January, 2002
 IEEE P802.15-02/045r0

IEEE P802.15

Wireless Personal Area Networks

	Project
	IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs)

	Title
	IEEE P802-15_TG3 Cipher Suite Framework Proposal

	Date Submitted
	[January 16, 2002]

	Source
	[Ari Singer]
[NTRU]
[5 Burlington Woods

Burlington, MA 01803 USA]
	Voice:
[+1 781 418-2515]
Fax:
[+1 781 418-2532]
E-mail:
[asinger@ntru.com]

	Re:
	802.15.3 TG3 Letter Ballot Draft D09

	Abstract
	[The 802.15.3 draft D09 submitted to letter ballot lacks clear requirements for cipher suites and so does not provide interoperability for secure piconets. This document provides a proposed cipher suite framework . This proposal includes common data formats to be used, functionality to be implemented and criteria by which the security can be analyzed.]

	Purpose
	[This document is intended to be used as an additional submission beyond what is already in D09 of the 802.15.3 draft standard. It may be used as the basis for ballot comments on the security protocols as described in the draft standard.]

	Notice
	This document has been prepared to assist the IEEE P802.15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

	Release
	The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P802.15.

1 Introduction

The security methods that appear in 802.15.3 draft D09 are cipher suite independent. The focus in that document is message formats and system interaction, leaving algorithm choice and specification undefined.

This document is intended to provide a framework for cipher suites, which are collections of algorithms and protocols used together to provide overall system security. Cipher suite proposals should follow the model laid out in this document.

1.1 Supplemental Definitions

group membership authentication: Assurance that an authorized member of the group sent the data.

key management: methods to control keying material throughout its life cycle from creation to distribution to destruction

payload protection: The generic term for providing security services on payload data, including confidentiality, integrity and authentication.

secure piconet: A piconet in which cryptographic techniques are implemented to provide security services.

1.2 802.15.3 Security Model

The security model consists of a set of goals and a security framework that provides guidelines for their achievement. The purpose of any cipher suite is to implement this security model by satisfying the security goals within the common security framework.

The two primary security goals for 802.15.3 piconets are:

1. Only authorized devices may join a secure piconet

2. Only authorized devices may access information shared between members of a secure piconet

These goals may be satisfied by many different methods, however a single framework is needed to restrict the types of security solutions, allow for common security analysis, and provide interoperability.

The framework consists of the following guidelines:

1. Entry into the piconet shall be controlled by a single entity (the PNC) that implements the role of security manager for the piconet.

2. Public-key cryptography shall be used for authentication of devices and initialization of security material related to the piconet.

3. Symmetric-key cryptography should be used for payload protection within the piconet.

4. The security manager shall use cryptographic means along with its own authorization criteria to authenticate devices.

5. Each device shall use cryptographic means along with its own authorization criteria to authenticate the security manager.

6. The security manager shall use cryptographic means to transfer the payload protection keys to the devices and update those keys when necessary.

7. All authenticated devices should share piconet-wide payload protection keys.

8. All data in a secure piconet should be cryptographically protected for confidentiality, data integrity and group membership authentication.

If desired, the previous techniques may be implemented on a peer-to-peer basis with one device taking on the role of security manager.

2 Security services

Cryptographic algorithms in a cipher suite have well-defined complementary functions. These functions include:

· mutual authentication

· key establishment

· key transport

· data encryption

· data integrity/source authentication

· methods to verify the authenticity of a public key

Not every cipher suite must define methods to perform all of these functions. Despite the optional nature of some functions, the desire for a reasonable level of security implies that they should all be implemented. In particular, the lack of piconet payload protection results in a piconet with no privacy or assurance as to the source or integrity of the transmitted data.

A cipher suite provides one or more services from the following table. In the following table, the letter M stands for a mandatory service for all cipher suites, the letter R stands for a recommended service for all cipher suites and the letter O stands for an optional service for all cipher suites.

	
	PNC-DEV
	Peer-to-Peer

	Verifying Public Keys
	M
	O

	Mutual Authentication
	M
	O

	Key Establishment
	R
	O

	Key Transport
	R
	O

	Data Encryption
	R
	O

	Data Integrity/Source Authentication
	R
	O

Every cipher suite shall include mutual authentication between each DEV and the security manager (PNC) for acceptance into the piconet.

If the cipher suite offers payload protection, it shall provide for initial key establishment between a DEV and the security manager (PNC) and, if necessary, the subsequent transport of the group payload protection keys from the security manager (PNC) to the DEV. In addition, a cipher suite shall include at least one of the following types of payload protection:

· Integrity protection/group membership authentication only

· Group data confidentiality only

· Group data confidentiality and integrity protection/group membership authentication

· If the cipher suite offers peer-to-peer security, it shall provide peer-to-peer mutual authentication and may provide the peer-to-peer equivalents of the above group security services. When peer-to-peer security is implemented, a DEV other than the PNC may assume the role of security manager for that peer-to-peer relationship.

2.1 Piconet-wide Authentication

DEV-PNC authentication is used for the following purposes:

· To allow the DEV to determine if the PNC is authorized to perform the security manager role

· To allow the PNC to determine if the DEV is authorized to associate to the secure piconet

Since authentication is required before any other commands are allowed in the secure piconet, all cipher suites shall define a method for the DEV and the PNC to authenticate each other. The protocol described in the following section that is used for authentication may also be used for key establishment and perhaps key transport in addition to mutual authentication.

2.1.1 DEV-PNC Mutual Authentication

Authentication shall be performed in the following manner:

1. 1. A DEV sends an MLME-AUTHENTICATE.request to the security manager (PNC), which contains an indication of the key that it wishes to use to authenticate itself.

2. The security manager decides whether it trusts the key or not using processes defined by the cipher suite and, if trust can be established, responds with an MLME-CHALLENGE.request in the format defined by the cipher suite to ask the DEV to prove its identity. Included in the challenge, the security manager sends an indication of the key it will use to authenticate itself to the DEV.

3. When the DEV receives the challenge, it generates a proof that it knows its private key using processes defined by the cipher suite and sends the proof in the MLME-CHALLENGE.response message. It also includes a challenge for the security manager (PNC) to prove its identity.

4. The security manager (PNC) verifies the response using processes defined by the cipher suite and responds to the DEV with an MLME-AUTHENTICATE.response indicating the success or failure of the authentication process.

The following diagram shows the message flow for the authentication process. The formats for the authentication commands are defined in the formats section.

[image: image1.wmf]DEV-1

DME

DEV-1

MLME

MLME-

AUTHENTICATE

.req

AUTHENTICATE-

REQUEST

MLME-

AUTHENTICATE

.ind

MLME-

CHALLENGE.req

CHALLENGE-

REQUEST

MLME-

CHALLENGE.ind

PNC

MLME

PNC

DME

MLME-

CHALLENGE.cfm

 Key

req = request

ind = indication

rsp = response

cfm = confirm

Figure 1: Message sequence chart for DEV-

PNC mutual authentication

MLME-

CHALLENGE.rsp

CHALLENGE-

RESPONSE

MLME-

AUTHENTICATE

.rsp

AUTHENTICATE-

RESPONSE

MLME-

AUTHENTICATE

.cfm

2.2 Piconet-wide Payload Protection

The PNC acts as the security manager for payload protection on messages intended for the entire piconet. When payload protection is used, the PNC takes responsibility for authentication of all devices and key management for piconet payload protection keys. All authenticated devices in the piconet share these keys . They provide data integrity, group membership authentication and/or data confidentiality for broadcast frames. These keys also provide payload protection for directed frames, but all authenticated devices in the piconet will be able to forge and/or decrypt these frames.

Piconet-wide payload protection is used for the following purposes:

· Confidentiality: transmitted data may be read only by piconet members

· Integrity: transmitted data cannot be altered by nonmembers

· Authorization: recipients can verify the data was sent by a piconet member

Since all authenticated devices share the piconet payload protection keys, the cryptographic operations performed using these keys only provide protection against devices that are not authenticated. This model implies data should be trusted only as much as the least trusted authenticated device. In particular, any message that is encrypted with a piconet-wide data encryption key (DEK) can be decrypted by any device in the piconet. Similarly, when integrity protection is provided using a message authentication code using a data integrity key (DIK), individual source authentication is not guaranteed, since any device with knowledge of the key could produce the message authentication code.

When piconet-wide payload protection is used, the security manager (PNC) establishes a unique secret symmetric key with each DEV during the authentication process. This key may be used to secure the transfer of additional keying material from the security manager (PNC) to the DEV, as a seed for generating additional keying material or directly for payload protection, but the key shall be used for at most one of those purposes.

2.2.1 Initial Key Establishment

To thwart session hijacking attacks, a cipher suite's authentication service must be tied to its key establishment service, if offered. In this case, the cipher suite shall use a single protocol that provides both authentication and key establishment. The key thus established is then used in order for the DEV to obtain the key or keys that are used for payload protection.

The formats for key establishment messages are defined in the formats section.

2.2.2 Key Transport

If the key establishment service defined by the cipher suite does not result in the DEV receiving all of the payload protection keys that are needed, the cipher suite shall define a method for key transport. Key transport is also defined by the cipher suite if a device is allowed to request a key or if the security manager (PNC) is allowed to send a key to a DEV. When key transport is used, the security manager (PNC) shall be the device sending the key and the other participating DEV shall be the recipient of the key. The exchange should be encrypted using an agreed upon key encryption key (KEK) known only to the security manager (PNC) and that DEV.

The process for key request shall follow these steps.

1. The requesting DEV creates an MLME-REQUEST-KEY.request using a KeyPurpose supported by the cipher suite and sends it to the security manager (PNC).

2. The security manager (PNC) encrypts the requested key using a process defined by the cipher suite and sends it to the requesting DEV in the MLME-REQUEST-KEY.response message.

3. The DEV decrypts and stores the key by a process defined by the cipher suite.

The process for key distribution that each cipher suite defines follows these approximate guidelines. The security manager (PNC) encrypts the key it wishes to distribute using a process defined by the cipher suite and sends it in an MLME-DISTRIBUTE-KEY.request message to the DEV. The DEV decrypts the key using a process defined by the cipher suite and returns an acknowledgement to the security manager (PNC) informing it of the success or failure of the transaction.

The following diagrams show the message flows for the key request (pull) protocol and distribute key (push) protocol. The formats for the key transport commands are defined in the formats section.

[image: image2.wmf]DEV-1

DME

DEV-1

MLME

MLME-REQUEST

-KEY.req

REQUEST-KEY-

REQUEST

MLME-REQUEST

-KEY.ind

MLME-REQUEST

-KEY.rsp

REQUEST-KEY-

RESPONSE

MLME-REQUEST

-KEY.cfm

PNC

MLME

PNC

DME

 Key

req = request

ind = indication

rsp = response

cfm = confirm

Figure 2: Message sequence chart for key

request

[image: image3.wmf]DEV-1

DME

DEV-1

MLME

MLME-

DISTRIBUTE-

KEY.req

DISTRIBUTE-KEY-

REQUEST

MLME-

DISTRIBUTE-

KEY.ind

PNC

MLME

PNC

DME

MLME-

DISTRIBUTE-

KEY.cfm

 Key

req = request

ind = indication

rsp = response

cfm = confirm

Figure 3: Message sequence chart for key

distribution

DISTRIBUTE-KEY-

RESPONSE

MLME-

DISTRIBUTE-

KEY.rsp

2.2.3 Payload Protection

If payload protection is to be used on piconet data, the cipher suite shall define the method by which the frame data is protected. This payload protection is signified by the security bit being set to 1 in the frame. The cipher suite defines the symmetric algorithms that are used to protect the data and whether the protection is for integrity/group membership authentication only, confidentiality only or both integrity/group membership authentication and confidentiality. It is strongly recommended that if payload protection is used that both integrity/group membership authentication and confidentiality be used.

Depending on the type of protection offered, different types of keys should be used, with their purposes explicitly defined. For confidentiality only, a data encryption key (DEK) should be used. For integrity/group membership authentication, a data integrity key (DIK) should be used. For both integrity/group membership authentication and confidentiality, one DEK and DIK may be used or a data protection key (DPK) may be used for both functions. Unless a mode is used that provides both security services, it is preferable to use a DEK and a DIK. These may be separately derived from a seed that is agreed upon during the key exchange process or key transport process.

Format guidelines for protected frames are described in the formats section.

2.2.3.1 Integrity Protection/Group Membership Authentication Only

In a situation in which confidentiality is not desirable, integrity/group membership authentication may be provided on the frames without confidentiality. If this mode is used, the authenticated members of the piconet should all obtain the group data integrity key (DIK) and use that key to generate a message authentication code on the frame data. The format of this message authentication code and the data this is protected is defined by the cipher suite.

2.2.3.2 Group Data Confidentiality Only

In a situation in which integrity/group membership authentication is not desirable, confidentiality may be provided on the frames without integrity/group membership authentication. This mode may be vulnerable to substitution attacks and is not recommended in situations where source authentication and data integrity are not provided by other means. If this mode is used, the authenticated members of the piconet should all obtain the group data encryption key (DEK) and use that key to encrypt the frame data. The format of this encrypted data is defined by the cipher suite.

2.2.3.3 Group Data Confidentiality and Integrity Protection/Group Membership Authentication

In a situation in which both confidentiality and data integrity/group membership authentication are desirable, the cipher suite may provide for both. This is the recommended security mode for payload protection. If this mode is used, the authenticated members of the piconet should all obtain the group payload protection keys (DEK, DIK and/or DPK) and use them to encrypt the data and provide integrity protection. The format of the protected data is defined by the cipher suite.

2.3 Peer-to-Peer Authentication

As with piconet authentication, two DEVs in the piconet may authenticate each other. This authentication process may be combined with key exchange and key transport to provide payload protection keys that may be used to secure traffic between the two DEVs.

Peer-to-peer authentication is used for the following purposes:

· To allow the initiating DEV to verify the identity of the responding DEV

· To allow the responding DEV to verify the identity of the initiating DEV

Peer-to-peer authentication is implemented almost identically to authentication with the PNC for simplicity and ease of implementation. The primary difference is that an ordinary DEV may act as the security manager for that particular secure relationship instead of the PNC.

2.3.1 Peer-to-Peer Mutual Authentication

Peer-to-Peer Mutual Authentication shall be performed in the following manner:

1. When two DEVs are authenticating each other in the piconet, one DEV initiates the process by sending an MLME-AUTHENTICATE.request to the other DEV, which will act as the security manager in this relationship. The MLME-AUTHENTICATE.request shall contain an indication of the key that it wishes to use to authenticate itself in the format defined by the cipher suite.

2. The responding DEV decides whether it trusts the key or not using processes defined by the cipher suite. If trust is established, the responding DEV sends an MLME-CHALLENGE.request in the format defined by the cipher suite to ask the initiating DEV to prove its identity. Included in the challenge, the responding DEV sends an indication of the key it will use to authenticate itself to the initiating DEV.

3. When the initiating DEV receives the challenge, it generates a proof that it knows its private key using processes defined by the cipher suite and sends the proof in the MLME-CHALLENGE.response message. It also includes a challenge for the responding DEV to prove its identity.

4. The responding DEV verifies the response using processes defined by the cipher suite and responds to the initiating DEV with an MLME-AUTHENTICATE.response indicating the success or failure of the authentication process.

The following diagram shows the message flow for the authentication process. The formats for the authentication commands are defined in the formats section.

[image: image4.wmf]DEV-1

DME

DEV-1

MLME

MLME-

AUTHENTICATE

.req

AUTHENTICATE-

REQUEST

MLME-

AUTHENTICATE

.ind

MLME-

CHALLENGE.req

CHALLENGE-

REQUEST

MLME-

CHALLENGE.ind

DEV-2

MLME

DEV-2

DME

MLME-

CHALLENGE.cfm

 Key

req = request

ind = indication

rsp = response

cfm = confirm

Figure 4: Message sequence chart for peer-

to-peer mutual authentication

MLME-

CHALLENGE.rsp

CHALLENGE-

RESPONSE

MLME-

AUTHENTICATE

.rsp

AUTHENTICATE-

RESPONSE

MLME-

AUTHENTICATE

.cfm

2.4 Peer-to-Peer Payload Protection

When two DEVs wish to use payload protection between them, the DEVs must authenticate each other and then agree on peer-to-peer payload protection keys. Peer-to-peer payload protection keys are symmetric keys that are shared only by the two participating DEVs. They are used to provide data integrity, source authentication and/or data confidentiality for data that is sent between the DEVs (directed frames).

Peer-to-peer payload protection is used for the following purposes:

· Confidentiality of transmitted data between the two DEVs

· Integrity of the transmitted data between the two DEVs (e.g. it has not been modified in transit)

· Assurance that the other DEV sent the data (source authentication)

Since only the two devices share the peer-to-peer payload protection keys, the cryptographic operations performed using these keys provide protection against all other devices. Unlike with group payload protection keys, the fact that only two devices share the keys gives the devices assurance that they are receiving messages from the other DEV.

When peer-to-peer payload protection is used, the DEV acting as security manager establishes a secret (symmetric) key with the other DEV during the authentication process. This key may be used to secure the transfer of additional keying material from the DEV acting as security manager to the other DEV, as a seed for generating additional keying material or directly for payload protection, but the key shall be used for at most one of those purposes.

2.4.1 Peer-to-Peer Key Establishment

In cipher suites that use peer-to-peer payload protection, the two DEVs use a process using their keys to share a key privately. This process is called key establishment and is defined by the cipher suite. Key establishment should occur during the authentication process as described above. This key establishment is necessary in order for the DEV to obtain the key or keys that are used for payload protection. As with authentication, key establishment should be done using public-key methods, however for compatibility with other standards, this may be done using symmetric keys and may occur outside the scope of this document. For public key methods, key establishment usually starts during the CHALLENGE protocol and ends at the end of authentication. This process should be similar to the key establishment process between the PNC and another DEV.

The formats for key establishment messages are defined in the formats section.

2.4.2 Peer-to-Peer Key Transport

If the peer-to-peer key establishment defined by the cipher suite does not result in the DEV receiving all of the payload protection keys that are needed, the cipher suite shall define a method for key transport. Key transport is also defined by the cipher suite if a device is allowed to request a key or if the security manager (one of the DEVs) is allowed to send a key to another DEV. When key transport is used, the DEV acting as security manager should be the device sending the key. The key transport should be encrypted using an agreed upon key encryption key (KEK) known only by the two participating DEVs.

The process for key request that each cipher suite defines (if defined) follows these approximate guidelines. The requesting DEV creates an MLME-REQUEST-KEY.request using a KeyPurpose supported by the cipher suite. The DEV acting as security manager encrypts the requested key using a process defined by the cipher suite and sends it to the requesting DEV in the MLME-REQUEST-KEY.response message. The DEV decrypts the key by a process defined by the cipher suite and stores it. The process for key distribution that each cipher suite defines follows these approximate guidelines. The DEV acting as security manager encrypts the key it wishes to distribute using a process defined by the cipher suite and sends it in an MLME-DISTRIBUTE-KEY.request message to the DEV. The DEV decrypts the key using a process defined by the cipher suite and returns an acknowledgement to the security manager (PNC) informing it of the success or failure of the transaction.

The following diagrams shows the message flows for the peer-to-peer key request (pull) protocol and peer-to-peer distribute key (push) protocol. The formats for the key transport commands are defined in the formats section.

[image: image5.wmf]DEV-1

DME

DEV-1

MLME

MLME-REQUEST

-KEY.req

REQUEST-KEY-

REQUEST

MLME-REQUEST

-KEY.ind

MLME-REQUEST

-KEY.rsp

REQUEST-KEY

RESPONSE

MLME-REQUEST

-KEY.cfm

DEV-2

MLME

DEV-2

DME

 Key

req = request

ind = indication

rsp = response

cfm = confirm

Figure 5: Message sequence chart for peer-

to-peer key request

DEV-1

DME

DEV-1

MLME

MLME-

DISTRIBUTE-

KEY.req

DISTRIBUTE-KEY-

REQUEST

MLME-

DISTRIBUTE-

KEY.ind

DEV-2

MLME

DEV-2

DME

MLME-

DISTRIBUTE-

KEY.cfm

 Key

req = request

ind = indication

rsp = response

cfm = confirm

Figure 6: Message sequence chart for peer-

to-peer key distribution

DISTRIBUTE-KEY-

RESPONSE

MLME-

DISTRIBUTE-

KEY.rsp

2.4.3 Peer-to-peer Payload Protection

If payload protection is to be used on data sent between two DEVs, the cipher suite defines the method by which the frame data is protected. This payload protection is signified by the security bit being set to 1 in the frame. The cipher suite defines the symmetric algorithms that are used to protect the data and whether the protection is for integrity/source authentication only, confidentiality only or both integrity/source authentication and confidentiality. It is strongly recommended that if payload protection is used that both integrity/source authentication and confidentiality be used.

Depending on the type of protection offered, different types of keys should be used, with their purposes explicitly defined. For confidentiality only, a data encryption key (DEK) should be used. For integrity/group source authentication, a data integrity key (DIK) should be used. For both integrity/group source authentication and confidentiality, one DEK and DIK may be used or a data protection key (DPK) may be used for both functions. Unless a mode is used that provides both security services, it is preferable to use a DEK and a DIK. These may be separately derived from a seed that is agreed upon during the key exchange process or key transport process.

Format guidelines for protected frames are described in the formats section.

2.4.3.1 Integrity Protection/Group Source Authentication Only

In a situation in which confidentiality is not desirable, integrity/source authentication may be provided on the frames without confidentiality. This may occur in situations where messages simply need to be authenticated and/or when the computational cost of confidentiality is too great. This mode is not recommended for the transport of secret or confidential materials. If this mode is used, the two devices should agree on a data integrity key (DIK) and use that key to generate a message authentication code on the frame data. The format of this message authentication code and the data this is protected is defined by the cipher suite.

2.4.3.2 Peer-to-peer Data Confidentiality Only

In a situation in which integrity/source authentication is not desirable, confidentiality may be provided on the frames without integrity/source authentication. This may occur in situations where messages are confidential, but the computational cost of integrity protection is too great. This mode may be vulnerable to substitution attacks and is not recommended in situations where source authentication and data integrity are not provided by other means. If this mode is used, the two DEVs should agree on a data encryption key (DEK) and use that key to encrypt the frame data. The format of this encrypted data is defined by the cipher suite.

2.4.3.3 Data Confidentiality and Integrity Protection/Source Authentication

In a situation in which both confidentiality and data integrity/source authentication are desirable, the cipher suite may provide for both. This is the recommend security mode for payload protection. If this mode is used, the two DEVs should agree on payload protection keys (DEK, DIK and/or DPK) and use them to encrypt the data and provide integrity protection. The format of the protected data is defined by the cipher suite.

3 Format Requirements

This section first describes commands and information elements required to implement the security services in the cipher suites. Not all commands or information elements will be implemented by all cipher suites. Then, it defines the required information for each cipher suite specification.

3.1 Information Elements

The following section describes information elements that may be stored in the MIB or sent to other DEVs. In some instances, the format of the information element is defined by the cipher suite, in other instances there is a global definition for the information element. Information element numbers should be assigned to these information elements and included in table 63 (section 7.4, pg. 101 of draft D09).

	Element ID

hex value
	Element
	Sub-clause

	0xXX
	Public Key Object
	X.X.X

	0xXX
	Encrypted Symmetric Key Object
	X.X.X

	0xXX
	Challenge Object
	X.X.X

	0xXX
	Challenge Response Object
	X.X.X

	0xXX
	Protocol Finished Object
	X.X.X

	0xXX
	KeyPurpose
	X.X.X

	0xXX
	KeySequenceNumber
	X.X.X

	0xXX
	Nonce
	X.X.X

	0xXX
	ProtocolFinishedObject
	X.X.X

	0xXX
	SecureSessionID
	X.X.X

	0xXX
	CipherSuiteOID
	X.X.X

	0xXX
	ReasonCode
	X.X.X

3.1.1 PublicKeyObject

A PublicKeyObject may represent any type of public key, which may or may not be signed and may contain additional associated information about the key. This information may be transmitted during authentication. The object is defined by the cipher suite and has the following format:

	octets: 1
	2
	Ln

	Element ID
	Length (=Ln)
	PublicKeyData

3.1.2 EncryptedSymmetricKeyObject

An encrypted key is represented by an EncryptedSymmetricKeyObject. This object may be transmitted in key transport or key exchange messages. The object is defined by the cipher suite and has the following format:

	octets: 1
	2
	Ln

	Element ID
	Length (=Ln)
	EncryptedSymmetricKeyData

3.1.3 ChallengeObject

In order to authenticate another device, a ChallengeObject may be used to request proof of possession of a key. The object is defined by the cipher suite and has the following format:

	octets: 1
	2
	Ln

	Element ID
	Length (=Ln)
	ChallengeData

3.1.4 ChallengeResponseObject

When a device receives a challenge, it may generate a ChallengeResponseObject to prove that it possesses a particular key. The object is defined by the cipher suite and has the following format:

	octets: 1
	2
	Ln

	Element ID
	Length (=Ln)
	ChallengeResponseData

3.1.5 KeyPurpose

The KeyPurpose defines the use of a particular key. This variable is an enumerated list and is used by all cipher suites. The key purpose has the following format:

	octets: 1
	1
	1

	Element ID
	Length (=1)
	KeyPurposeData

The list of valid KeyPurpose values are:

· 0 -> Key Encryption Key (KEK)

· 1 -> Data Encryption Key (DEK)

· 2 -> Data Integrity Key (DIK)

· 3 -> Data Protection Key (DPK)

· 4 -> Seed

· 5 -> DEV Authentication Key

· 6-255 -> Reserved

3.1.6 KeySequenceNumber

The KeySequenceNumber is chosen by the security manager to distinguish a key from others used in the piconet. The format for the KeySequenceNumber is:

	octets: 1
	1
	16

	Element ID
	Length (=16)
	KeySequenceNumberData

3.1.7 Nonce

The Nonce is a fresh random number generated by a device to provide uniqueness to the session. A Nonce may be used as a unique identifier for an authentication session or during a challenge-response protocol. The format for the Nonce is:

	octets: 1
	2
	Ln

	Element ID
	Length (=Ln)
	NonceData

3.1.8 ProtocolFinishedObject

The ProtocolFinishedObject indicates the completion of a protocol. This data may be used as the cryptographic evidence in an authentication or challenge response protocol. The format for the ProtocolFinishedObject is:

	octets: 1
	2
	Ln

	Element ID
	Length (=Ln)
	ProtocolFinishedObjectData

3.1.9 SecuritySessionID

The SecuritySessionID is used to uniquely identify a particular instance of a protocol. The format for the SecuritySessionID is:

	octets: 1
	1
	16

	Element ID
	Length (=16)
	SecuritySessionIDData

3.1.10 CipherSuiteOID

The CipherSuiteOID is used to indicate the cipher suite that is currently in use. The object identifier (OID) shall be globally unique and unambiguously identify the cipher suite. The OIDData shall be the DER encoding of the OID as specified in the X.500 series of standards. The format for the CipherSuiteOID is:

	octets: 1
	1
	Ln

	Element ID
	Length (=Ln)
	OIDData

3.1.11 ReasonCode

The ReasonCode is used to indicate the result of a command from another DEV. The ReasonCode is an enumerate list. The format for the ReasonCode is:

	octets: 1
	1
	1

	Element ID
	Length (=1)
	Reason

The list of valid Reason values are:

· 0 -> Success

· 1 -> Failure

· 2 -> Invalid Key

· 3 -> Not Authenticated

· 4 -> Timed Out

· 5-255 -> Reserved

3.2 Commands

This section defines commands that may be used in protocols used by the cipher suites. The commands below that are not listed in table 65 (page 110 of draft D09) should be added to the table. Note that since the majority of these commands are defined by the cipher suites themselves, the formats for the commands are left to be defined by the cipher suite. The Information Elements can be selected by each cipher suite for each command from the list defined in section 3.1. The format for all of the commands in this section unless otherwise noted is:

	octets: 2
	2
	Variable

	Command

Type
	Length (=Ln)
	Information Elements

A cipher suite shall specify commands from this section for each security service it offers. For example, if a cipher suite does not provide peer-to-peer security, the peer-to-peer commands such as Set Peer Cipher Suite Request need not be specified. Since all cipher suites must provide mutual authentication between the DEV and PNC, the authentication request, authentication response, challenge request and challenge response commands for the DEV-PNC mutual authentication protocol shown in Figure 1 shall be provided by all cipher suites.

3.2.1 Authentication Request

The authentication request message is sent to request authentication into the piconet or authentication of another DEV. This command usually contains the PublicKeyObject of the DEV that is sending the message and additional information elements needed to start the authentication protocol. The diagrams for DEV-PNC and peer-to-peer protocols using this command are shown in section 2, figures 1 and 4.

3.2.2 Authentication Response

The authentication response message is the final message in the authentication protocol. This command usually contains a ChallengeResponseObject to authenticate the security manager and/or a ProtocolFinishedObject. The diagrams for DEV-PNC and peer-to-peer protocols using this command are shown in section 2, figures 1 and 4.

3.2.3 Challenge Request

The challenge request message is used to send a challenge to another DEV. This message usually contains a ChallengeObject and the PublicKeyObject of the security manager that is initiating the challenge. The diagrams for DEV-PNC and peer-to-peer protocols using this command are shown in section 2, figures 1 and 4.

3.2.4 Challenge Response

The challenge response message is used as the final message from the initiating DEV in an authentication protocol. This command usually contains a ChallengeResponseObject and/or a ProtocolFinishedObject and it may also contain a ChallengeObject to authenticate the security manager. The diagrams for DEV-PNC and peer-to-peer protocols using this command are shown in section 2, figures 1 and 4.

3.2.5 Request Key Request

The request key request is used in a request key protocol (“pull” protocol) to request a payload protection key from the security manager. This command shall only be accepted by the security manager if the command originated from an authenticated DEV. This command usually contains a KeySequenceNumber and/or a KeyPurpose to indicate the key that is being requested. The diagrams for DEV-PNC and peer-to-peer protocols using this command are shown in section 2, figures 2 and 5.

3.2.6 Request Key Response

The request key response is used in a request key protocol to deliver a payload protection key to the requesting DEV. This message usually contains an EncryptedSymmetricKeyObject and a KeySequenceNumber and or/ a KeyPurpose. The diagrams for DEV-PNC and peer-to-peer protocols using this command are shown in section 2, figures 2 and 5.

3.2.7 Distribute Key Request

The distribute key request is used in a distribute key protocol (“push” protocol) to transmit a key to another DEV. This command usually contains an EncryptedSymmetricKeyObject and a KeySequenceNumber and/or a KeyPurpose. The diagrams for DEV-PNC and peer-to-peer protocols using this command are shown in section 2, figures 3 and 6.

3.2.8 Distribute Key Response

The distribute key response is used in a distribute key protocol to inform the security manager sending the key whether or not the key was properly received. This command usually contains a KeySequenceNumber and/or a KeyPurpose. The diagrams for DEV-PNC and peer-to-peer protocols using this command are shown in section 2, figures 3 and 6.

3.2.9 Set Peer Cipher Suite Request

When peer-to-peer security is implemented by the cipher suite, it may be desirable for a DEV to establish a cipher suite with another DEV that is different from the cipher suite that is implemented in the piconet. The set peer cipher suite request is used to request that future security protocols between the peer DEVs be implemented using the specified cipher suite. This command usually contains a CipherSuiteOID. If the DEV with the role of PNC participates in this protocol, the piconet address of the DEV should be used rather than the PNC address. The following protocol should be defined by the cipher suite if this command is defined:

[image: image6.wmf]DEV-1

DME

DEV-1

MLME

MLME-SET-

PEER-CIPHER

-SUITE.req

SET-PEER-CIPHER-

SUITE-REQUEST

MLME-SET-

PEER-CIPHER

-SUITE.ind

MLME-SET-

PEER-CIPHER

-SUITE.rsp

SET-PEER-CIPHER-

SUITE-RESPONSE

MLME-SET-

PEER-CIPHER

-SUITE.cfm

DEV-2

MLME

DEV-2

DME

 Key

req = request

ind = indication

rsp = response

cfm = confirm

Figure 7: Message sequence chart for peer-

to-peer setting of cipher suite

3.2.10 Set Peer Cipher Suite Response

The set peer cipher suite response is sent during the set peer cipher suite protocol and is used to indicate whether the DEV accepts the requested cipher suite or not. Figure 7 above describes the protocol that uses this command.

3.2.11 Set Peer Key Request

If a DEV wishes to send its PublicKeyObject to another DEV for storage without initiating a security protocol, it may send a set peer key request command. This command usually contains a PublicKeyObject. If the DEV with the role of PNC participates in this protocol as a peer, the piconet address of the DEV should be used rather than the PNC address. This command may be used by the PNC in the PNC role as well. The following protocol should be defined by the cipher suite if this command is defined:

[image: image7.wmf]DEV-1

DME

DEV-1

MLME

MLME-SET-

PEER-KEY.req

SET-PEER-KEY-

REQUEST

MLME-SET-

PEER-KEY.ind

MLME-SET-

PEER-KEY.rsp

SET-PEER-KEY-

RESPONSE

MLME-SET-

PEER-KEY.cfm

DEV-2

MLME

DEV-2

DME

 Key

req = request

ind = indication

rsp = response

cfm = confirm

Figure 8: Message sequence chart for peer-

to-peer DEV key setting

3.2.12 Set Peer Key Response

The set peer key response is used to indicate whether the key that was sent was accepted or rejected by the receiving DEV. Figure 8 above describes the protocol that uses this command.

3.2.13 Request Peer Key Request

The request peer key request is used to request that a peer DEV send its DEV authentication key (the key that may be used in an authentication or challenge-response protocol). If the DEV with the role of PNC participates in this protocol as a peer, the piconet address of the DEV should be used rather than the PNC address. This command may be used by the PNC in the PNC role as well. The following protocol should be defined by the cipher suite if this command is defined:

[image: image8.wmf]DEV-1

DME

DEV-1

MLME

MLME-REQUEST-

PEER-KEY.req

REQUEST-PEER-KEY-

REQUEST

MLME-REQUEST-

PEER-KEY.ind

MLME-REQUEST-

PEER-KEY.rsp

REQUEST-PEER-KEY-

RESPONSE

MLME-REQUEST-

PEER-KEY.cfm

DEV-2

MLME

DEV-2

DME

 Key

req = request

ind = indication

rsp = response

cfm = confirm

Figure 9: Message sequence chart for peer-

to-peer DEV key request

3.2.14 Request Peer Key Response

The request peer key response is used to transmit the requested DEV authentication key or give an indication that the key will not be provided. Figure 9 above describes the protocol that uses this command.

3.3 Cipher Suite Specifications

This document does not specify the exact format for the cipher suite specification, however this format may be supplied by the 802.15.3 working group in order to make the cipher suite selection process easier.

3.3.1 Object Identifier

Each 802.15.3 cipher suite shall have a globally unique object identifier associated with it that will never change. This cipher suite shall refer explicitly to a cipher suite defined for this standard. Object identifiers shall be obtained from an established numbering authority such as IANA (these look something like 1.3.6.1.4.1). The object identifier may be of any length and on any valid OID tree.

3.3.2 Security Services Provided

Different cipher suites provide different functionality from each other and may implement different protocols. Cipher suites shall select from the following list of security services:

· DEV-PNC Authentication

· Piconet-wide payload protection

· DEV-PNC key request

· DEV-PNC key distribution

· Peer-to-peer authentication

· Peer-to-peer payload protection

· Peer-to-peer key request

· Peer-to-peer key distribution

· Peer-to-peer cipher suite setting

· Peer-to-peer DEV key distribution

· Peer-to-peer DEV key request

The selection of any of these services may imply requirements for the implementation of certain protocols (as shown in the figures in this document) and definitions of certain command formats and information elements.

3.3.3 Command Formats

For each command that is implemented using the cipher suite, the cipher suite specification shall define the format of the command. This includes listing the information elements included in the command and the order in which the elements are listed in the command.

3.3.4 Information Element Formats

For each information element that is used in the commands defined by the cipher suite, the cipher suite specification shall define the format of the information element. The format includes the bit ordering of the element when appropriate and defines the meaning of the element (this may be done in the protocol operations section).

3.3.5 Protocol Operations

For each protocol used by the cipher suite, the cipher suite shall provide a list of operations that are performed by each participating DEV. These protocol operations will typically include cryptographic operations, data manipulation and determination of the appropriate action based on the result of the operations.

3.3.5.1 Cryptographic Implementations

For all cryptographic implementations in the cipher suite, the cipher suite specification shall provide a complete and unambiguous description of the cryptographic operations performed. These descriptions may be provided by reference to external documents.

3.3.6 Security Considerations

Since different cipher suites employ different security methods, the cipher suite specification shall include a security considerations section that justifies the security services claimed. This section should also describe any deficiencies in the security of the cipher suite and make recommendations about appropriate and inappropriate use of the cipher suite.

3.3.7 Additional Information

It may be desirable for each cipher suite to provide additional information to the implementers and users of the cipher suite. This information may include methods for efficiently implementing the protocols or data elements that should be stored in the PAN information base (PIB). For instance, if public keys or symmetric keys need to be stored by the PNC or by individual DEVs, the cipher suite should mention these requirements.

Submission
Page

Ari Singer, NTRU

_1072525948.vsd

_1072766315.vsd

_1072766471.vsd

_1072766650.vsd

_1072525949.vsd

_1072513850.vsd

_1072514008.vsd

_1072508373.vsd

