March, 1994
 DOC: IEEE P802.11-94/xxx

September 2001
 IEEE P802.15-01/434r0

IEEE P802.15

Wireless Personal Area Networks

	Project
	IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs)

	Title
	Pseudo-code for the Adaptive Frequency Hopping Mechanism

	Date Submitted
	September 12, 2001

	Source
	Anuj Batra
Texas Instruments
12500 TI Blvd, Dallas, TX 75243

HK Chen, YC Maa, and KC Chen

Integrated Programmable Communications

Taiwan Laboratories

P.O. Box 24-226

Hsinchu, Taiwan 300

	Voice:
214-480-4220
Fax:
972-761-6966
E-mail:
batra@ti.com
Voice:
 +886-3-516-5106
Fax:
 +886-3-516-5108
E-mail: hkchen@inprocomm.com
 ycmaa@inprocomm.com
 kc@inprocomm.com

	Re:
	[]

	Abstract
	Pseudo-code for the adaptive frequency hopping mechanism presented in the IPC-TI Adaptive Frequency Hopping proposal.

	Purpose
	Clarification for TG2 members.

	Notice
	This document has been prepared to assist the IEEE P802.15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

	Release
	The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P802.15.

1. Adaptive Frequency Hopping Mechanism: ACL Link

In this section, we present the pseudo-code for generating the partition sequence for an ACL link. This partition sequence is then used by the re-mapping function (see section 3) to generate the new and adaptive hopping sequence.

1.1. Pseudo-code for the ACL partition sequence generator

Before we present the pseudo-code, we must first examine the structure of the adaptive hopping sequence for an ACL link (see Fig. 1). Note that this structure differs slightly from the one presented in the IPC-TI proposal. The reason for the discrepancy is that this new structure allows us to achieve the exact ratio of the good channels to bad channels kept in the hopping sequence. From Fig. 1, we see that the length of the superframe determines the period of the partition sequence. Since the partition sequence is periodic, we can reduce the computational complexity of the adaptive frequency hopping mechanism by calculating the partition sequence over only one superframe and storing the results in memory. So after the first superframe, the adaptive frequency hopping mechanism would just perform a table look-up in order to generate the partition sequence. Note that if the channel conditions change, then a new partition sequence must be generated for the first superframe.

[image: image1.wmf]R

g

(1)

R

g

(1)

R

g

(1)

R

g

(2)

R

b

(1)

R

b

(1)

R

b

(1)

R

b

(2)

¼

n

 - 1 of

R

g

(1)

 and

R

b

(1)

Figure 1. Structure of the adaptive hopping sequence for ACL link.

The variables and pseudo-code for generating the partition sequence for an ACL link are given as follows:

Variables:
afh_is_still_active = flag indicating that AFH is currently being used by device

Td = maximum timeout delay for higher layers (eg. TCP/IP)

Ts = slot time for Bluetooth

n + 1 = number of good and bad windows in superframe

Rg(1) = length of the first n – 1 good windows

Rg(2) = length of the last good window

Rb(1) = length of the first n – 1 bad windows

Rb(2) = length of the last bad window

Snext = SG or SBK
NG = number of good channels

NBK = number of bad channels kept in the re-mapped hopping sequence
SG = the set of good channels

SBK = the set of bad channels kept in the re-mapped hopping sequence
Partition Sequence Generator for an ACL Link:

/* Determine the length of the first bad window; the length is based on maximum timeout value that */

/* can be tolerated by upper layers, such TCP/IP. The value calculated below is the largest the bad */

/* window can be and still meet the requirements. Maybe safer to select a bad window size that is */

/* slightly smaller, i.e., be a little conservative */

Rb(1) = 2floor[Td / (2Ts)]

/* Determine the number of bad windows needed less one */

n = floor[2 NBK / Rb(1)]

/* Determine the length of the last bad window */

Rb(2) = 2 NBK – n Rb(1)

/* Determine the length of the first good window; must ensure that this value is nonzero, if it is zero */

/* then either Td or Rb(1) needs to be increased */

Rg(1) = 2floor[NG / (n + 1)]

/* Determine the length of the last good window */

Rg(2) = 2 NG – n Rg(1)

/* Initialize counter for partition sequence generation */

index = 0

/* Loop through each frame of the superframe and determine the partition sequence */

While (afh_is_still_active)

/* check to see if we are in the last frame of the superframe and set window size accordingly*/

If (index is not equal to n) Then

Rg = Rg(1) and Rb = Rb(1)

Else

Rg = Rg(2) and Rb = Rb(2)

End

/* Loop through the good window of the frame and generate partition sequence*/

For loop = 1 to Rg

Snext = SG

End

/* Loop through the bad window of the frame and generate partition sequence*/

For loop = 1 to Rb

Snext = SBK

End

/* Increment counter */

index = index + 1

/* Check boundary conditions and reset counter if needed */

If (index is equal to (n + 1)) Then,

index = 0

End

End

Note that the sizes of the good and bad windows are always even because we want to assign the same partition sequence to both the master and the slave. We can reduce the complexity of the partition sequence generator even further by only updating the partition sequence on the master-to-slave slot and using the same partition sequence value on the slave-to-master slot.

2. Adaptive Frequency Hopping Mechanism: SCO Link

In this section, we present the pseudo-code for generating the partition sequence for an SCO link. As with the ACL link, this partition sequence is used by the re-mapping function (see section 3) to generate the new and adaptive hopping sequence.

2.1. Pseudo-code for the SCO portion of the AFH Mechanism

The structure of the adaptive hopping sequence for an SCO link is shown in Fig. 2. From this figure, we see that the length of the superframe determines the period of the partition sequence. Since the partition sequence is periodic, we can reduce the computational complexity of the adaptive frequency hopping mechanism by calculating the partition sequence over only one superframe and storing the results in memory. So after the first superframe, the adaptive frequency hopping mechanism would just perform a table look-up in order to generate the partition sequence. Note that if the channel conditions change, then a new partition sequence must be generated for the first superframe.

[image: image2.wmf]frame

¼

frame

frame

frame

frame

frame

MAU

0

MAU

1

MAU

0

MAU

1

MAU

2

HV2

frame

HV3

frame

superframe

Figure 2. Structure of the adaptive hopping sequence for SCO link.

	# of HV2 Streams
	Offset
	RI

	1
	Dsco = 0
	1

	1
	Dsco = 2
	2

	2
	Dsco = 0 and Dsco = 2
	3

Table 1. Reservation indices for an HV2 stream(s).

	# of HV3 Streams
	Offset
	RI

	1
	Dsco = 0
	1

	1
	Dsco = 2
	2

	1
	Dsco = 4
	4

	2
	Dsco = 0 and Dsco = 2
	3

	2
	Dsco = 0 and Dsco = 4
	5

	2
	Dsco = 2 and Dsco = 4
	6

	3
	Dsco = 0, Dsco = 2, Dsco = 4
	7

Table 2. Reservation indices for an HV3 stream(s).

The variables and pseudo-code for generating the partition sequence for an SCO link are given as follows:

Variables:

afh_is_still_active = flag indicating that AFH is currently being used by device

V = voice link type (1 = HV1, 2 = HV2, 3 = HV3), V ({1, 2, 3}

RI = reservation index (see Tables 1 and 2 – only needed for HV2 and HV3)

Frames = number of frames within a superframe

Streams = number of HV-V streams currently active, Streams ({1, 2, 3}

GoodMAUs = number of good MAUs available for placement in superframe

StreamsProtected = number of HV-V streams that can be completely protected

Residual = number of MAUs left after completely protecting StreamsProtected HV-V streams

InterframeSpacing = spacing (in terms of frames) between residual MAUs

InterframeNum = InterframeSpacing frames are grouped into interframe; index points to the current interframe

Remaining = number of MAUs left over after placing the residual MAUs

FrameMAUs = number of MAUs assigned to each frame

Snext = SG or SBK
NG = number of good channels

NBK = number of bad channels kept in the re-mapped hopping sequence
SG = the set of good channels

SBK = the set of bad channels kept in the re-mapped hopping sequence

Partition Sequence Generator for an SCO Link:

/* Determine the total number of frames within a superframe */

Frames = NG + NBK
/* Determine the number of good MAUs available */

GoodMAUs = V NG

/* Determine the number of HV-V streams that we can completely protect */

StreamsProtected = floor[GoodMAUs / (NG + NBK)]

/* Determine the number of residual MAUs left over */

Residual = mod[GoodMAUs, StreamsProtected*(NG + NBK)]

/* Determine the interframe spacing for the residual MAUs placement */

InterframeSpacing = ceil[(NG + NBK) / Residual]

/* Determine the number of MAUs that have not been placed */

Remaining = Residual – ceil[(NG + NBK) / InterframeSpacing]

/* Loop through each superframe and determine the partition sequence */

/* Note: partition sequence is generated a frame at a time */

While (afh_is_still_active)

/* Loop through all of the frames within a superframe */

For loop = 0 to Frames – 1

/* Index that points to the current interframe */

InterframeNum = floor[loop / InterframeSpacing]

/* Index that points to the current frame within the interframe */

FrameIndex = loop – InterframeNum*InterframeSpacing

/* Determine the number MAUs that can be assigned to this particular frame */

/* Start by protecting all the HV-V streams that can be protected */

FrameMAUs =
StreamsProtected

/* Check to see if any of the residual or remaining MAUs can be placed in this frame */

If (FrameIndex = 0) OR (FrameIndex = 1 AND InterframeNum < Remaining) Then

/* Increment the number of MAUs that can be placed in this frame by one*/

FrameMAUs = FrameMAUS + 1

End

/* Determine partition sequence for this frame; consider HV1, HV2, and HV3 streams separately */

/* Determine the partition sequence for the entire frame */

If (V = 1) Then
/* Examine the case of zero MAU */

If (FrameMAUs = 0) Then

Snext = [SBK SBK]

End

If (FrameMAUs = 1) Then

Snext = [SG SG]

End

End

If (V = 2) Then
/* Examine the case of zero MAU */

If (FrameMAUs = 0) Then

Snext = [SBK SBK SBK SBK]

End

/* Examine the case of only one MAU. Partition sequence will depend on value of RI */

If (FrameMAUs = 1) Then

/* Consider the case when RI = 1 */

IF (RI = 1) Then

Snext = [SG SG SBK SBK]

End

/* Consider the case when RI = 2 */

IF (RI = 2) Then

Snext = [SBK SBK SG SG]

End

/* Consider the case when RI =3 */

IF (RI = 3) Then

Alternate between Snext = [SG SG SBK SBK] and Snext = [SBK SBK SG SG]

(OR just use Snext = [SG SG SBK SBK] always)

End

End

/* Examine the case of two MAUs */

If (FrameMAUs = 2) Then

Snext = [SG SG SG SG]

End

End

/* Consider the case of an HV3 stream */

If (V = 3) Then

/* Examine the case of zero MAU */

If (FrameMAUs = 0) Then

Snext = [SBK SBK SBK SBK SBK SBK]

End

/* Examine the case of only one MAU. Partition sequence will depend on value of RI */

If (FrameMAUs = 1) Then

/* Consider the case when RI = 1 */

IF (RI = 1) Then

Snext = [SG SG SBK SBK SBK SBK]

End

/* Consider the case when RI = 2 */

IF (RI = 2) Then

Snext = [SBK SBK SG SG SBK SBK]

End

/* Consider the case when RI = 4 */

IF (RI = 4) Then

Snext = [SBK SBK SBK SBK SG SG]

End

/* Consider the case when RI =3 */

IF (RI = 3) Then

Alternate between Snext = [SG SG SBK SBK SBK SBK] and Snext = [SBK SBK SG SG SBK SBK]

(OR just use Snext = [SG SG SBK SBK SBK SBK] always)

End

/* Consider the case when RI =5 */

IF (RI = 5) Then

Alternate between Snext = [SG SG SBK SBK SBK SBK] and Snext = [SBK SBK SBK SBK SG SG]

(OR just use Snext = [SG SG SBK SBK SBK SBK] always)

End

/* Consider the case when RI =6 */

IF (RI = 6) Then

Alternate between Snext = [SBK SBK SG SG SBK SBK] and Snext = [SBK SBK SBK SBK SG SG]

(OR just use Snext = [SBK SBK SG SG SBK SBK] always)

End

/* Consider the case when RI =7/

IF (RI = 7) Then

Alternate between Snext = [SG SG SBK SBK SBK SBK], Snext = [SBK SBK SG SG SBK SBK], and
Snext = [SBK SBK SBK SBK SG SG]

(OR just use Snext = [SG SG SBK SBK SBK SBK] always)

End

End

/* Examine the case of two MAUs. Partition sequence will depend on value of RI */

If (FrameMAUs = 2) Then

/* Consider the case when RI = 1, 2, 3 */

IF (RI = 1 OR RI = 2 OR RI = 3) Then

Snext = [SG SG SG SG SBK SBK]

End

/* Consider the case when RI = 4, 6 */

IF (RI = 4 OR RI = 6) Then

Snext = [SBK SBK SG SG SG SG]

End

/* Consider the case when RI = 5 */

IF (RI = 5) Then

Snext = [SG SG SBK SBK SG SG]

End

/* Consider the case when RI =7 */

IF (RI = 7) Then

Alternate between Snext = [SG SG SG SG SBK SBK], Snext = [SG SG SBK SBK SG SG], and
Snext = [SBK SBK SG SG SG SG]

(OR just use Snext = [SG SG SG SG SBK SBK] always)

End

End

/* Examine the case of three MAUs */

If (FrameMAUs = 3) Then

Snext = [SG SG SG SG SG SG]

End

End

End

End

We should emphasize that complexity of the partition sequence generator is greatly reduced because the partition sequence is generated only once per frame (4 slots for HV2 and 6 slots for HV3). We should also point out that the partition sequence generator is designed to work with a single HV1, HV2, and HV3 stream as well as multiple HV2 and HV3 streams.

By exploiting the fact that two HV2 streams are equivalent to a single HV1 stream, we can reduce the complexity of the partition sequence generator even further by completely removing the “if” statement for V = 1. Another benefit of eliminating the explicit need for V = 1 is that the frame type V can now be expressed with a single bit.

When there are not enough good channels to protect all of the SCO slots, we are forced to either provide the same level of QoS for all users or to protect some users at the expense of others. By alternating between different partition sequences for a particular RI (for example, see the case when V = 2, FrameMAUs = 1, and RI = 3), we can guarantee that all users experience the same packet loss. In this case, the overall packet loss (which remains constant for either case) is distributed evenly among the users. This situation may be preferable when concealment techniques are used at the audio codecs, i.e., we want to minimize the packet loss for each user. In case where a fixed partition sequence, the packet loss for one or more of the users will be zero, while the remaining user will have an extremely high packet loss. In other words, the overall packet is distributed to a single user in the system. In this case, all but one of the users will achieve an acceptable voice connection. This method should be used when errors cannot be concealed at the audio codec.

3. Re-mapping Function

In this section, we present the pseudo-code for the re-mapping function of the adaptive frequency hopping mechanism.

3.1. Pseudo-Code for the Re-mapping Function

The pseudo-code for the re-mapping function is given as follows:
Variables:
Fnext = next hopping frequency from the Bluetooth 1.1 HS generator, Fnext ([0, (, 78]

Fadp = re-mapped hopping frequency, Fadp (SG or Fadp (SBK
Snext = SG or SBK
Rk = pseudo-random signal at clock k

NG = number of good channels

NBK = number of bad channels kept in re-mapped hopping sequence
SG = the set of good channels

SBK = the set of bad channels kept in re-mapped hopping sequence
SG(i) = i-th channel of SG , i ([0, (, NG -1]

SBK(i) = i-th channel of SBK , i ([0, (, NBK -1]
Adaptive Frequency Hopping Mechanism:
/* Find the next hopping frequency from the Bluetooth 1.1 HS generator. */

Fnext = BT1.1_HS_generator (master_address, clock)

/* Determine the channel set required by the AFH scheme for the next slot */

/* This information is determined by partition sequence */
Snext = AFH_mechanism ()

/* If Fnext is in the set Snext, then re-mapping function should output Fnext */
If (Fnext is an element of Snext) Then,

Fadp = Fnext
/* If Fnext is not in the set Snext, then re-map Fnext to a frequency in the set Snext */
Else,

/* First check to see if a good channel is needed */

If (Snext = SG) Then,

/* Map the frequency onto a good frequency. First add a pseudo-random signal to the frequency */

/* Then map this result onto an element in SG */

Index = (Fnext + Rk) mod NG

Fadp = SG (Index)

Else,

/* Map the frequency onto a bad frequency. First add a pseudo-random signal to the frequency */

/* Then map this result onto an element in SBK */

Index = (Fnext + Rk) mod NBK

Fadp = SBK (Index)

End

End
Submission
Page

D. Kawaguchi, Symbol Technologies
Submission
Page

Anuj Batra (TI) and HK Chen et al. (IPC)

_1061717163.vsd

_1061717089.vsd

