

. (63)

If now the MLE from the complete data instead of the
grouped data is used, the limiting distribution is unknown.
However, there exists a bound. Letθ̂∗ be the MLE of the
parameter vector based on the complete observation. Then the
statistic

Q∗2 :=
r∑

j=1

(
Nj − npj(θ̂∗)

)2

npj(θ̂∗)
(64)

satisfies, asn →∞

P(χ2
r−1−k ≥ t) ≥ lim

n→∞
P(Q∗2 ≥ t) ≥ P(χ2

r−1 ≥ t) (65)

for every t ≥ 0. This implies that if the hypothesis can be
rejected on the basis of the partitioned distribution with the
unpartitioned parameter estimates, it will also be rejected if
the partitioned parameter estimates are used.
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S-V Parameter Extraction: General Guidelines 
Chia-Chin Chong, Member, IEEE

  
Abstract—This document gives some general guidelines on the 

procedures to extract Saleh-Valenzuela (S-V) channel parameters 
from measurement data. 
 

I. INTRODUCTION 

T HE aim of this document is to give some general guidelines 
on the procedures to extract Saleh-Valenzuela (S-V) 

channel parameters from measurement data. 

II. S-V MODEL REVISITED 
The Saleh-Valenzuela (S-V) model [1] is based on the 

clustering of multipath components (MPCs) observed in the 
measurement data. The discrete-time impulse response is given 
by 

 

 , (1) ( ) (,
0 0

lL K

discr k l l k l
l k

h t a t Tδ
= =

= − −∑∑ ),τ

 
where  is the Dirac delta function, L  is the number of 
clusters and  is the number of MPCs within the  cluster, 

 is the tap weight (or multipath gain coefficient) of the  

component in the  cluster,  is the delay of the  cluster 
which is defined as the time-of-arrival (TOA) of the first 
arriving MPC within the  cluster and  is the delay of the 

 MPC relative to the  cluster arrival time, . By 
definition, we have . The distributions of the cluster 
arrival times (or inter-arrival times),  and the ray arrival 
times (or intra-arrival times),  are given by two Poisson 
processes. Thus, according to this model,  and  are 
described by the independent interarrival exponential 
probability density functions (pdfs) as follows 

( )δ ⋅
lK thl

,k la thk
thl lΤ thl

thl ,k lτ
thk thl lΤ

0, 0lτ =

lΤ
,k lτ

lΤ ,k lτ

 
 ( ) ( )[ ]1 1| exp ,l l l lp  (2) 0− −Τ Τ = Λ −Λ Τ − Τ >l while  and  are given by ,k lµ , ,k lXσ

 
 ( ) ( )[ ], ( 1), , ( 1),| exp ,k l k l k l k lp kτ τ λ λ τ τ− −= − − > 0

 

l

 (3) 

 
where  is the cluster arrival rate, and λ  is the ray arrival rate. 
Typically, each cluster consists of many rays where λ . 

Λ
Λ
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The average power of both the clusters and the rays within 
the clusters are assumed to decay exponentially, such that the 
average power of a MPC at a given delay,  is given 
by 

,k kτΤ +

 
 ,2 2

, 0,0 e el k l
k la a τ γ−Τ Γ −= ⋅ ⋅  (4) 

 
where 2

0,0a  is the expected value of the power of the first 
arriving MPC, Γ  is the decay exponent of the clusters and  
is the decay exponent of the rays within a cluster. Typically, 

 and the expected power of the rays in a cluster decay 
faster than the expected power of the first ray of the next 
cluster. 

γ

γΓ >

Here, lognormal distribution rather than Rayleigh 
distribution for the multipath gain magnitude is adopted as 
described in [13] and [14]. [13] suggests two independent 
lognormal variables to represent the amplitude variations of the 
clusters and rays. However, these random variables can be 
combined as a single lognormal random variable. The polarity 
of the path is represented as an equiprobable binary random 
variable,  taking on the values  to account for 
signal inversion due to reflections. Thus, the multipath gain 
coefficient is given by 

,k lp / 1+ −

 

  (5) ( ), , ,
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/20
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p σµ

ξ β
+

=
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where  reflects the fading associated with  cluster, and 

 corresponds to the fading associated with the  ray of 

the  cluster given by 

lξ thl

,k lβ thk
thl

 

 ( ), , , 20
, 10 k l k lX

l k l
σµξ β += , (6) 
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where σ  is in dB. 

Fig. 1 and Fig. 2 illustrate the S-V model channel impulse 
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responses (CIRs) and double exponential decay model, 
respectively. 

Fig. 1.  An illustration of channel impulse response [15]. 

III. CHANNEL MEASUREMENT TECHNIQUES 
Generally, there are two techniques to perform channel 

measurements. Firstly, is the time-domain technique in which 
measurement usually performed using digital sampling 
oscilloscope (DSO). UWB measurements conducted using this 
method was reported in [2]–[6]. This technique measured the 
channel impulse response (CIR), . Secondly, is the 
frequency-domain technique in which measurement usually 
performed using vector network analyzer (VNA). UWB 
measurements conducted using this technique was reported in 
[6]–[12]. This technique measured the channel transfer 
function (CTF), . A more detail list of literature overview 
of UWB channel soundings and models is reported in [18]. 

( )h t

( )H f

IV. DATA ANALYSIS AND PARAMETERS EXTRACTION 

A. Data Post-Processing 
Since the measurement system measured the “radio channel” 

(i.e. including the effect of amplifiers, cables and antennas), in 
order to remove these hardware effects, all raw data are 
normalized with the calibration data so that only the 
“propagation channel” data will be used for further analysis. 
For measurements conducted using VNA, the CTFs are 
transformed into the CIRs through inverse Fourier transform 
(IFT). Frequency domain windowing is applied prior to the 
transformation to reduce the leakage problem. Then, the CIRs 
are analyzed by divided the temporal axis into small intervals 
(or delay bins), . This delay bin is corresponding to the 
width of a path and is determined by the reciprocal of the 
bandwidth swept (i.e. time resolution of the measurement 
system). The CIRs are then normalized such that the total 
power in each power delay profile (PDP),  is equal to one. 
A cutoff threshold of 20 dB below the strongest path was 
applied to the PDP so that any paths arrived below his threshold 
is set to zero. This is to ensure that only the effective paths are 
used for the channel modeling. The initial delay for each of the 
transmission links was extracted from the PDP. This value was 
removed from the results so that all PDPs can be aligned with 

first path arrives at 0 ns. 

τ∆

( )P τ

Fig. 2. An illustration of exponential decay of mean cluster power and ray 
power within clusters [17]. 

B. Cluster Identification 
The first task is to identify clusters. Different researchers 

have different definitions of a cluster. The position and the size 
of the clusters will be heavily dependent on the superstructure 
and physical layout of the considered environments. However, 
clustering identification employing statistical techniques such 
as clustering algorithms are inappropriate for this application as 
it is very difficult to develop a robust algorithm for the 
automatic identification of cluster regions. Thus, cluster 
regions were selected manually by visual inspection. Both [1] 
and [16] also deploy visual inspection to identify clusters from 
their measurement data. 

C. Arrival Statistics 
In order to analyze the statistics of the clustering effects, the 

clusters in each data set must be identified. With the times and 
amplitudes of all major arrivals identified, as well as their 
clustering patterns, the data could be used to analyze the 
statistics and arrive at a model. As shown in Section II, there are 
5 key parameters that define the S-V model: 

  is the cluster arrival rate Λ
  is the ray arrival rate, i.e. the arrival rate of path 

within each cluster 
λ

  is the cluster exponential decay factor Γ
  is the ray exponential decay factor γ
  is the standard deviation of the lognormal fading 

term (dB) 
σ

Note that we have assumed that all the above parameters are 
the same for all clusters. Following [13], the above parameters 
are found using “brute force search” by trying to fit the 
measurement data to match different important characteristics 
of the channel. The main characteristics of the channel that are 
used to derive the above model parameters are the following: 

 Mean excess delay,  mτ
 rms delay spread,  rmsτ
 Number of MPCs within 20 dB threshold, . 20dBNP
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The mean excess delay,  is the first moment of the PDP 

[19] 
mτ
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τ
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and the rms delay spread,  is the square root of the second 
central moment of the PDP [19] 

rmsτ

 
 ( )22

rms m mτ τ τ= − , (10) 
 

where 
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τ τ
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τ
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τ
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The number of MPCs for each of the PDP was found by 

counting all MPCs that are within 20 dB of the strongest path. 
Note that, the binned data were used here. 

Following the methodology in [16], firstly, the cluster and 
ray decay time constants, Γ  and , were estimated by 
superimposing clusters with normalized amplitudes and time 
delays and selecting a mean decay rate. For example, in order to 
estimate , the first cluster arrival in each set was normalized 
to an amplitude of one and a time delay of zero. All cluster 
arrivals were superimposed and plotted on a semi-logarithmic 
plot. The estimate for Γ  was found by curve fitting the line 
(representing an exponential curve) such that the mean squared 
error was minimized. Similarly, in order to estimate , the first 
arrival in each cluster was set to a time of zero and amplitude of 
one, and all other ray arrivals were then adjusted accordingly 
and superimposed. Following this model, the best fit 
exponential distributions were determined from the cluster and 
ray arrival times, respectively. In order to estimate the Poisson 
cluster arrival rate, Λ  the first arrival in each cluster was 
considered to be the beginning of the cluster, regardless of 
whether or not it had the largest amplitude. The arrival time of 
each cluster was subtracted from its successor, so that the 
conditional probability distribution given in (2) could be 
estimated. The Poisson ray arrival rate, λ  was guessed based 
on the average separation time between arrivals. Estimates for 

 and  were both done by fitting the sample pdf to the 
corresponding probability for each bin. The fitting was done 
using a least mean square criterion. 

γ

Γ

γ

Λ λ

For the case of overlapping clusters, procedure as proposed 
in [21] is adopted. By assuming that each cluster has an 
exponential shape, a straight-line extrapolation function (in dB) 
is deployed on the first cluster and then subtract the PDP of the 
first cluster from the total PDP. Then, the next non-overlapping 
region is used to extract the decay factor for the next cluster. 

This process is repeated for all clusters in the total PDP until the 
last cluster is reached. Note that the powers of overlapping rays 
are calculated so that the total sum of the powers of overlapping 
rays corresponding to different clusters equals to the powers of 
the original total PDP. More details of this procedure is 
reported in [21]. 

D. Amplitude Statistics 
It is important to evaluate the probability distribution of the 

random amplitudes while fitting the empirical data to a channel 
model. For example, the original S-V model assumed that the 
path amplitudes had a Rayleigh distribution. However for the 
case of UWB base band pulses, this cannot necessarily be 
assumed. In order to get an idea of how the individual paths are 
distributed at different delays across the entire measurement set, 
similar approaches as in [20] is adopted by comparing the 
fittings of empirical distributions of path amplitudes obtained 
from measurement data to theoretical distributions. The 
following procedure can be summarized as follows: 

 The received data was binned so that the amplitude of 
each bin would signify the amplitude of the multipath 
component in that bin. 

 Data from bins at specific delays from the entire 
measurement set were matched to theoretical 
distributions such as Rayleigh, Lognormal, Ricean, 
Nakagami, Gamma, etc. 

 Elaborate the goodness-of-fit tests (e.g. 
Kolmogorov-Smirnov test and/or Chi-Square test) to 
find the best fit among all the theoretical distributions. 

It was observed in [15] that the log-normal distribution gives 
the best match to the obtained data. The log-normal cumulative 
distribution function (cdf) can be written as 

 

 ( )

( )( )2
2

ln
2

0

1| ,
2

t
x

eF x dt
t

µ

− −µ
σ

σ =
σ π ∫ . (12) 

 
This is equivalent to the normal distribution when the 

amplitudes and the statistics are expressed in log scale 
. The received signal amplitudes are expressed in 

dB and the mean, µ  and the standard deviation, σ  are 
calculated using the dB values. 

( )1020 log A

V. CONCLUSION 
General guidelines on the procedures to extract S-V channel 

parameters from the measurement data have been described. 
These parameters including cluster and ray arrival rates, cluster 
and ray exponential decay factors and the standard deviation of 
the lognormal fading term. 
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