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Change Request #3
Add the following text to Clause 11.1 of Draft IEEE Std 802.15.2/D01-2001.

6.2   Deterministic Spectral Excision for PHY Layer Coexistence

In this section, we discuss an interference suppression technique, denoted deterministic frequency excision, designed to mitigate the effect of 802.15.1 interference on 802.11b.    Since the Bluetooth signal has a bandwidth of approximately 1 MHz, it can be considered a narrowband interferer for the 22 MHz wide 802.11b signal.    The basic idea of the suppression technique is to put a null in the 802.11b’s receiver at the frequency of the Bluetooth signal.  However, since Bluetooth is hopping to a new frequency for each packet transmission, the 802.11b receiver needs to know the frequency hopping pattern, as well as the timing, of the Bluetooth transmitter.    This knowledge is obtained by employing a Bluetooth receiver as part of the 802.11b receiver.  Thus, this is a collocated, collaborative method.   Since it is primarily a physical layer solution, it can be integrated with the PTA MAC layer solution.    This section discusses the procedure, which is applicable to all basic rate sets in 802.11b (1, 2, 5.5, and 11 Mbit/s) and the results for the 1 Mbit/s 802.11b direct sequence spread spectrum system.    

Ed. Note 1: add the 11 Mb/s (and maybe adaptive processing).

Figures~\ref{fig:reject1}(a) and (b) show the block diagrams of the 1 Mbit/s IEEE 802.11b transmitter and receiver, respectively.    Note that between the chip matched filter and the PN correlator is an adjustable transversal filter.    The optimal coefficients of this filter are estimated and then used to update the filter.     Figure~\ref{fig:transversal} shows the structure of the transversal filter.
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      \epsffile{reject1.jpg}

      \caption{(a)/(b)  Block diagrams of the 1 Mbits/sec IEEE 802.11 system, employing 

                     frequency nulling.  (a) Transmitter.    (b) Receiver.}

      \label{fig:reject1}

Ed. Note 3: correct misspelling.   Estimation and/or preselection.
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      \epsffile{transversal.jpg}

      \caption{Adjustable transversal filter used in the 802.11 receiver.} 

      \label{fig:transversal}

14.2.1 Calculation of adaptive tap weights
First let us assume that the interferer is a pure tone.   Consider the central tap in the transversal filter. At time iT, it can be written as~\cite{milstein:82b}
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where 
[image: image11.wmf]c

T

 is the sampling interval equal to the chip time,  
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  is the signal amplitude, and 
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 and 
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 are the amplitude and frequency of the interferer.     ni is the random noise, and
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 is a random phase angle with a uniform distribution.   The objective is to find the tap weights that minimize the error.

When the interference is stationary, one can employ the Wiener solution to find the optimum tap weights.     These optimal tap coefficients, 
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, are found by solving the following system of equations~\cite{milstein:82b, ketchum:82}
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where the autocorrelation function is given by  
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, and the samples, 
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, are as shown in Figure~\ref{fig:transversal}.

The first assumption is that the PN sequence is sufficiently long.   This implies that the PN signal samples at the different taps are uncorrelated.   In this case, the solutions for the optimal tap weights have the simple form~\cite{milstein:82b}
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Eq. ( \ref{eq:jammer1})  shows that one needs estimates of the signal power, S, the interferer power, I, and the noise power, 
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.     In many traditional military jamming scenarios, the signal-to-noise ratio (SNR) can be relatively low.   Fortunately, for 802.11b systems in typical configurations, the SNR is often quite high.    So, we can neglect the noise power in this equation.    Still, one needs an estimate of the signal-to-interference (SIR) ratio to determine the optimal tap coefficients.  We assume that the SIR value is fixed and equal to –20 dB; this is a typical value.   Using this assumption, it is no longer necessary to estimate the SIR.  One still needs an estimate of the offset in frequency, 
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, between the 802.11b signal and the interferer.   In a collaborative system, this frequency offset is assumed known a priori.

14.2.2 Simulation results (informative)
Figure~\ref{fig:norejectperform} shows the bit error rate performance of the original 1 Mbit/sec 802.11b system for an AWGN channel with 802.15.1 interference.  We measure SIR and SNR at the input to the chip matched filter.  Without any type of interference suppression, an SIR value of –5 dB is needed for acceptable performance at all frequency offsets.  If the offset is at least 5 MHz, then a value of approximately –11 dB is acceptable.    Figure~\ref{fig:rejectperform} shows the performance when the adjustable transversal filter, with N = 3, is used.   When using Eq.(\ref{eq:jammer1}), we assumed that the SIR was –20 dB.   Even when there is a mismatch between the assumed SIR and the actual SIR, the performance is greatly improved.    Even for the worst case of a 1 MHz offset, an SIR of –32 dB gives a bit error rate below 
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      \epsffile{NoRejectperform2.jpg}

      \caption{BER performance of 1 Mbits/sec 802.11 receiver with Bluetooth interference and

                     without any interference suppression.  AWGN channel.}

      \label{fig:norejectperform}

Ed. Note 8: Do we need this figure, since it is similar, if not identical to the one in Clause 6?  One possibility is to have both before and after on the same plot.   We do not need to show for all of these frequencies.
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      \epsffile{Rejectperform.eps}

      \caption{BER performance of 1 Mbits/sec 802.11 receiver with Bluetooth interference and

                    with adjustable transversal filtering. AWGN channel. High SNR case.} 

      \label{fig:rejectperform}

11 Mbit/s CCK System

Ed. Note 9: Write this section
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� Although this document consistently references 802.15.1, not Bluetooth ™, the mechanism is equally applicable to both 802.15.1 and Bluetooth.


� The word packet is used here to mean an 802.11 MPDU or an 802.15.1 baseband packet.


� A collision occurs when packets from the 802.11 and 802.15.1 are transmitted simultaneously resulting in the loss of one or both packets.


� Note, the receiving states include waiting for expected responses such as a CTS or ACK MPDU.


� The Number of slots into the future is a local matter.
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