March, 1994
 DOC: IEEE P802.11-94/xxx

July, 2002
 IEEE P802.15-02/322r0

IEEE P802.15

Wireless Personal Area Networks

	Project
	IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs)

	Title
	Frame bit order

	Date Submitted
	[15 July 2002]

	Source
	[Knut Odman]
[XtremeSpectrum Inc.]
[8133 Leesburg Pike]

[Suite 700]

[Vienna VA 22182]
	Voice:
[(703) 269 3058]
Fax:
[]
E-mail:
[kodman@xtremespectrum.com]

	Re:
	[Support document for discussion around LSb or MSb first bit order]

	Abstract
	[Shows the advantages of moving to MSb first bit order]

	Purpose
	[The recommendations contained in this document are to be applied to the 802.15.3 D10 baseline.]

	Notice
	This document has been prepared to assist the IEEE P802.15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

	Release
	The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P802.15.

Definitions

MSB = Most significant byte. The highest order 8-bit value in a 16 bit or larger integer.

LSB = Least significant byte.

MSb = Most significant bit. The highest order bit inside a byte.

LSb = Least significant bit, normally called bit 0, since it represents 20 = 1.

Network independent order:

Stored in the same order as you would write a number if you wrote it as a polynomial*. Storing the field 1DF0h would look like this in memory:

	address 0
	address 1

	B1 (MSB)
	B0 (LSB)

	1
	D
	F
	0

	b15 (MSb)
	b14
	b13
	b12
	b11
	b10
	b9
	b8
	b7
	b6
	b5
	b4
	b3
	b2
	b1
	b0 (LSb)

	0
	0
	0
	1
	1
	1
	0
	1
	1
	1
	1
	1
	0
	0
	0
	0

Note that the bit order and byte order are the same.

*) Writing the value 1DF0 h as a polynomial would look:

0*215 + 0*214 + 0 *213 + 1*212 + 1*211 + 1*210 + 0*29 + 1*28 + 1*27 + 1*26 + 1*25 + 1*24 + 0*23 + 0*22 + 0*21 + 0*20 =

0 + 0 + 0 + 4,096 + 2,048 + 1,024 + 0 + 256 + 128 + 64 + 32 + 16 + 0 + 0 + 0 + 0 = 7664.

Background

Every serial transfer protocol has to select an order to send the bits over the media. There are two issues:

1) Byte order

Some computers store 16 and 32 bit valued in backwards byte order, so called little endian:

	address 0
	address 1

	LSB
	MSB

In such a machine, the value 7664, or 1DF0h ,would be stored as F01D.

Others store these values in the intuitive order, so called big endian:

	address 0
	address 1

	MSB
	LSB

In such a machine, the value 7664, or 1DF0h ,would be stored as 1DF0.

When you design a protocol to be machine independent, you need to make sure the bytes are sent in a so called network independent order, which is the same as the big endian. It’s up to the local machine to swap the incoming bytes into the right order for that machine.

Example:

You want to store the value 7664, or 1DF0h in a buffer for transmission. You don’t know/care how exactly the integer 7664 is stored in your computer. You do know that you need to translate it to an integer if you for instance need to increment it or do other arithmetic operations on the value.

Storing, C code:

int A = 7664;

buf[0] = A/256; // = 1Dh
buf[1] = A%256; // = F0h
Result in buffer, referring to layout of two consecutive physical memory addresses:

	buf[0]
	buf[1]

	1D
	F0

Retrieving, C code

int A = buf[0] * 256 + buf[1];

2) Bit order

The byte order is enough to worry about as long as the bytes are all sent on a 8 bit parallel bus. If sent using serial communications, the bit order inside every byte must be defined.

The bit order and the byte order must be the same so that the sequence of bits can be put back together as a 16 bit or larger field without changing the order of the bits. If we assume that the hardware will transmit bits from left to right in the drawing below, the two options of sending 1DF0h would be:

2a) MSb first

	B1
	B0

	1
	D
	F
	0

	b15
	b14
	b13
	b12
	b11
	b10
	b9
	b8
	b7
	b6
	b5
	b4
	b3
	b2
	b1
	b0

	0
	0
	0
	1
	1
	1
	0
	1
	1
	1
	1
	1
	0
	0
	0
	0

2b) LSb first

	B0
	B1

	0
	F
	B
	8

	b0
	b1
	b2
	b3
	b4
	b5
	b6
	b7
	b8
	b9
	b10
	b11
	b12
	b13
	b14
	b15

	0
	0
	0
	0
	1
	1
	1
	1
	1
	0
	1
	1
	1
	0
	0
	0

Note that the entire bit field is backwards. The value as such has not changed!

All commercially available CPU based computers always have MSb “to the left”. What that really means is that if you look at the value 1D h in the memory of any computer, it will always be stored as 00011101b and not backwards as 10111000b. This is a very important note, because regardless in which order I want my Phy to send the bits, I must arrange the bits inside the transmit buffer in an order so that the Phy can read bit by bit in order from the starting memory address. Thus, the two figures show how the value is stored in physical memory awaiting transmission.

Physical entities

To fully understand why bit order is an issue, we need to look at the different entities involved. This is of course a simplified view.

1) The buffer

When software preprocesses the frame to be sent, it will store it in a memory area called a buffer.

Using C, a buffer could be declared like this:

char buf[100];

This means that I have reserved space for 100 bytes. The buffer starts at buf[0] and using the name “buf” will point at the start of the buffer. There are other ways to create buffers but the usage is always the same.

2) The frame

The frame is an abstract notation for a set of bits to be sent in a certain order over the media. Certain fields must come in a certain order. 802.15.3 for instance defines that a data frame is sent in the following order:

	Header
	Data
	CRC

It is sent from left to right in the figure above. This makes sense. The receiver must be able to see the header first to be able to know that it is a data frame and it should expect data to follow the header (as opposed to for instance a command). It also needs to receive the data before it can check if the CRC is correct.

3) The Phy transmitter

How to pass the buffer to the transmitter functionality is implementation dependent, but one thing is always true; software needs to pass the address of the buffer to be transmitted down to the transmission function.

If this is done as a software initiated call it could look:

phy_send(rate, buf);

It is not given that the buffer contains the header and CRC. Filling in these could be done “on the fly” if the transmitter is constructed that way.

LSb first transmission

So why is this anything to worry about? To understand that we have to look at the alternatives.

Alternative 1) Just build the buffer the MSb to the left way and send “backwards”.

If the buffer is built in network independent order and looks like this:

	Header
	Data
	CRC

q. Why not pass the address to the last byte in the buffer and just let the Phy read it backwards until the start?
 It would most certainly be an LSb first transmission.

a. You can’t, because the fields would come in the wrong order. You would in this example send CRC before the data, which is not useful.

Alternative 2) Pass down buffer elements to Phy as 8, 16, 32 or other bit field to be sent sequentially.

If the buffer is built in network independent order and the Phy is passed a chunk of n bits at a time.

q. If you send for instance 16 bit at a time, you could just store 16 bits of the buffer at a time in a 16 bit register and transmit this chunk with the LSb first?

a. Won’t work. There’s no guarantee that the size of the fields in the frame are always the same size as whichever register size you have, therefore a field may be split in the middle during two consecutive fetches and the byte order would be wrong.

Consequently the buffer must be built with LSb to the left and LSB at the first address of the buffer.

Implementation

In most implementations it’s accomplished something like this:

const char swaptable[256] = { 0x00, 0x80, 0x40, 0xC0 … 0xFF };

A byte is written as buf[n] = swaptable[value];

A 16 or 32 bit word is first byte swapped (if big endian machine) and then bit swapped as above.

Individual bits are accessed by mirroring the byte: buf[n] |= (value << (7 – bitpos));

Of course the receiver does all this reversed.

Footnote:

The reason hardware people don’t care about this is that their implementation will send bit by bit whatever’s in the buffer and the exact content or order is irrelevant to the HW implementation. Most likely there is an extra “swapping layer” between the software and the hardware implementations.

Header

This part analyses LSb first transmission of the header, if the header is built in software.

	octets:2
	2
	1
	1
	3
	1

	Frame control
	PNID
	Destination
	Source
	Fragmentation control
	Stream

PNID, Destination, Source and Stream are all just numbers to be compared so the only thing you have to do is to put them backwards in the buffer at the transmitting side. The destination only compares (except during stream creation), so there is no substantial overhead for these.

Frame Control

	b0-b1
	b2-b4
	b5
	b6-b7
	b8
	b9
	b10
	b11-b15

	version
	frame
type
	SEC
	ACK
request
	Del
ACK
	Retry
	More
data
	reserved

Assuming we are filling the buffer from address 0, we just fill in the bits into their mirrored bit position, so that LSb ends up on b7 in the physical address and that LSB ends up at the lowest address.

buf[0] = buf[1] = 0;

buf[0] |= version << 6;

buf[0] |= frametype << 3;

buf[0] |= SEC << 2;

buf[0] |= ACKrq;

buf[1] |= delACK << 7;

buf[1] |= retry << 6;

buf[1] |= moredata << 5;

At the receiver we have to look for individual bits at the same backwards way:

version = (buf[0] & 0xC0) >> 6;

// etc…

It should be noted that at this point we haven’t wasted any computation time, we just mirror the bit image in the buffer directly at read and write time. The only thing we do is to cause us some implementation headache. Here’s one:

Frame type is a 3 bit field defined with MSb to the left. Imm-ACK is defined as b4-b2 being 001. The implementer must have a table to put these types in backwards and instead encode Imm-ACK as 100 to make it fit with the rest of the bit field operations.

Fragmentation control

	b0-b8
	b9-b15
	b16-b22
	b23

	MSDU number
	Fragment number
	Maximum fragment number
	reserved

This is a little trickier. Both the MSDU number and the fragment number are incremented at the transmitter side so they need to be represented as an integer value of the target computer. On the receiver side MSDU and fragment numbers are used to sort fragments in order so they also need an integer representation. For the purpose of duplication filtering an integer representation is not needed since you only do comparison. It doesn’t matter if you got two 1Dh or two B8h.

The implementation on the transmitter side is painful since MSDU number spans two octets. Here’s how it could be done (again assuming the buffer starts at 0 with the frame control field):

buf[6] = msdunum % 256;

buf[7] = msdunum / 256;

buf[7] |= fragnum << 1;

buf[8] = maxfragnum & 0x7F;

bitswap(buf[6]); // mirrors byte so that b0(b7, b1(b6, etc. Can be done in HW.

bitswap(buf[7]);

bitswap(buf[8]);

The implementation on receiver side is similarly awkward.

bitswap(buf[6]); // mirrors byte so that b0(b7, b1(b6, etc. Can be done in HW.

bitswap(buf[7]);

bitswap(buf[8]);

msdunum = (buf[7] & 0x01) * 256 + buf[6];

fragnum = buf[7] >> 1;

maxfragnum = buf[8] & 0x7F;

Foot note: The statement “can be done in HW” just states that if the buffer is read octet by octet the transmitter can just send it backwards instead of actually making a SW bitswap. If you use this feature you save computation time but it will put the skills of the software programmer at a test!

Data

Let’s just first say that sending data exactly as specified in the standard, LSb first, is impossible. Why?

If we go back to the two octet data, it’s put in memory like this:

	address 0
	address 1

	B1 (MSB)
	B0 (LSB)

	1
	D
	F
	0

	b15 (MSb)
	b14
	b13
	b12
	b11
	b10
	b9
	b8
	b7
	b6
	b5
	b4
	b3
	b2
	b1
	b0 (LSb)

	0
	0
	0
	1
	1
	1
	0
	1
	1
	1
	1
	1
	0
	0
	0
	0

and sent over the air as this:

	B0
	B1

	0
	F
	B
	8

	b0
	b1
	b2
	b3
	b4
	b5
	b6
	b7
	b8
	b9
	b10
	b11
	b12
	b13
	b14
	b15

	0
	0
	0
	0
	1
	1
	1
	1
	1
	0
	1
	1
	1
	0
	0
	0

------transmission order-------------(
So what happens with a 32 bit value? Obviously it will have to be mirrored in the same way and sent backwards. For instance the value 04C11DB7h would have to be sent as EDB88320 h. Note that we cannot do the mirroring and swapping the bytes until we have the last byte. The first byte of the transmit buffer must be the last byte of the original value, that is the octet B7h of the original value will be put in the first position in the buffer and bit swapped to ED h.

With unspecified data we don’t know what data types it may consist of so LSb of a data string is per definition the last bit of the last octet. What do we do with a 40MB stream? If we were to follow the standard, as written, to the letter we would have to buffer all data, swap last byte with first, second last with second first, etc. until done. Then bitswap all the octets. The string “Wireless PAN” should first be changed to “NAP sseleriw” and then we swap the ASCII values to their mirrored value to get LSb first.

The amazing thing is that 802.15.1, 802.11 and 802.3 are all written the same way.

Imagine what this would lead to when doing defragmentation!

Another point is that the higher layers may already have specified a byte order. In the case of 802.3 frames they are in MSB first order, but LSb in first bit position. In case of ATM they are in MSB first order but LSb in the last bit position. Building a MAC, we don’t know what’s in the data. For all we know, it could be a frame packed with data from several different higher level protocols, if the Convergence Layer supports that.

802.

As a curiosity, 48-bit MAC addresses are specified to be transmitted LSb first on the medium, 802.0-1990, 5.2.1, page 25 ff. Consequently, if an IP package contains a MAC-address (it does!) we would be rearranging the transmission order and actually be violating the 802 parent standard. The error is obviously in 802.0, since the abstract representation of an address should never imply a bit order on the underlying medium, but that’s how it currently is specified.

The main question becomes: why should we at MAC level change whatever format the higher layers have agreed upon. After all, the MAC layer doesn’t care about the data.

FCS

X3.66 CRC32 is only defined as passing a remainder with MSb to the left. The order of the data doesn’t matter to the CRC calculation since the transmitter and the receiver sends and receives the data bits in the same order, whatever that order may be.

The problem is that one possibility of checking the CRC on the receiver side is to calculate the CRC of both the incoming data and the original CRC. If this new CRC equals some predefined value, the frame checks. If the CRC bits were sent backwards, this second CRC calculation would fail.

Consequently all standards that sends LSb first specifies that CRC should be an exception and sent with MSb first.

Readability

As you have seen, the LSb first is very confusing. It is definitely implementable, but it leads to bit/byte swapping code overhead which reduces performance, and it becomes hard to read the standard which may lead to interoperability problems.

Some identified problems:

Headers: always have to be swapped in transmitter and receiver.

Header fields: specified in reversed order from frame format.

Data: current specification is flawed. Network Byte order would work. Even better is to leave data as is!

FCS: specified in opposite order of rest of the frame.

SEC fields, IC, etc. Nothing specified. Isn’t an IC sort of a FCS? Can we send that backwards?

Foot note: Of course it doesn’t change anything to write the frame drawings backwards in the standard and say that you send from the right instead of from the left. It actually makes it even harder to read, since the first byte is written to the right. Of course Arab and Japanese people may disagree…

Other protocols

802.3

LSb first

In 802.3-2000, 3.1.1, page 38:

Data is sent with MSB first, but the bits inside every byte is sent with LSb first.

The string “WPAN” is sent in the order “W”-“P”-“A”-“N” but the bits of the character “W”, 01010111b, will be sent in the order 11101010b. This is also consistent with the TCP/IP specification and SUN’s External Data Representation format. Please note that this is NOT little endian. Bytes are sent in the order they are buffered. Only the bits inside the byte are swapped. This is called Network Byte Order, just to confuse it with Network Independent Order…

802.15.1

LSb first.

In D08, 8.4.1, page 45 the say:

“The linkcontroller interprets the first bit arriving from a higher software layer as ; i.e. this is the first bit to

be sent over the air.”

As a software engineer I ask myself: “what on earth is the first bit from a higher software layer”!!!!!!!!!!

Text copied from Bluetooth spec, 4.1.

802.11

LSb first.

Text almost identical to 802.15.3

802.16

MSb first.

Draft 4, 6.2.2, page 65.

HiperLAN2

MSb first.

ETSI TS 101 493-1 V1.1.1 (2000-04), 5.3.3.2 Coding of the CPCS PDU, page 13.

Advantages with MSb first

All fields, header, data, FCS and others, specified the same way.

All subfields, such as frame type, specified in the same bit order as the master field (e.g. Frame Control)

No bit swapping of fields that need to be calculated. Buffer consists of the “mathematically correct” order.

No “mirror bit” calculation when setting individual bits in the buffer.

No byte swapping. Always use network independent order for all values spanning more than one byte.

No changing of data. Data just sent from transmitter buffer to receiver buffer in exactly the order it’s put in.

Frame format in standard is equal to physical layout in buffer.

Transmission order follows the intuitive left-to-right order exactly as specified.

No risk of swapping in the middle of a field when fragmenting (would put bytes in the wrong order after reassembly)

Motion

Accept comment #150 and change to MSb first bit order to avoid all these problems.

Submission
Page

D. Kawaguchi, Symbol Technologies
Submission
Page

Knut Odman, <company>XtremeSpectrum Inc.

