Project	IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs)	
Title	Impact of Flat fading on I/Q modulated signals	
Date	20 August, 2001	
Submitted		
Source	[James P. K. Gilb]	Voice: [(858) 217-2201]
	[Mobilian]	Fax: [(858) 217-2301]
	[11031 Via Frontera, Suite C]	E-mail: [gilb@ieee.org]
	[San Diego, CA, 92127]	
Re:	Email and conference call discussion of OQPSK vs. QPSK and at fading channels	
Abstract	A simple analysis of at fading on I/Q modulated signals	
Purpose	Provide some mathematical analysis to support discussion of the merits/problems	
	with OQPSK modulation vs. QPSK modulation	
Notice	This document has been prepared to assist the IEEE P802.15. It is offered as	
	a basis for discussion and is not binding on the contributing individual(s) or or-	
	ganization(s). The material in this document is subject to change in form and	
	content after further study. The contributor(s) reserve(s) the right to add, amend	
	or withdraw material contained herein.	
Release	The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P802.15.	

Impact of Flat fading on I/Q modulated signals

James P. K. Gilb

August 19, 2001

1 Introduction

This short article provides a very simple analysis of flat fading on I/Q modulated signals. The goal is to show that flat fading and other factors can cause cross-coupling of I and Q channels, regardless of the form of the baseband signals.

2 Analysis

For I/Q modulations, the baseband inputs to the I/Q modulator are I(t) and Q(t). After upconversion to RF (by an ideal direct I/Q upmixer with harmonic filtering), the modulated signal at the transmitter is:

$$s(t) = I(t)\cos(\omega_{RF}t) + Q(t)\sin(\omega_{RF}t)$$
(1)

At the receiver, the incoming RF signal is mixed with the LO in an I/Q downmixer. The LO provides both I and Q signals to the downmixer as:

$$s_I(t) = A_I \sin\left(\omega_{LO} t + \phi_I\right) \tag{2}$$

$$s_Q(t) = A_Q \cos\left(\omega_{LO} t + \phi_Q\right) \tag{3}$$

where $\omega_{LO} = \omega_{RF}$ for a direct conversion receiver.

Ideally, $A_I = A_Q = A_{LO}$ and $\phi_I = \phi_Q = \phi_{LO}$ (more on that later). Assuming for now the ideal case, the downmixed desired signal (after low pass filtering) is simply

$$I_{BB}(t) = \frac{1}{2}I(t) \tag{4}$$

$$Q_{BB}(t) = \frac{1}{2}Q(t).$$
 (5)

Now suppose that a copy of the desired signal with relative amplitude $A_d < 1$ and time delay τ , is also present at the ideal downconverter. This signal is:

$$s_d(t) = A_d I(t-\tau) \cos\left[\omega_{RF}(t-\tau)\right] + A_d Q(t-\tau) \sin\left[\omega_{RF}(t-\tau)\right]$$
(6)

In the I channel of the receiver, $s_d(t)$ is multiplied (in the time domain) by $s_I(t)$, with the result

$$I_{BBd}(t) = s_d(t) \cdot s_I(t)$$

$$= A_d I(t-\tau) \cos \left[\omega_{RF}(t-\tau)\right] \cos(\omega_{RF}t)$$

$$+ A_d Q(t-\tau) \sin \left[\omega_{RF}(t-\tau)\right] \cos(\omega_{RF}t)$$
(8)

Using equations 20 and 22 gives

$$I_{BBd}(t) = \frac{1}{2} A_d I(t-\tau) \left[\cos(2\omega_{RF}t - \omega_{RF}\tau) + \cos(\omega_{RF}\tau) \right] + \frac{1}{2} A_d Q(t-\tau) \left[\sin(2\omega_{RF}t - \omega_{RF}\tau) + \sin(-\omega_{RF}\tau) \right]$$
(9)

After low pass filtering the baseband signal, the result on the I channels is

$$I_{BBd}(t) = \frac{1}{2} A_d \left[I(t-\tau) \cos(\omega_{RF}\tau) - Q(t-\tau) \sin(\omega_{RF}\tau) \right]$$
(10)

Similarly, in the Q channel of the receiver, the delayed signal, $s_d(t)$ is multiplied, in time, with the quadrature LO signal, $s_{LOQ}(t)$. This results in:

$$Q_{BBd}(t) = s_d(t) \cdot s_Q(t)$$

$$= A_d I(t-\tau) \cos \left[\omega_{RF}(t-\tau)\right] \sin(\omega_{RF}t)$$
(11)

$$+ A_d Q(t-\tau) \sin \left[\omega_{RF}(t-\tau)\right] \sin(\omega_{RF}t)$$
(12)

$$= \frac{1}{2} A_d I(t-\tau) \left[\sin(2\omega_{RF}t - \omega_{RF}\tau) - \sin(-\omega_{RF}\tau) \right]$$
$$\frac{1}{2} A_d Q(t-\tau) \left[\cos(\omega_{RF}\tau) - \cos(2\omega_{RF}t - \omega_{RF}\tau) \right]$$
(13)

After low-pass filtering, the Q channel baseband signal is

$$Q_{BBd}(t) = \frac{1}{2} A_d \left[I(t-\tau) \sin(\omega_{RF}\tau) + Q(t-\tau) \cos(\omega_{RF}\tau) \right]$$
(14)

The total received signal, from the desired and the delayed signal, is then

$$I_{BB}(t) = \frac{1}{2} \left[I(t) + A_d I(t-\tau) \cos(\omega_{RF}\tau) - A_d Q(t-\tau) \sin(\omega_{RF}\tau) \right]$$
(15)

$$Q_{BB}(t) = \frac{1}{2} \left[Q(t) + A_d Q(t-\tau) \cos(\omega_{RF}\tau) + A_d I(t-\tau) \sin(\omega_{RF}\tau) \right]$$
(16)

Submission

Thus, the presence of a time delayed copy of the RF signal causes cross-coupling of the I and Q information. Note that $\omega_{RF}\tau$ is a constant with respect to time and can be thought of as a phase angle, $\Delta\phi$. It can be shown that the non-ideality of the LO phase split (i.e. $\phi_I - \phi_Q \neq 0$) gives the same result of mixing the I signal into the Q path and vice versa. This can occur not only in the received path, but also in the transmit path. Since all radios are non-ideal, there is a finite amount of I/Q cross coupling even when there is no flat fading.

3 Hand Waving Regarding QPSK and OQPSK

Up to this point, the nature of I and Q have been left undefined. In the "book" version of QPSK, the I and Q channels are bipolar NRZ square pulses. However, this pulse shape is almost never used in practice (the GPS positioning signal is a noteable exception of this). Generally, a shaped pulse is used to reduce the power spectral density of the transmitted signal.

For a raised cosine pulse, the maximum of the pulse, for both I and Q, occur mid-symbol. If the phase delay, $\Delta \phi$, of the delayed signal is 1/2 of a symbol, then the maximum cross coupling will occur between symbol intervals, which should have a reduced effect.

In OQPSK, the Q channel is delayed by 1/2 of a symbol to start with, so the cross mixing of I and Q by LO phase errors is suppressed. However, a 1/2 symbol phase delay would align the maximum of the Q pulse with the I pulse, which would give the largest amount of cross-coupling. For OQPSK, the baseband signals at the reciever (before removing the T/2 delay) are:

$$I_{BB}(t) = \frac{1}{2} [I(t) + A_d I(t-\tau) \cos(\omega_{RF}\tau) - A_d Q(t-\tau-T/2) \sin(\omega_{RF}\tau)]$$
(17)

$$Q_{BB}(t) = \frac{1}{2} [Q(t-T/2) + A_d Q(t-\tau-T/2) \cos(\omega_{RF}\tau) + A_d I(t-\tau) \sin(\omega_{RF}\tau)]$$
(18)

For the proposed system, the symbol period is 91 ns, the Q channel for OQPSK is delayed by 45 ns and the delay spread in a home environment is likely to be less than 25 ns. When the delay is 1/4 of a symbol, the effect on OQPSK and QPSK are roughly the same, the peaks of the delayed signal occurs half-way between the sampling periods of the desired signal. The actual environment is a superposition of many different reflected paths, each with a different amplitude and phase delay rather than the simple 2-ray environment used in this discussion. The effects of the more complex multipath environment are left as an exercise for the motivated reader.

4 Trignometric Identities

This is here so you don't have to look them up in Schaum's outline on Trignometry.

$$\cos(\phi)\sin(\theta) = \frac{1}{2}\left[\sin(\phi+\theta) - \sin(\phi-\theta)\right]$$
(19)

$$\sin(\phi)\cos(\theta) = \frac{1}{2}\left[\sin(\phi+\theta) + \sin(\phi-\theta)\right]$$
(20)

$$\sin(\phi)\sin(\theta) = \frac{1}{2}\left[\cos(\phi - \theta) - \cos(\phi + \theta)\right]$$
(21)

$$\cos(\phi)\cos(\theta) = \frac{1}{2}\left[\cos(\phi - \theta) + \cos(\phi + \theta)\right]$$
(22)