March, 1994
      DOC: IEEE P802.11-94/xxx

November 2001
 IEEE P802.15-01/491r0


IEEE P802.15

Wireless Personal Area Networks

	Project
	IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs)

	Title
	Clause 14.3: Adaptive Frequency Hopping

	Date Submitted
	September 12, 2001

	Source
	Anuj Batra et al.
Texas Instruments
12500 TI Blvd, Dallas, TX 75243

KC Chen et al.

InProComm

Taiwan Laboratories

P.O. Box 24-226

Hsinchu, Taiwan 300

Hongbing Gan et al.

Bandspeed

7000 West William Cannon Drive

Austin, TX 78735

	Voice:
214-480-4220
Fax:
972-761-6966
E-mail:
batra@ti.com
Voice:
+886-3-516-5106
Fax:
+886-3-516-5108
E-mail: 
kc@inprocomm.com
Voice:
      512-358-9000
Fax:
      512-358-9001
E-mail: 
h.gan@bandspeed.com.au

	Re:
	[]

	Abstract
	This contribution contains the draft text for clause 14.3 of TG2 Recommended Practice.

	Purpose
	For review by TG2 members.

	Notice
	This document has been prepared to assist the IEEE P802.15.  It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

	Release
	The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P802.15.


Non-collaborative Mechanism

14.3 Adaptive Frequency Hopping

Adaptive frequency hopping (AFH) is a non-collaborative mechanism that enables the coexistence of IEEE 802.15.1 (Bluetooth) devices with frequency static devices in the 2.4 GHz ISM band, such as IEEE 802.11b (WLAN). This mechanism dynamically changes the frequency hopping sequence in order to avoid or mitigate the interference seen by the 802.15.1 device.

14.3.1 Definitions

SG = set of good channels (or indices pointing to the good channels)

SB = set of bad channels (or indices pointing to the bad channels)

SBK = set of bad channels (or indices) kept in the adapted hopping sequence

SBR = set of bad channels (or indices) removed from the adapted hopping sequence 

S = set of all channels = SG ( SBK ( SBR = SG ( SB
Nmin = minimum number of hop channels (typically set by regulatory constraints)

NG = number of good channels (NG = | SG |)

NB = number of bad channels (NB = | SB |)

NBK = number of bad channels kept in the adapted hopping sequence (NBK = | SBK |)

NBR = number of bad channels removed from the adapted hopping sequence (NBR = | SBR |)

fhop = next hop-frequency from the Bluetooth 1.1 hop kernel, fhop ( [0, (, 78]

khop = index that points to the next hop-frequency

fadp = next adapted hop-frequency, fadp ( SG or fadp ( SBK
SG(i) = i-th channel of SG , i ( [0, (, NG -1] 

SBK(i) = i-th channel of SBK , i ( [0, (, NBK -1]

14.3.2 Adaptive Frequency Hopping Mechanism

A block diagram of the adaptive frequency hopping mechanism is shown in Fig. 1. This mechanism consists of the three distinct components: the legacy hop kernel, the partition sequence generator, and the frequency re-mapping function. The first component of the AFH mechanism is the legacy hop kernel, which generates the hopping sequence defined in the Bluetooth standard. 

The second component of the AFH mechanism is the partition sequence generator, which imposes a structure on the original hopping sequence. When the new sequence is viewed from the perspective of the sets (either the set of good channels or the set of bad channels that are to be kept), there is a clear pattern and grouping of hopping frequencies from the same set. However, when the sequence is viewed from the perspective of the hopping frequencies, it still appears to be random. An example of a structured adaptive hopping sequence is illustrated in Fig. 2. This particular hopping sequence has WG(1) successive hop-frequencies from the set of good channels (SG), followed by WB(1) successive hop-frequencies from the set of bad channels to be kept (SBK), followed by WG(2) successive hop-frequencies from the set of good channels (SG), and so on. Note that the imposed structure does not specify the exact frequency at each slot, but does require that the hopping frequency be within a particular set.


[image: image1.wmf]Partition

Sequence

Generator

Traffic type

(ACL or SCO)

Legacy

Hop

Kernel

phase

(master's clock)

address

(master's identity)

Frequency

Re-mapper

p

(

k

)

f

hop 

(

k

hop

)

f

adp

Channel Conditions

(

S

G

, 

S

BK

, 

N

G

, 

N

BK

)

Channel Conditions

(

S

G

, 

S

BK

, 

N

G

, 

N

BK

)


Figure 1. Block diagram of the adaptive frequency hopping mechanism.


[image: image2.wmf]¼

Superframe

length = 

N

s

W

G

(1)

W

B

(1)

W

G

(2)

W

B

(2)

W

G

(

n

+1)

W

B

(

n

+1)

¼

Good

Bad

Bad

Bad

Good

Good

W

G

(1)

W

B

(1)

W

G

(2)

W

B

(2)

W

G

(

n

+1)

W

B

(

n

+1)

¼

Good

Bad

Bad

Bad

Good

Good


Figure 2. An example of an adapted hopping sequence with structure.

The structure of the hopping sequence can be compactly represented by a partition sequence. This sequence specifies the set (either SG or SBK) of the next hopping frequency. At the k-th slot, the partition sequence can take on one of the following two values:


[image: image3.wmf]ï

î

ï

í

ì

=

BK

adp

G

adp

S

f

S

f

k

p

 

of

element 

an 

 

be

 

should

 

 

if

 

 

of

element 

an 

 

be

 

should

 

 

if

0

1

)

(

.

The output of the partition sequence is then used as an input to the final component of the AFH mechanism: the frequency re-mapping function, which generates an adapted hopping sequence with the appropriate structure. The basic idea behind the frequency re-mapping function is to re-map (if necessary) the hopping frequency produced by the legacy kernel uniformly on to the set (either SG or SBK) defined by the partition sequence. Note that when the input to the frequency re-mapping function is constant signal of one, i.e., p(k) = 1 ( k, the block diagram shown in Fig. 1 produces an adapted hopping sequence that only hops over the good channels.

In the remainder of this section, a detailed description of the partition sequence generator and the frequency re-mapping function is provided.

14.3.2.1 Channel Selection

The adaptive frequency hopping mechanism must be provided a list of good channels (SG) and bad channels (SB) in the spectrum. The set of bad channels must then be further divided into the set of bad channels that are to be kept in the hopping sequence (SBK) and into the set of bad channels that are to be removed from the hopping sequence (SBR). The actual size of these partitions depends on the minimum number of hopping channels allowed (Nmin). The size of each partition is given by the following two equations: NBK = min(0, Nmin – NG) and NBR = NB – NBK. To simplify the implementation complexity, the set SBK should be comprised of the first NBK elements of SB, while the set SBR should be comprised on the remaining elements of SB. 
14.3.2.2 Partition Sequence Generator

In general, the optimal window lengths (WG(i) and WB(i)) for the structure defined in Fig. 2 will depend upon the number of good and bad channels available in the band. First, consider the case when NG ( Nmin. The optimal window lengths, for this case, are given by:

n = 0, WB(1) = 0, and WG(1) = 2 NG ( p(k) = 1 ( k.

Note that this result holds for both an ACL and SCO connection. Intuitively, this result implies that the optimal structure for the hopping sequence should be composed of only good hop-frequencies, i.e., p(k) = 1 ( k. In other words, when NG ( Nmin, reduced adaptive frequency hopping (hopping only over the good channels) should always be used.

In the remainder of this section, the optimal window lengths when NG < Nmin will be determined. The values for the ACL link and the SCO link will be derived separately.

14.3.2.2.1 ACL Connection

For an ACL connection, the implementation complexity can be reduced by forcing the first n good windows to have equal length (WG(i) = WG(1) for i ( {2, (, n}) and the first n bad windows to have equal length (WB(i) = WB(1) for i ( {2, (, n}).  Fig. 3 shows the structure of this new sequence.


[image: image4.wmf]n 

good windows and

n 

bad windows

W

G

(1)

W

B

(1)

W

G

(1)

W

B

(1)

W

G

(

1)

W

B

(

1)

¼

W

B

(

n

+

1)

W

G

(

n

+

1)

2

N

G

 + 2

N

BK

Good

Bad

Bad

Bad

Bad

Good

Good

Good


Figure 3. A structured adaptive hopping sequence for an ACL link.

To maintain a proper ratio of good hopping frequencies to bad hopping frequencies, the total number of good and bad hopping frequencies within a period of the partition sequence must be a equal to 2 NG + 2 NBK. Thus, the period of the partition sequence should also be equal to 2 NG + 2 NBK.

The length of the first bad window is constrained by the timeout value for the higher layers of the stack (e.g. TCP/IP). To avoid timeouts, the size of WB(1) must satisfy the following relationship:


[image: image5.wmf],

2

2

)

1

(

ú

û

ú

ê

ë

ê

=

s

d

B

T

T

W


where Td is the timeout value for the higher layer and Ts is the Bluetooth slot time. The size of the last bad window is given by:


[image: image6.wmf],

2

)

1

(

)

1

(

B

BK

n

B

nW

N

W

-

=

+


where n is defined by the following equation:


[image: image7.wmf].

2

)

1

(

ú

ú

û

ú

ê

ê

ë

ê

=

B

BK

W

N

n


Note that the length of the last bad window is always guaranteed to be smaller than the length of the first bad window, and therefore, a timeout should never occur at the higher layers.

Given the value of n, the optimal values for the good window lengths can now be determined:


[image: image8.wmf],

1

2

)

1

(

ú

û

ú

ê

ë

ê

+

=

n

N

W

G

G



[image: image9.wmf].

2

)

1

(

)

1

(

G

G

n

G

nW

N

W

-

=

+


Note that the previous five equations define the optimal structure of the adapted hopping sequence for an ACL connection when NG < Nmin. An example of a partition sequence for an ACL connection is shown in Fig. 4.


[image: image10.wmf]¼

1 1 

¼

 1

W

G

(1)

0 0 

¼

 0

W

B

(1)

1 1 

¼

 1

W

G

(1)

0 0 

¼

 0

W

B

(1)

1 1 

¼

 1

W

G

(

n

+1)

0 0 

¼

 0

W

B

(

n

+1)

¼

1 1 

¼

 1

W

G

(1)

0 0 

¼

 0

W

B

(1)


Figure 4. An example partition sequence for an ACL connection.

The following pseudo-code summarizes the partition sequence generator for an ACL connection. 

Partition Sequence Generator for an ACL Link:
/* Check to see if reduced adaptive frequency hopping can be used */

If (NG ( Nmin) Then,

/* Generate partition sequence for reduced adaptive frequency hopping*/

While (afh_is_still_active),


p(k) = 1

      End

/* The case when bad hopping frequencies must be used in the adapted hopping sequence */

Else,

/* Initialization – determine parameters for partition sequence generator (performed only once)*/

WB(1) = 2floor[Td  / (2Ts)]

n = floor[2 NBK  /  WB(1)]

WB(n+1)  = 2 NBK – n WB(1)
WG(1) = 2floor[NG  / (n + 1)]
WG(n+1) = 2NG – n WG(1)
/* Generate partition sequence for structured adaptive hopping sequence */

While (afh_is_still_active),


/* Loop through all of the good and bad windows */


For index = 1 to n+1,



/* Check to see if we are in the good and bad window*/



If (index is not equal to n) Then




WG = WG(1) and WB = WB(1)


Else




WG = WG(n+1) and WB = WB(n+1)


End



/* Loop through the good window and generate partition sequence*/



For loop = 1 to WG



p(k) = 1



End

/* Loop through the bad window and generate partition sequence*/


For loop = 1 to WB



p(k) = 0



End


End

End

End

Note that the same partition sequence value is assigned to both the master and the slave. By updating the partition sequence generator only on the master-to-slave slot, the complexity of this generator can be further reduced. To increase the robustness of the ACL link, the adaptive frequency hopping mechanism should be used in conjunction with a packet-scheduling algorithm.

14.3.2.2.2 SCO Connection

Let V be the voice link type (V = 1 for HV1, V = 2 for HV2, V = 3 for HV3) for the SCO connection. Since the voice connection is periodic, it is more convenient to view the structured adaptive hopping sequence in terms of (NG + NBK) frames of length 2V (see Fig. 5), where Fi denotes the i-th frame.


[image: image11.wmf]F

0

¼

N

G

 + 

N

BK

 frames

F

1

2

V 

slots

F

N


Figure 5. A structured adaptive hopping sequence for an SCO link.

Note that the structure defined in this figure is perfectly aligned with the inherent structure of the SCO link. The period of the partition sequence should be equal to 2V(NG + NBK).

To maintain a proper ratio of the good hopping frequencies to the bad hopping frequencies, 2VNG good hopping frequencies must be distributed among the (NG + NBK) frames. Before the good hopping frequencies can be distributed, the number of voice streams Vs that can be supported (i.e., place a good hopping frequency on each slot where a voice packet needs to be transmitted) must be determined. The following relationship can be used to determine this value:


[image: image12.wmf].

ú

û

ú

ê

ë

ê

+

=

BK

G

G

s

N

N

VN

V


This result implies that, at minimum, 2 Vs good hopping frequencies should be placed in each frame. The number of good hopping frequencies that remain is given by the following:


[image: image13.wmf]).

(

2

2

BK

G

S

G

G

N

N

V

VN

R

+

-

=


To ensure the best level of QoS, the residual good hopping frequencies should be uniformly distributed across the frames. The distance between frames that guarantees even placement of the residual good hopping frequencies is given by:


[image: image14.wmf].

)

(

2

ú

ú

ù

ê

ê

é

+

=

G

BK

G

R

N

N

D


This last result implies that an additional 2 good hopping frequencies can be assigned to the following frames: F0, FD, F2D, etc. In certain cases, it may be possible that a few good hopping frequencies have not yet been placed. The number of unplaced good hopping frequencies is given by:


[image: image15.wmf].

)

(

2

ú

ú

ù

ê

ê

é

+

-

=

D

N

N

R

E

BK

G

G

G


The most convenient way to distribute these good hopping frequencies is to assign them two at a time to the following frames: F1, FD+1, F2D+1, etc. until they have all been placed.

So in conclusion, the number of good hopping frequencies that are assigned to the i-th frames is given by:


[image: image16.wmf]ë

û

.

otherwise

2

 

)

2

and

1

mod

(

or 

0

mod

if

2

2

î

í

ì

<

=

=

+

=

s

G

s

i

V

/

E

i/D

 

 

(i,D) 

 

 

(i,D) 

V

G


The bad hopping frequencies are then used to ensure that 2V hopping frequencies have been assigned to each frame. The exact placement of the good and bad hopping frequencies within a frame depends on the number of voice streams that are active and the offset (DSCO) for stream. Tables 1-3 describe the partition sequences of entire frame for the various cases.

Table 1. Partition sequence values for HV1 SCO connection (V = 1)

	Nv = # of HV streams
	Dsco
	Gi = # of good channels assigned to Fi
	Partition Sequence, p(k)

	1
	0
	0
	[0 0]

	1
	2
	2
	[1 1]


Table 2. Partition sequence values for HV2 SCO connection (V = 2)

	Nv = # of HV streams
	Dsco
	Gi = # of good channels assigned to Fi
	Partition Sequence, p(k)

	((
	(
	0
	[0 0 0 0]

	1
	0
	2
	[1 1 0 0]

	1
	2
	2
	[0 0 1 1]

	2
	0,2
	2
	[1 1 0 0]


Table 3. Partition sequence values for HV3 SCO connection (V = 3)

	Nv = # of HV streams
	Dsco
	Gi = # of good channels assigned to Fi
	Partition Sequence, p(k)

	(
	(
	0
	[0 0 0 0 0 0]

	1
	0
	2
	[1 1 0 0 0 0]

	1
	0
	4
	[1 1 1 1 0 0]

	1
	2
	2
	[0 0 1 1 0 0]

	1
	2
	4
	[1 1 1 1 0 0]

	1
	4
	2
	[0 0 0 0 1 1]

	1
	4
	4
	[1 1 0 0 1 1]

	2
	0,2
	2
	[1 1 0 0 0 0]

	2
	0,2
	4
	[1 1 1 1 0 0]

	2
	0,4
	2
	[1 1 0 0 0 0]

	2
	0,4
	4
	[1 1 0 0 1 1]

	2
	2,4
	2
	[0 0 1 1 0 0]

	2
	2,4
	4
	[0 0 1 1 1 1]

	3
	0,2,4
	2
	[1 1 0 0 0 0]

	3
	0,2,4
	4
	[1 1 1 1 0 0]

	(
	(
	6
	[1 1 1 1 1 1]


Note: “(” means don’t care. 

The following pseudo-code summarizes the partition sequence generator for an SCO connection.

Partition Sequence Generator for an SCO Link:
/* Check to see if reduced adaptive frequency hopping can be used */

If (NG ( Nmin) Then,


/* Generate partition sequence for reduced adaptive frequency hopping*/


While (afh_is_still_active),



p(k) = 1

             End

/* Must use bad hop-frequencies in the adapted hopping sequence */

Else,


/* Initialization section – determine parameters for partition sequence generator */

Vs = floor[VNG / (NG + NBK)]

RG = 2 VNG – 2 Vs(NG + NBK)

D = ceil[2(NG + NBK) / RG]

EG = RG – 2 ceil[(NG + NBK) / D]


/* Generate partition sequence for structured adaptive hopping sequence */


While (afh_is_still_active),



/* Loop through all of the frames*/



For loop = 0 to (NG + NBK) – 1




/* Determine the number of good channels to be assigned to the i-th frames */




Gi = 2Vs



/* See if any addition good channels are to be assigned to the i-th frame */




If (mod(loop, D) = 0) OR ( (mod(loop, D) = 1) AND (floor(loop/D) < EG/2) )Then





Gi = Gi + 2




End




/* Partition sequence for that frame can be found via table look-up */




Padp = table_look_up(V, NV, Dsco, Gi) 



End


End

End

By exploiting the fact that the partition sequence needs to be generated only per frame (4 slots for HV2 and 6 slots for HV3), the complexity of the partition sequence generator can be reduced. Note that this sequence generator is designed to work with a single HV1, HV2, and HV3 stream as well as multiple HV2 and HV3 streams. Also note the look-up table for the HV1 stream can be eliminated and replaced by the entries for two HV2 streams, because two HV2 streams is equivalent to a single HV1 stream.

14.3.2.3 Re-mapping Function

The frequency re-mapping function generates an adaptive hopping sequence with a structure that has been specified by the partition sequence. The actual mechanism that re-maps the hopping frequencies is fairly straightforward. If the legacy hopping frequency is already in the set that is specified by the partition sequence, then the output of the frequency re-mapping function is the legacy hopping frequency. However, if the legacy hopping frequency is not in the required set, then the index pointing to the legacy hopping frequency is re-mapped using the mechanism defined in Fig. 6.


[image: image17.wmf]mod

N

BK

1+

CLK

f

adp

Array of bad hop-frequencies

(Length of array = 

N

BK

)

k

hop

even channels placed in

an ascending order

odd channels placed in an

ascending order

mod

N

G

1+

CLK

f

adp

Array of good hop-frequencies

(Length of array = 

N

G

)

k

hop

even channels placed in

an ascending order

odd channels placed in an

ascending order

(a)

(b)

+

+


Figure 6. (a) Block diagram for the frequency re-mapping function on to the set SG; 
(b) Block diagram for the frequency re-mapping function on to the set SBK.

The following pseudo-code summarizes the frequency re-mapping function for the adaptive frequency hopping mechanism.

Frequency Re-mapping Function:
/* Find the next hopping frequency from the Bluetooth 1.1 hop kernel. */

fhop = BT1.1_HS_generator (master_address, clock)

/* Partition sequence provides information about the set for the next channel */
p(k) = Partition_sequence_generator ()

/* If fhop is in the required set, then re-mapping function should output fhop */

If (p(k) = 1 AND fhop is an element of SG) OR (p(k) = 0 AND fhop is an element of SBK) Then,


fadp = fhop
/* If fhop is not in the required set, then re-map fhop to a frequency in the required set */
Else,


/* First check to see if a good channel is needed */

If (p(k) = 1) Then,



/* Map the frequency onto a good hopping frequency. First add the CLK to the frequency */

/* and then map this result on to an element in SG */  


Index = (khop + 1 + CLK) mod NG

fadp = SG (Index)


Else, 



/* Map the frequency onto a bad hopping frequency that is to be kept in the adapted */

    

/* hopping sequence. First add the CLK to the frequency and then map this result */

/* on to an element in SBK */  

Index = (khop + 1 + CLK) mod NBK


fadp = SBK (Index)


End

End

Note that a frequency re-mapping function is a necessity for all adaptive frequency hopping schemes.
14.3.3 LMP Commands for Adaptive Frequency Hopping Mechanism

The LMP commands are still to be determined. The exact LMP commands will depend on the adaptive frequency hopping mechanism that is chosen.






















Submission
Page 

D. Kawaguchi, Symbol Technologies
Submission
Page 

TI, InProComm, and Bandspeed  


_1065879701.unknown

_1065960449.unknown

_1066043954.vsd

_1066058739.vsd

_1066059916.vsd

_1066058496.vsd

_1065960687.unknown

_1065960748.unknown

_1065960470.unknown

_1065960138.unknown

_1065960152.unknown

_1065960091.vsd

_1062246309.unknown

_1062355928.unknown

_1065872269.vsd

_1062246618.unknown

_1062245787.unknown

