March, 2002
 IEEE P802.15-02/130r0

IEEE P802.15

Wireless Personal Area Networks

	Project
	IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs)

	Title
	IEEE P802-15_TG3 NTRU Security Architecture Proposal

	Date Submitted
	[March 8, 2002]

	Source
	[Daniel V. Bailey & Ari Singer]
[NTRU]
[5 Burlington Woods

Burlington, MA 01803 USA]
	Voice:
[+1 781 418-2522]
Fax:
[+1 781 418-2532]
E-mail:
[dbailey@ntru.com]

	Re:
	802.15.3 TG3 Letter Ballot Draft D09, 02074r1P802.15_TG3-Security-CFP.doc

	Abstract
	[The 802.15.3 draft D09 submitted to letter ballot lacks a cohesive and complete security section. Multiple comments were submitted to the working group regarding problems with the security section in 802.15 letter ballot #12. This document provides proposed security text to complete the security section and related text in other sections of the 802.15.3 draft standard, excluding the mandatory to implement algorithms. This text provides a complete specification of the proposed security architecture and a clear framework within which security suite specific requirements may be specified. This proposal on behalf of NTRU Cryptosystems is made in response to the call for proposals made by John Barr in document 02074r1 and addresses comments submitted in letter ballot #12 and raised at the ad hoc 802.15 TG3 ad hoc meeting in Schaumburg, IL. This document is submitted in conjunction with 02131r0P802-15_TG3-NTRU-Security-Algorithm-Suite-Proposal.]

	Purpose
	[This document is intended as a security text submission to the 802.15 TG3 for inclusion in the 802.15.3 draft standard. The text from this submission may be incorporated directly into the draft standard and is offered as a proposal for the security architecture portion of the security suite vote announced in document 02074r1 and discussed at the February 2002 ad hoc meeting in Schaumburg, IL.]

	Notice
	This document has been prepared to assist the IEEE P802.15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

	Release
	The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P802.15.

Table of Contents

41
Introduction

41.1
Scope

41.2
Purpose

41.3
Document Organization

51.4
Notes to the Reader

62
Clause 3 Text (Definitions)

93
Clause 4 Text (Acronyms)

104
Clause 5 Text

115
Clause 6 Text

115.1.1
Authenticate and Challenge

195.1.2
Request Key

235.1.3
Distribute Key

275.1.4
De-authenticate

285.2
MAC PIB

285.2.1
MAC PIB piconet security parameters

295.2.2
MAC PIB ACL group

316
Clause 7 Text (Frame Formats)

316.1
General frame format

316.2
Format of individual frame types

316.2.1
Beacon frame format

326.2.2
Immediate acknowledgement (ACK) frame format

326.2.3
Command frame format

326.2.4
Data frame format

326.3
Information Elements

336.3.1
Public key object

336.3.2
Security suite OID

336.3.3
Security session ID

346.3.4
Time token

346.3.5
Integrity code

346.4
Commands

437
Clause 8 Text (MAC functional description)

448
Clause 10 Text (Security)

448.1
Security Goals

448.1.1
Authorized Piconet Membership

448.1.2
Communication Between Identified Parties

458.1.3
Implementation Goals

458.2
Security Context

458.2.1
Physical Assumptions

468.2.2
Network Assumptions

468.2.3
Attack Model Assumptions

478.3
Security Functionality

488.3.1
Mutual Authentication

488.3.2
Verifying Authenticity of Public Keys

488.3.3
Key Establishment

488.3.4
Key Transport

498.3.5
Beacon integrity protection

498.3.6
Freshness protection

498.3.7
Command integrity protection

498.3.8
ACK integrity protection

498.3.9
Data integrity protection

508.3.10
Data encryption

508.4
Security Policies

508.4.1
Group membership change rekey

508.5
Security Suites Specifications

508.5.1
Object Identifier

518.5.2
Security Functionality

518.5.3
Data Formats

518.5.4
Protocol Operations

518.5.5
Security Considerations

518.5.6
Additional Information

529
Clause 11 (New Clause for State Machines)

529.1
Protocol Selection Criteria

529.2
High-level Protocol Descriptions

529.2.1
Authentication and Key Establishment

549.2.2
Distribute Key Protocol

549.2.3
Key Request Protocol

549.2.4
Data Protection

559.3
Notation

569.4
Protocol Details

579.4.1
Authentication and Key Establishment

699.4.2
Beacon Protection

709.4.3
Key Update Protocol

719.4.4
Key Request Protocol

819.4.5
Data Protection Protocol

8510
Security Considerations (for an informative annex)

8510.1
Claimed Security Services

8510.1.1
Authentication and Key Establishment Protocol

8610.1.2
Beacon Protection Protocol

8710.1.3
Distribute Key Protocol

8710.1.4
Key Request Protocol

8810.1.5
Data Transport Protocol

8810.1.6
Identity Binding

8810.2
Public Key and Identity Binding Method

1 Introduction

The 802.15.3 draft D09 submitted to letter ballot lacks a cohesive and complete security section. Multiple comments were submitted to the working group regarding problems with the security section in 802.15 letter ballot #12 and the group has discussed several security issues at length.

The high level security framework has been agreed upon by the 802.15.3 security sub-group, but the specific details of the protocols and the use of keying material has yet to be specified. The framework provides guidelines for proposed security solutions, but does not include the details required for interoperability. This lack of details led to a call for proposals [802_02074r1] by the chair of the 802.15.3 task group for a complete security solution, denoted a "security suite".

At the February, 2002 ad hoc working group meeting, the working group identified two primary areas of focus for the security suite: the security architecture and the selected algorithms. This document represents a proposal from NTRU Cryptosystems providing complete text covering the security architecture for incorporation into the 802.15.3 draft standard. Algorithm and security suite specific recommendations will be provided in a separate document.

This document is being proposed in conjunction with 02131r0P802-15_TG3-NTRU-Security-Algorithm-Suite-Proposal. All references that require specification by the security suite should reference that document.

1.1 Scope

This document covers all text related to the security architecture for the 802.15.3 draft standard. In particular, this includes descriptions of the security model, security architecture and security services to be provided by 802.15.3 devices and it includes formats for security related messages. Additional informative text and security considerations supporting the security architecture are included as well.

1.2 Purpose

This document is intended to provide a complete security architecture for the 802.15.3 draft standard as requested in the call for proposals [802_02074r1] and discussed at the February 2002 802.15 TG3 ad hoc meeting. It is intended that this document be used to replace currently existing text in the 802.15.3 draft standard. This text, in conjunction with security suite specific proposals represent a security suite submission that may be voted on at the March 2002 802.15 TG3 meeting.

1.3 Document Organization

This document contains complete text for the security architecture related portions of the 802.15.3 draft standard. In addition, this submission includes informative text that may or may not be included in the draft standard to support the architecture.

The document is broadly divided into the following categories:

· Security related text for clauses 2-9 (Normative)

· Security overview and framework replacement text for clause 10 (Informative)

· Security suite independent security requirements for clause 10 (Normative)

· Security protocols and state definitions for a new clause (Normative)

· Security considerations for an informative annex (Informative)

The security related text for clauses 2-9 cover MLME formats, frame and data formats and supporting text for the non-security centric clauses of the standard. This text should be inserted into the appropriate portions of the standard.

The security overview and framework text for clause 10 should be used to replace existing text in clause 10. This overview is provided as context for the remaining text in clause 10 and the security protocols clause. The text is informative and may be moved to section 5 of the standard if deemed appropriate.

The security suite independent security requirements specify security requirements that support the security architecture and apply to all security suites. This text should be included in clause 10.

The security protocols and state definitions text provides specifications of the security protocols and security related operations that shall be implemented regardless of the security suite being implemented. The security protocols text describes the sequence of operations that devices need to perform in order to satisfy specific security goals. The state definitions text describes the required behavior for devices in each state to support the security intended by the security architecture. This text may be included in clause 10 or included as a standalone clause in the draft standard.

The security considerations provide security analysis and rationale for the security architecture. This section is informative and may be included in an informative annex in the standard and/or used as a basis for discussions in the working group.

1.4 Notes to the Reader

Throughout the document, the author has included notes to the reader that are not part of the proposed text or submission. These notes are supplied to aid in the review process of this document and the consideration for inclusion in the standard. These notes are not intended to be a part of the standard itself.

Author’s note: Notes are underlined, indented and written in this font to indicate that they are not part of the intended draft text.

2 Clause 3 Text (Definitions)
Author’s note: The following security related definitions are included to aid in the reading of this document as well as to provide modified text for the draft standard. Some of these definitions are taken directly from 802.15.3 D09 and some have been modified or added.

Definitions

access control: The prevention of unauthorized usage of resources.

association: The service used to establish a device’s membership in a wireless personal area network.

authentication: The process of assuring that an entity is authorized to perform certain operations.

authentic data: Data that has its integrity cryptographically protected.

certificate authority: An entity that provides assurance that a particular public key is associated with additional information through the creation of a public-key certificate.

certificate revocation: The process of invalidating a public-key certificate.

confidentiality: Assurance that communicated data remains private to the parties for whom the data is intended.

data integrity: Assurance that the data has not been modified from its original form.

digital signature: A data string generated with an entity’s private signing key that is typically appended to data in order to provide source authentication and data integrity on that data.

de-authentication: The service that removes an existing authentication relationship.

disassociation: The service that removes an existing association.

group membership authentication: Assurance that an authorized member of the group sent the data.

identification: The process of assuring that an entity is who it claims to be.

key establishment: A public-key process by which two entities securely establish a symmetric key that is known only by the participating entities.

key management: Methods for controlling keying material throughout its life cycle including creation, distribution and destruction
key transport: A process by which an entity sends a key to another entity.

message authentication code: A data string generated using a symmetric key that is typically appended to data in order to provide data integrity and source authentication.

mutual entity authentication: A process by which two entities authenticate each other

payload data: The contents of a data message that is being transmitted.

payload protection: The generic term for providing security services on payload data, including confidentiality, integrity and authentication.
personal operating space: The space about a person or object that is typically about 10m in all directions and envelops the person whether stationary or in motion.

piconet coordinator: An entity that has device functionality and provides coordination and other services via the wireless medium for associated devices.

private key: The secret portion of a public-key pair that may be used for digital signature creation, data decryption or key establishment procedures depending on the type of key pair.

pseudo-random number generation: The process of generating a deterministic sequence of bits from a given seed that has the statistical properties of a random sequence of bits when the seed is not known.

public key: The public portion of a public-key pair that may be used for signature verification, data encryption or key establishment procedures depending on the type of key pair.

public-key certificate: Data usually created by a certificate authority that associates a particular public key with additional information and provides assurance as to the validity of that association and the integrity of the data being associated.

public-key pair: A related pair of data elements including a public key and a private key.

random number generator: A device that provides a sequence of bits that is unpredictable.
secure piconet: A piconet in which cryptographic techniques are implemented to provide security services.
security manager: The entity that is responsible for the control of a particular security relationship, authentication and key distribution.

security session identifier: A unique identifier for a specific authentication relationship that relates to a specific set of keys.

seed: Data that is used as input to an algorithm to produce additional data.

signature verification: A process by which a public key is used to assure that signed data has not been modified and that the owner of the private key signed the data.

signed data: Data that has had a digital signature appended to it to provide data integrity and source authentication.

source authentication: Authentication of the sender of the data.

symmetric key: A secret key that is shared between two or more parties that may be used for encryption/decryption or integrity protection/integrity verification depending on its intended use.

time token: A sequence number that is transmitted in the beacon to indicate the current relative time of the piconet.

trusted third party: An entity that may provide assurance to and is trusted by two or more entities that do not necessarily trust each other.

3 Clause 4 Text (Acronyms)

Author’s note: The following security related acronyms are included to aid in the reading of this document as well as to provide modified text for the draft standard. Some of these acronyms are taken directly from 802.15.3 D09 and some have been added.

Acronyms and Abbreviations

CA

certificate authority

CRC

cyclic redundancy check

CRL

certificate revocation list

DEK

data encryption key

DIK

data integrity key

DME

device management entity

KEK

key encryption key

PNC

piconet coordinator

PRNG

pseudo-random number generator

RNG

random number generator

SEC

security

SM

security manager

4 Clause 5 Text

Author’s note: It is uncertain at this time what informative text belongs in clause 5. It is recommended that some of the informative text from section 10 be placed in this section.

5 Clause 6 Text

Author’s note: Add the following entry to Table 8 on page 29:

	Name
	Type
	Valid Range
	Description

	PiconetSecurityOID
	Object identifier
	Any valid security suite object identifier
	Specifies the object identifier of the security suite that will be used for the piconet

Author’s note: In the subclause that discusses MLME-ASSOCIATE (6.3.4), replace the appropriate MLME primitive semantics with:

 MLME-ASSOCIATE.response
(

DeviceID,

AssocDEVAddress,

ReasonCode,

AssociationTimeOutPeriod,

PiconetSecurityOID

)

MLME-ASSOCIATE.confirm
(

AssocDEVAddress,

ReasonCode,

AssociationTimeOutPeriod,

PiconetSecurityOID

)

Author’s note: In the subclause that discusses MLME-DISASSOCIATE (6.3.5), add the following text to effect of receipt:

If the disassociate command is sent (or received) in an authenticated piconet, the DEV shall securely delete the keys related to that piconet.

Author’s note: Replace the MLME text in subclauses 6.3.6-6.3.7 with the following text.

5.1.1 Authenticate and Challenge

This mechanism supports the process of establishing an authentication relationship with another DEV or with the PNC for use in the piconet. The parameters used for these commands are defined in Table 13.

Author’s note: Replace Table 13 and Table 14 in the draft standard with the following table. These sections and tables have been combined because the CHALLENGE commands should never be used outside of an authentication protocol.

Table 13 - MLME-AUTHENTICATION and MLME-CHALLENGE primitive parameters

	Name
	Type
	Valid Range
	Description

	DeviceID
	Piconet address
	Any valid piconet address
	Specifies the one byte piconet address of the peer MAC entity with which to perform the authentication process

	DeviceAddress
	MAC address
	Any valid individual MAC address
	Specifies the address of the peer MAC entity with which to perform the authentication process

	PublicKeyObjectType
	Enumeration
	As defined in XX
	Specifies the type and format of the public key object that is included in the command.

	PublicKeyObjectLength
	Integer
	(1
	Specifies the length in octets of the PublicKeyObject

	PublicKeyObject
	Byte string
	Any valid public key object
	Specifies the public key and associated information in the format as defined by the PublicKeyObjectType

	AuthFailureTimeout
	Integer
	(1
	Specifies the time interval allowed before the MLME returns a failure indication

	AuthResponseType
	Enumeration
	As defined in XX
	Specifies the type and format of the authorization response data that is included in the command.

	AuthResponseLength
	Integer
	(1
	Specifies the length in octets of the AuthResponse

	AuthResponse
	Byte string
	Any valid public key object
	Specifies the authentication response data in the format as defined by the AuthResponseType

	ReasonCode
	Enumeration
	As defined in XX
	The result of the authentication command

	ChallengeType
	Enumeration
	As defined in XX
	Specifies the type and format of the challenge data that is included in the command.

	ChallengeLength
	Integer
	(1
	Specifies the length in octets of the Challenge

	Challenge
	Byte string
	Any valid public key object
	Specifies the challenge data in the format as defined by the ChallengeType

	ChallengeResponseType
	Enumeration
	As defined in XX
	Specifies the type and format of the challenge response data that is included in the command.

	ChallengeResponseLength
	Integer
	(1
	Specifies the length in octets of the ChallengeResponse

	ChallengeResponse
	Byte string
	Any valid public key object
	Specifies the challenge response data in the format as defined by the ChallengeResponseType

	OID
	Object identifier
	Any valid security suite object identifier
	Specifies the object identifier of the security suite that will be used for the authentication relationship

	SSID
	Byte string
	Any valid security session identifier
	Specifies the unique security session identifier for the authentication relationship

5.1.1.1 MLME-AUTHENTICATE.request
This primitive requests authentication of an associated DEV in a piconet. The semantics of the primitive are as follows:

MLME-AUTHENTICATE.request
(

DeviceID,

DeviceAddress,

PublicKeyObjectType,

PublicKeyObjectLength,

PublicKeyObject,

AuthFailureTimeout

)

The parameters for this command are defined in Table 13.

5.1.1.1.1 When generated

This primitive is generated by the DME for a DEV to perform a peer-to-peer authentication with another DEV or perform a DEV-PNC authentication for the piconet.

5.1.1.1.2 Effect of receipt

The MLME creates an authentication command and sends it to the appropriate DEV. The MLME subsequently issues an MLME-AUTHENTICATE.confirm that reflects the results.
5.1.1.2 MLME-AUTHENTICATE.indication

This primitive reports the reception of an authentication command from an associated DEV. The semantics of the primitive are as follows:

MLME-AUTHENTICATE.indication
(

DeviceID,

DeviceAddress,

PublicKeyObjectType,

PublicKeyObjectLength,

PublicKeyObject

)

The parameters for this command are defined in Table 13.

5.1.1.2.1 When generated

This primitive is generated upon receiving a valid authentication command from an associated DEV.

5.1.1.2.2 Effect of receipt

The DME is informed of the request for authentication by an associated DEV. The DME may continue the authentication process by generating an MLME-CHALLENGE.request. The DME shall issue the MLME-AUTHENTICATE.response command when the authentication sequence is completed.
5.1.1.3 MLME-AUTHENTICATE.response
This primitive reports the result of an authentication attempt with a peer DEV or with the PNC. The semantics of the primitive are as follows:

MLME-AUTHENTICATE.response
(

DeviceID,

ReasonCode,

AuthResponseType,

AuthResponseLength,

AuthResponse

)
The parameters for this command are defined in Table 13.

5.1.1.3.1 When generated

This primitive is generated by the MLME as a result of the establishment of an authentication relationship with a specific peer MAC entity or upon failure of an authentication attempt.

5.1.1.3.2 Effect of receipt

The MLME shall send an authentication response command to the indicated DEV. The MLME shall update the authenticated DEV table if the ReasonCode equals success.
5.1.1.4 MLME-AUTHENTICATE.confirm
This primitive reports the results of an authentication attempt with another DEV in the piconet. The semantics of the primitive are as follows:

MLME-AUTHENTICATE.confirm
(

DeviceID,

ReasonCode

AuthResponseType,

AuthResponseLength,

AuthResponse,

)
The parameters for this command are defined in Table 13.

5.1.1.4.1 When generated

This primitive is generated as a result of the MLME receiving an authentication response command from an associated DEV or due to timeout. If there is no response from the DEV within AuthenticationFailureTimeout, the ReasonCode shall be set to TIMEOUT. Otherwise, the ReasonCode is the value that was returned in the authentication response command.

5.1.1.4.2 Effect of receipt

The DME is informed of whether the authentication was successful or not.

5.1.1.5 MLME-CHALLENGE.request
This primitive is used to initiate a public-key authentication challenge to another DEV during an authentication procedure. The semantics of the primitive are as follows:

MLME-CHALLENGE.request
(

DeviceID,

OID,

SSID,

DeviceAddress,

PublicKeyObjectType,

PublicKeyObjectLength,

PublicKeyObject,

ChallengeType,

ChallengeLength,

Challenge,

AuthFailureTimeout

)
The parameters for this command are defined in Table 13.

5.1.1.5.1 When generated

This primitive is generated by the DME as a result of the receipt of a valid MLME-AUTHENTICATE.indication.
5.1.1.5.2 Effect of receipt

The MLME creates a challenge command and sends it to the specified DEV.

5.1.1.6 MLME-CHALLENGE.indication
This primitive reports the reception of an authentication challenge command from the security manager in the piconet. The semantics of the primitive are as follows:

MLME-CHALLENGE.indication
(

DeviceID,

OID,

SSID,

DeviceAddress,

PublicKeyObjectType,

PublicKeyObjectLength,

PublicKeyObject,

ChallengeType,

ChallengeLength,

Challenge

)

The parameters for this command are defined in Table 13.

5.1.1.6.1 When generated

This primitive is generated by the MLME as a result of the receipt of a challenge command.
5.1.1.6.2 Effect of receipt

The DME is notified of the authentication challenge from an associated DEV. The DME shall compute the appropriate challenge response and issue an MLME-CHALLENGE.response command.
5.1.1.7 MLME-CHALLENGE.response
This primitive reports the results of a challenge response operation on a challenge received from an associated DEV. The semantics of the primitive are as follows:

MLME-CHALLENGE.response
(

DeviceID,

ReasonCode,

ChallengeType,

ChallengeLength,

Challenge,

ChallengeResponseType,

ChallengeResponseLength,

ChallengeResponse

)

The parameters for this command are defined in Table 13.

5.1.1.7.1 When generated

This primitive is generated by the DME as a result of the receipt of an MLME-CHALLENGE.indication.

5.1.1.7.2 Effect of receipt

The MLME creates an authentication response command and sends it to the indicated DEV.

5.1.1.8 MLME-CHALLENGE.confirm
This primitive reports the results of an authentication challenge response from an associated DEV. The semantics of the primitive are as follows:

MLME-CHALLENGE.confirm
(

DeviceID,

ReasonCode,

ChallengeType,

ChallengeLength,

Challenge,

ChallengeResponseType,

ChallengeResponseLength,

ChallengeResponse

)

The parameters for this command are defined in Table 13.

5.1.1.8.1 When generated

This primitive is generated as a result of the MLME receiving a challenge response command from an associated DEV or due to timeout. If there is no response from the DEV within AuthFailureTimeout, the ReasonCode shall be set to TIMEOUT. Otherwise, the ReasonCode is the value that was returned in the challenge response command.

5.1.1.8.2 Effect of receipt

The DME is notified of the challenge response command from an associated DEV. The DME shall issue the MLME-AUTHENTICATION.response command with the result of the authentication process.

5.1.1.9 Mutual Authentication Description

Authentication shall be performed in the following manner:

1. A DEV sends an MLME-AUTHENTICATE.request to the device that will act as security manager for the relationship. This command contains an indication of the key that it wishes to use to authenticate itself. If the destination address is the PNC, the authentication relationship is for piconet membership. Otherwise, the authentication command is for a peer-to-peer relationship.

2. The security manager decides whether it trusts the key or not using processes defined by the security suite and, if trust can be established, responds with an MLME-CHALLENGE.request in the format defined by the security suite to ask the DEV to prove its identity. Included in the challenge, the security manager sends an indication of the key it will use to authenticate itself to the DEV.

3. When the DEV receives the challenge, it generates a proof that it knows its private key using processes defined by the security suite and sends the proof in the MLME-CHALLENGE.response message. It also includes a challenge for the security manager to prove its identity.

4. The security manager verifies the response using processes defined by the security suite and responds to the DEV with an MLME-AUTHENTICATE.response indicating the success or failure of the authentication process.

The following figure shows the message flow for a successful authentication process.

[image: image1.wmf]DEV-1

DME

DEV-1

MLME

MLME-

AUTHENTICATE

.req

AUTHENTICATE-

REQUEST

MLME-

AUTHENTICATE

.ind

MLME-

CHALLENGE.req

CHALLENGE-

REQUEST

MLME-

CHALLENGE.ind

PNC

MLME

PNC

DME

MLME-

CHALLENGE.cfm

 Key

req = request

ind = indication

rsp = response

cfm = confirm

MLME-

CHALLENGE.rsp

CHALLENGE-

RESPONSE

MLME-

AUTHENTICATE

.rsp

AUTHENTICATE-

RESPONSE

MLME-

AUTHENTICATE

.cfm

Figure XX – Message sequence chart for DEV-PNC mutual authentication

The following figure shows the message flow for a successful peer-to-peer authentication process.

[image: image2.wmf]DEV-1

DME

DEV-1

MLME

MLME-

AUTHENTICATE

.req

AUTHENTICATE-

REQUEST

MLME-

AUTHENTICATE

.ind

MLME-

CHALLENGE.req

CHALLENGE-

REQUEST

MLME-

CHALLENGE.ind

DEV-2

MLME

DEV-2

DME

MLME-

CHALLENGE.cfm

 Key

req = request

ind = indication

rsp = response

cfm = confirm

MLME-

CHALLENGE.rsp

CHALLENGE-

RESPONSE

MLME-

AUTHENTICATE

.rsp

AUTHENTICATE-

RESPONSE

MLME-

AUTHENTICATE

.cfm

Figure XX―Message sequence chart for peer-to-peer mutual authentication

Author’s note: Replace subclause 6.3.8 with the following text.

5.1.2 Request Key

This mechanism supports the process of an authenticated DEV requesting and receiving a key from the security manager in the authentication relationship. The parameters used for these commands are defined in table 14.

Table XX - MLME-REQUEST-KEY primitive parameters

	Name
	Type
	Valid Range
	Description

	DeviceID
	Piconet address
	Any valid piconet address
	Specifies the one byte piconet address of the peer MAC entity with which to perform the authentication process

	SSID
	Byte string
	Any valid security session identifier
	Specifies the unique security session identifier for the transmitted key.

	KeyPurpose
	Enumeration
	As defined in XX
	Specifies the purpose of the key that is being requested.

	EncryptedKeyType
	Enumeration
	As defined in XX
	Specifies the type and format of the encrypted key that is included in the command.

	EncreyptedKeyLength
	Integer
	(1
	Specifies the length in octets of the EncryptedKey

	EncryptedKey
	Byte string
	Any valid encrypted key
	Specifies the encrypted key in the format as defined by the EncryptedKeyType

	RequestKeyFailureTimeout
	Integer
	(1
	Specifies the time interval allowed before the MLME returns a failure indication

	ReasonCode
	Enumeration
	SUCCESS or TIMEOUT
	Specifies whether a request key response command was received or not.

5.1.2.1 MLME-REQUEST-KEY.request

This primitive is used by a DEV to request the transmission of a key from the security manager in an authentication relationship. The semantics of the primitive are as follows:
MLME-REQUEST-KEY.request
(

DeviceID,

KeyPurpose,

RequestKeyFailureTimeout

)

The parameters for this command are defined in Table 14.

5.1.2.1.1 When generated

This primitive is generated by the DME for a DEV to obtain the designated key from the security manager in an authentication relationship.
5.1.2.1.2 Effect of receipt

The MLME shall create a request key command and sends it to the indicated DEV.

5.1.2.2 MLME-REQUEST-KEY.indication

This primitive reports the request of a key from an authenticated DEV. The semantics of the primitive are as follows:

MLME- REQUEST-KEY.indicate
(

DeviceID,

KeyPurpose

)

The parameters for this command are defined in Table 14.

5.1.2.2.1 When generated

This primitive is generated by the MLME as a result of an MLME-REQUEST-KEY.request.

5.1.2.2.2 Effect of receipt

The DME shall encrypt and return the designated key to the authenticated DEV in an MLME-REQUEST-KEY.response command.

5.1.2.3 MLME-REQUEST-KEY.response

This primitive is used by a DEV to respond to a key request from an authenticated DEV with an encrypted version of the requested key. The semantics of the primitive are as follows:
MLME- REQUEST-KEY.response
(

DeviceID,

KeyPurpose,

SSID,

EncryptedKeyType,

EncryptedKeyLength,

EncryptedKey

)

The parameters for this command are defined in Table 14.

5.1.2.3.1 When generated

This primitive is generated by the DME as a result of the receipt of an MLME-REQUEST-KEY.indication command.

5.1.2.3.2 Effect of receipt

The MLME generates a request key response command and sends it to the specified DEV.
5.1.2.4 MLME-REQUEST-KEY.confirm

This primitive reports the result of a key request and, if a response was received, the requested key in an encrypted format to the DME. The semantics of the primitive are as follows:
MLME- REQUEST-KEY.confirm
(

DeviceID,

KeyPurpose,

SSID,

EncryptedKeyType

EncryptedKeyLength,

EncryptedKey,

ReasonCode

)
The parameters for this command are defined in Table 14.

5.1.2.4.1 When generated

This primitive is generated as a result of the MLME receiving a request key response command from an authenticated DEV or due to timeout. If there is no response from the DEV within RequestKeyFailureTimeout, the ReasonCode shall be set to TIMEOUT. Otherwise, the ReasonCode is SUCCESS.

5.1.2.4.2 Effect of receipt

The DME is informed of the result of a previously issued key request and, if successful, obtains the requested key.

5.1.2.5 Key Request Description

The security suite shall define the formats for key request fields. When key requests are sent, the requesting DEV shall be the recipient of the key and the security manager shall be the device sending the key. The exchange shall be encrypted using an agreed upon key encryption key (KEK) known only to the security manager and that DEV.

The process for key request shall follow these steps:

5. The requesting DEV creates an MLME-REQUEST-KEY.request using a KeyPurpose supported by the security suite and sends it to the security manager. If the security manager is in the PNC role, the requested keys shall be for piconet payload protection. If the security manager is not in the PNC role, the requested keys shall be for a peer-to-peer relationship.

The security manager encrypts the requested key using a process defined by the security suite and sends it to the requesting DEV in the MLME-REQUEST-KEY.response message.

6. The DEV decrypts and stores the key by a process defined by the security suite.

The following diagram shows the message flows for the key request protocol.

[image: image3.wmf]DEV-1

DME

DEV-1

MLME

MLME-REQUEST

-KEY.req

REQUEST-KEY-

REQUEST

MLME-REQUEST

-KEY.ind

MLME-REQUEST

-KEY.rsp

REQUEST-KEY-

RESPONSE

MLME-REQUEST

-KEY.cfm

PNC

MLME

PNC

DME

 Key

req = request

ind = indication

rsp = response

cfm = confirm

Figure XX―Message sequence chart for DEV-PNC key request

[image: image4.wmf]DEV-1

DME

DEV-1

MLME

MLME-REQUEST

-KEY.req

REQUEST-KEY-

REQUEST

MLME-REQUEST

-KEY.ind

MLME-REQUEST

-KEY.rsp

REQUEST-KEY

RESPONSE

MLME-REQUEST

-KEY.cfm

DEV-2

MLME

DEV-2

DME

 Key

req = request

ind = indication

rsp = response

cfm = confirm

Figure XX ― Message sequence chart for peer-to-peer key request

The following figure shows the message flows for the peer-to-peer key distribution protocol.

Author’s note: Replace subclause 6.3.9 with the following text.

5.1.3 Distribute Key

This mechanism supports the process of an authenticated DEV acting as security manager sending a key to an authenticated DEV. The parameters used for these commands are defined in table 15.

Table 25 - MLME-DISTRIBUTE-KEY primitive parameters

	Name
	Type
	Valid Range
	Description

	DeviceID
	Piconet address
	Any valid piconet address
	Specifies the one byte piconet address of the peer MAC entity with which to perform the authentication process

	SSID
	Byte string
	Any valid security session identifier
	Specifies the unique security session identifier for the key being distributed

	KeyPurpose
	Enumeration
	As defined in XX
	Specifies the purpose of the key that is being requested.

	EncryptedKeyType
	Enumeration
	As defined in XX
	Specifies the type and format of the encrypted key that is included in the command.

	EncreyptedKeyLength
	Integer
	(1
	Specifies the length in octets of the EncryptedKey

	EncryptedKey
	Byte string
	Any valid encrypted key
	Specifies the encrypted key in the format as defined by the EncryptedKeyType

5.1.3.1 MLME-DISTRIBUTE-KEY.request

This primitive is used by a DEV to distribute a key to an authenticated DEV. The semantics of the primitive are as follows:
MLME-DISTRIBUTE-KEY.request
(

DeviceID,

KeyPurpose,

SSID,

EncryptedKeyType,

EncryptedKeyLength,

EncryptedKey

)
The parameters for this command are defined in Table 15.

5.1.3.1.1 When generated

This primitive is generated by the DME for a DEV to distribute the included key to an authenticated DEV.
5.1.3.1.2 Effect of receipt

The MLME shall create a distribute key command and sends it to the indicated DEV.
5.1.3.2 MLME-DISTRIBUTE-KEY.indication

This primitive reports the transmission of a key from an authenticated DEV in a security manager role. The semantics of the primitive are as follows:

MLME- DISTRIBUTE-KEY.indication
(

DeviceID,

KeyPurpose,

SSID,

EncryptedKeyType,

EncryptedKeyLength,

EncryptedKey

)
The parameters for this command are defined in Table 15.

5.1.3.2.1 When generated

This primitive is generated by the MLME as a result of an MLME-DISTRIBUTE-KEY.request.

5.1.3.2.2 Effect of receipt

The DME shall decrypt and store the designated key and generate an MLME-REQUEST-KEY.response command to acknowledge successful receipt of the key.
5.1.3.3 MLME-DISTRIBUTE-KEY.response

This primitive is used by a DEV to respond to a key distribution from an authenticated DEV in the security manager role with an acknowledgement of successful receipt of the key. The semantics of the primitive are as follows:

MLME-DISTRIBUTE-KEY.response
(

DeviceID,

KeyPurpose,

SSID

)
The parameters for this command are defined in Table 15.

5.1.3.3.1 When generated

This primitive is generated by the DME as a result of the receipt of an MLME-DISTRIBUTE-KEY.indication command.

5.1.3.3.2 Effect of receipt

The MLME generates a distribute key response command and sends it to the specified DEV.
5.1.3.4 MLME-DISTRIBUTE-KEY.confirm

This primitive reports the result of a distribute key process with an authenticated DEV. The semantics of the primitive are as follows:
MLME-DISTRIBUTE-KEY.confirm
(

DeviceID,

KeyPurpose,

SSID

)
The parameters for this command are defined in Table 15.

5.1.3.4.1 When generated

This primitive is generated as a result of the MLME receiving a distribute key response command from an authenticated DEV.

5.1.3.4.2 Effect of receipt

The DME is informed of the result of a previously issued key distribution.

5.1.3.5 Key Distribution Description

The security suite shall define the formats for key distribution fields. When distribute key requests are sent, the security manager shall be the device sending the key and the other participating DEV shall be the recipient of the key. The exchange shall be encrypted using an agreed upon key encryption key (KEK) known only to the security manager and that DEV.

The process for key distribution shall follow these steps:

1. The security manager encrypts the key it wishes to distribute using a process defined by the security suite and sends it in an MLME-DISTRIBUTE-KEY.request message to the DEV. If the security manager is in the PNC role, the distributed keys shall be for piconet payload protection. If the security manager is not in the PNC role, the distributed keys shall be for a peer-to-peer relationship.

2. The DEV decrypts the key using a process defined by the security suite and returns an acknowledgement to the security manager informing it of the success or failure of the transaction.

3. The security manager optionally records information about whether the device received the key or not.

The following diagram shows the message flows for the key distribution protocol.

[image: image5.wmf]DEV-1

DME

DEV-1

MLME

MLME-

DISTRIBUTE-

KEY.req

DISTRIBUTE-KEY-

REQUEST

MLME-

DISTRIBUTE-

KEY.ind

PNC

MLME

PNC

DME

MLME-

DISTRIBUTE-

KEY.cfm

 Key

req = request

ind = indication

rsp = response

cfm = confirm

DISTRIBUTE-KEY-

RESPONSE

MLME-

DISTRIBUTE-

KEY.rsp

Figure XX―Message sequence chart for PNC-DEV key distribution

Figure XX shows the message flows for the peer-to-peer key distribution protocol.

[image: image6.wmf]DEV-1

DME

DEV-1

MLME

MLME-

DISTRIBUTE-

KEY.req

DISTRIBUTE-KEY-

REQUEST

MLME-

DISTRIBUTE-

KEY.ind

DEV-2

MLME

DEV-2

DME

MLME-

DISTRIBUTE-

KEY.cfm

 Key

req = request

ind = indication

rsp = response

cfm = confirm

DISTRIBUTE-KEY-

RESPONSE

MLME-

DISTRIBUTE-

KEY.rsp

Figure XX ― Message sequence chart for peer-to-peer key distribution

Author’s note: Replace subclause 6.3.8 with the following text.

5.1.4 De-authenticate

This mechanism supports the process of a DEV ending a peer-to-peer authentication relationship with another DEV. The parameters used for these commands are defined in table 14.

Table XX - MLME-DE-AUTHENTICATE primitive parameters

	Name
	Type
	Valid Range
	Description

	DeviceID
	Piconet address
	Any valid piconet address
	Specifies the one byte piconet address of the peer MAC entity with which to perform the authentication process

	ReasonCode
	Enumeration
	SUCCESS or TIMEOUT
	Specifies whether a request key response command was received or not.

5.1.4.1 MLME-DE-AUTHENTICATE.request

This primitive is used by a DEV to end a peer-to-peer authentication relationship with another DEV. The semantics of the primitive are as follows:
MLME-DE-AUTHENTICATE.request
(

DeviceID,

ReasonCode

)

The parameters for this command are defined in Table XX.

5.1.4.1.1 When generated

This primitive is generated by the DME for a DEV to end a peer-to-peer authentication relationship with the specified peer DEV.
5.1.4.1.2 Effect of receipt

The MLME shall create a de-authenticate command and send it to the indicated DEV. The MLME shall subsequently securely delete all keying material related to that peer-to-peer secure relationship.

5.1.4.2 MLME-DE-AUTHENTICATE.indication

This primitive reports the de-authentication of a DEV in a peer-to-peer secure relationship with another DEV. The semantics of the primitive are as follows:

MLME-DE-AUTHENTICATE.indicate
(

DeviceID,

ReasonCode

)

The parameters for this command are defined in Table 14.

5.1.4.2.1 When generated

This primitive is generated by the MLME as a result of the receipt of a de-authenticate command.

5.1.4.2.2 Effect of receipt

The DME shall securely delete all keying material related to that peer-to-peer secure relationship.

5.2 MAC PIB

Author’s note: The following tables should be included among the list of MAC PIB tables in section 6.5

5.2.1 MAC PIB piconet security parameters

The MAC PIB piconet security parameters group describes the security relationship that the DEV has with the PNC and the current status of the keys and security parameters that are in use in the piconet.

Table XX – MAC PIB piconet security parameters

	Managed Object
	Number of Octets
	Octets Definition
	Type

	MACPIBPNCDeviceAddress
	6
	Device address for the PNC
	Dynamic

	MACPIBSecuritySuite
	Variable
	The OID of the security suite that is in use for this piconet
	Dynamic

	MACPIBPNCPublicKeyInfo
	Variable
	Information used to validate the PNC public key object during the authentication process
	Dynamic

	MACPIBPNCSSID
	8
	The security session ID that is currently active for the piconet
	Dynamic

	MACPIBManagementKeyInfo
	Variable
	The keys agreed upon during authentication that are needed for protecting commands
	Dynamic

	MACPIBPayloadKeyInfo
	Variable
	The keys that are currently active that are needed for protecting payload data
	Dynamic

	MACPIBSMSeqNum
	8
	The last known valid sequence number for security manager commands
	Dynamic

	MACPIBDEVSeqNum
	8
	The last known valid sequence number for DEV commands
	Dynamic

	MACPIBCurrentTimeToken
	8
	The last known valid time token received in a beacon
	Dynamic

	MACPIBValidBeacon
	1
	0x00 = Valid

0x01 = Invalid

Used to determine whether the current beacon verified or not.
	Dynamic

	MACPIBNewPNC
	1
	0x00 = No new PNC in beacon

0x01 = New PNC discovered in beacon
	Dynamic

5.2.2 MAC PIB ACL group

The MAC PIB ACL group describes the security relationship that the DEV has with the other DEVs in the piconet.

Table XX – MAC PIB ACL Entry (for peer DEVs)

	Managed Object
	Number of Octets
	Octets Definition
	Type

	MACPIBDeviceAddress
	6
	Device address for the specified DEV
	Static

	MACPIBDeviceID
	1
	Piconet address for the specified DEV
	Dynamic

	MACPIBRelationship
	1
	0x00 = Not authenticated

0x01 = Security Manager

0x02 = DEV
	Dynamic

	MACPIBSecuritySuite
	Variable
	The OID of the security suite that is in use for this security relationship
	Dynamic

	MACPIBPublicKeyInfo
	Variable
	Information used to validate the public key object during the authentication process
	Dynamic

	MACPIBSSID
	8
	The security session ID that is currently active for the security relationship
	Dynamic

	MACPIBManagementKeyInfo
	Variable
	The keys agreed upon during authentication that are needed for protecting commands
	Dynamic

	MACPIBPayloadKeyInfo
	Variable
	The keys that are currently active that are needed for protecting payload data
	Dynamic

	MACPIBSMSeqNum
	8
	The last known valid sequence number for security manager commands
	Dynamic

	MACPIBDEVSeqNum
	8
	The last known valid sequence number for DEV commands
	Dynamic

6 Clause 7 Text (Frame Formats)

6.1 General frame format

Author’s note: The following text should be included in sub-clause 7.2 and replace the current text where appropriate.

6.1.1.1 SEC field

The SEC field is one bit in length. When the SEC bit is set to 1, the frame body is protected using the keys specified by the security session ID in the frame body.

6.2 Format of individual frame types

Author’s note: The following text should be included in sub-clause 7.3 and replace the current text where appropriate.

Author’s discussion point: For secure command and data frame formats, the SSID and time token are included explicitly in the frame. The inclusion of these values makes the context for each of these frames clear and allows for some post processing, however it results in increased bandwidth. It may be desirable to remove these fields from the frames to save bandwidth.

6.2.1 Beacon frame format

If payload protection is in use in the piconet, the SEC field shall be set to 1 in the frame header and the security session ID, time token and integrity code shall all be present. If included, the SSID and time token shall be the first information elements and the integrity code shall be the final information element in the beacon.

Author’s note: The following items should be added to table 60.

	Information element
	Sub-clause
	Note
	Present in Beacon

	Security session ID
	X.X.X
	The security session ID associated with the keys intended to protect the superframe if security is in use.
	Dynamic

	Time token
	X.X.X
	Strictly increasing counter used to provide relative time within the piconet if security is in use.
	Dynamic

	Integrity code
	X.X.X
	The security data appended to the beacon to protect the integrity of the beacon.
	Dynamic

	octets: 12
	8
	8
	variable
	variable
	4

	MAC Frame Header
	SSID
	TimeToken
	Information Elements
	Integrity Code
	FCS

Figure XX – Secure beacon frame body

6.2.2 Immediate acknowledgement (ACK) frame format

In a secure piconet, the SEC field shall be set to 1 and the stream control field shall be set to the value in the command that is being acknowledged. In addition, the ACK frame body shall consist of the SSID used in the command, the time token from the current superframe and an integrity code generated with a key associated with the SSID in the frame body.

	octets: 12
	8
	8
	variable

	MAC Frame Header
	SSID
	TimeToken
	Integrity Code

Figure XX – Secure immediate acknowledgement frame format

6.2.3 Command frame format

If the command has the SEC field in the frame header set to 1, the security session ID and time token shall precede the command frame body and the integrity code shall be the final data element in the command before the FCS. If the command is protected using the piconet-wide group keys, the sequence counter shall be set to 0. If the command is protected using management keys shared between two DEVs, the sequence counter shall be the incremented sequence counter for that relationship.

	octets: 12
	8
	8
	8
	(2+2+Lx)
	variable
	4

	MAC Frame Header
	SSID
	TimeToken
	Sequence Counter
	Command Payload
	Integrity Code
	FCS

Figure XX – Secure command frame body

6.2.4 Data frame format

If the data frame has the SEC field in the frame header set to 1, the security session ID and time token shall precede the data frame body and the integrity code shall be present at the end of the data and before the FCS. The data shall be encrypted if the security suite in use requires encryption. An IV will be present if the encryption algorithm specified by the security suite requires an IV. If the security suite does not require the use of an IV, the length of this element shall be 0.

	octets: 12
	8
	8
	variable
	variable
	variable
	4

	MAC Frame Header
	SSID
	TimeToken
	IV
	Encrypted Data
	Integrity Code
	FCS

Figure XX – Secure data frame body

6.3 Information Elements

Author’s note: This section describes information elements that may be stored in the MAC PIB or sent to other DEVs.

Author’s note: Information element numbers should be assigned to these information elements and included in table 63 (section 7.4, pg. 101 of draft D09).

	Element ID

hex value
	Element
	Sub-clause

	0xXX
	Public key object
	X.X.X

	0xXX
	Security suite OID
	X.X.X

	0xXX
	Security session ID
	X.X.X

	0xXX
	Time token
	X.X.X

	0xXX
	Integrity code
	X.X.X

6.3.1 Public key object

A public key object may represent any type of public key, which may or may not be signed and may contain additional associated information about the key. This information may be transmitted during authentication. The public key object element shall be formatted as illustrated in Figure XX.

	octets: 1
	2
	2
	2
	Ln

	Element ID
	Length (=Ln+4)
	PublicKeyObjectType
	PublicKeyObjectLength(=Ln)
	PublicKeyObject

Figure XX – Public key object field

The PublicKeyObjectType field specifies the type of public key specified in the PublicKeyObject. These types are defined in subclause XX.

The PublicKeyObjectLength field specifies the length in octets of the PublicKeyObject.

The PublicKeyObject field specifies the public key and optional associated parameters as defined by the PublicKeyObjectType.

Author’s note: The SecuritySuiteOID should replace the Security parameters information element.

6.3.2 Security suite OID

The security suite OID is used to indicate the security suite that is preferred by the DEV. The object identifier (OID) shall be globally unique and unambiguously identify the security suite. The security suite OID element shall be formatted as illustrated in Figure XX.

	octets: 1
	2
	Ln

	Element ID
	Length (=Ln)
	OIDData

Figure XX – Security suite OID object field

The OIDData shall be the DER encoding of the OID as specified in the X.500 series of standards. This value represents a security suite supported by that device.

If multiple security suite OID elements are in the same probe command, they should be considered to be listed in order of preference.

6.3.3 Security session ID

The security session ID is used to uniquely identify a particular set of keys. The security session ID element shall be formatted as illustrated in Figure XX.

	octets: 1
	1
	8

	Element ID
	Length (=8)
	SecuritySessionIDData

Figure XX – Security session ID field

The SecuritySessionIDData field specifies the security session ID for the keys that will be used to protect the data and commands in the piconet.

6.3.4 Time token

The time token is used to establish relative time within the piconet and specify a unique counter value for each superframe. The time token element shall be formatted as illustrated in Figure XX.

	octets: 1
	1
	8

	Element ID
	Length (=8)
	TimeTokenData

Figure XX – Security session ID field

The TimeTokenData field specifies the time token for the current superframe that will be used to protect the data and commands in the piconet.

6.3.5 Integrity code

The integrity code is used to assure that the data that it is protecting has not been modified by any entity that does not possess the appropriate keys. The integrity code element shall be formatted as illustrated in Figure XX.

	octets: 1
	1
	Ln

	Element ID
	Length (=Ln)
	IntegrityCodeData

Figure XX – Security session ID field

The IntegrityCodeData field specifies the integrity code that protects the integrity of the data. The format and length of this field is determined by the security suite in use.

Author’s note: The enumerated lists in the following section are included to support the security commands and the MLME sections.

Author’s note: For clarity, perhaps they should go in a separate section instead of inline within the commands.

6.4 Commands

Author’s discussion point: In the following sections, the commands are specified to be protected for integrity only and not encrypted. This leaks information outside of the piconet about the way that the piconet works (as does the time token in the beacon). It was decided to leave this information unencrypted because it appears that it may allow the piconet to work more smoothly and it saves in both computation and bandwidth. If the privacy of the commands is considered to be important, the command payloads may be encrypted. It should be noted, however, that traffic analysis and educated guessing about the nature of commands is sufficiently difficult to protect against that the author believes that the benefits from encrypting command data may be limited.

Security suites shall specify data formats for all variable length elements and object type elements listed in this subclause.

In a secure piconet, all commands, unless otherwise noted, shall be integrity protected using either the current piconet payload protection keys, the current management keys shared with the PNC, peer-to-peer payload protection keys or peer-to-peer management keys. Encryption is not required for commands.

Author’s note: The following commands should be added to Table 65.

	Command type

hex value
	Command name
	Sub-clause

	0xXX
	Distribute key response command
	X.X.X

Author’s note: The following changes should be made to subclause 7.5.2.2

	octets: 2
	2
	2
	1
	1
	2
	variable

	Command type
	Length
	Device ID
	Reason Code
	Device Address
	ATP
	Piconet Security Suite OID

Figure 40 – Association response command format

The piconet security suite OID field specifies the OID of the security suite that will be used for authentication in the piconet and for payload protection in the piconet.

6.4.1.1 Authentication request command

An associated DEV uses the authentication request command to request authentication into the piconet or request authentication with another DEV.

The ACK policy shall be set to request immediate acknowledgement. The Del-ACK request, SEC and Repeater sub-fields in the frame control field of the MAC header in this command shall be set to zero and shall be ignored upon reception.

The authentication request command frame structure shall be formatted as illustrated in Figure XX.

	octets: 2
	2
	6
	2
	2
	variable

	Command Type
	Length
	Device address
	Public-key object type
	Public-key object length
	Public-key object

Figure XX – Authentication request command format

The device address is the valid 48-bit IEEE MAC address of the requesting DEV.

The public-key object type may be a public key, a public-key certificate or some other construct that communicates public-key related information. This is defined by the current security suite.

Author’s discussion point: Each security suite proposal may have valid public-key object types to add to this list. The first entry after NULL should probably be the mandatory to implement key type. Additional public-key object types may be defined in future revisions and the group should consider the implications of additional public-key object types proposed after the document becomes a standard. See the NTRU security suite proposal for a description of an NTRU251 key. There are additional enumerated lists below that raise the same type of issue.

The valid public-key object types are:

· 0 -> NULL

· 1 -> NTRU251 Key

· 2 -> RSA1024 Key

· 3 -> ECC163p Key

· 4 -> X.509 Certificate

· 5 -> ECC163p Implicit Certificate

· 6 -> SHA-1 ID/Key Hash

· 6-255 -> Reserved

The public-key object length represents the length of the public-key object. This is defined by the current security suite.

The public-key object is the instance of the public-key object type that the DEV wishes to use in the authentication protocol.

6.4.1.2 Authentication response command

The authentication response command is the final message in the authentication protocol. An associated DEV acting as the security manager uses this command to complete the authentication protocol with the PNC or with another DEV.

The ACK policy shall be set to request immediate acknowledgement. The Del-ACK request, SEC and Repeater sub-fields in the frame control field of the MAC header in this command shall be set to zero and shall be ignored upon reception.

The authentication response command frame structure shall be formatted as illustrated in Figure XX.

	octets: 2
	2
	1
	2
	2
	variable

	Command Type
	Length
	Reason code
	Auth response type
	Auth response length
	Auth response

Figure XX – Authentication response command format

The reason code is used to indicate the result of a command from another DEV. The reason code is an enumerated list.

The valid reason code values are:

· 0 -> Success

· 1 -> Failure

· 2 -> Public key not accepted

· 3 -> Unavailable

· 4 -> Timed out

· 5-255 -> Reserved

The auth response type may be a message authentication code or other indication of authentication. This is defined by the current security suite.

The valid auth response type values are:

· 0 -> NULL

· 1 -> TDES CBC MAC

· 2 -> SHA-1 HMAC

· 3 -> 80-bit Truncated SHA-1 HMAC

· 4-255 -> Reserved

The auth response length represents the length of the auth response. This is defined by the current security suite.

The auth response is the instance of the public-key object type that the DEV wishes to use in the authentication protocol.

6.4.1.3 Challenge request command

The challenge request command is used by the security manager in an authentication protocol to indicate the public key it is using and to send a cryptographic challenge to the authenticating DEV.

The ACK policy shall be set to request immediate acknowledgement. The Del-ACK request, SEC and Repeater sub-fields in the frame control field of the MAC header in this command shall be set to zero and shall be ignored upon reception.

The challenge request command frame structure shall be formatted as illustrated in Figure XX.

	octets: 2
	2
	1
	variable
	8
	6
	2
	2
	variable
	2
	2
	variable

	Command

Type
	Length
	OID length
	OID
	SSID
	Device Address
	Public-key object type
	Public-key object length
	Public-key object
	Chall-enge type
	Chall-enge length
	Chall-enge

Figure XX – Challenge request command format

The OID length is dependent on the DER encoding of the selected OID.

The OID is the DER encoding of the OID for the security suite selected by the security manager for this authentication protocol.

The SSID is the new unique identifier for the security relationship that is being established in this authentication protocol.

The device address is the valid 48-bit IEEE MAC address of the requesting DEV.

The public-key object type may be a public key, a public-key certificate or some other construct that communicates public-key related information. This is defined by the current security suite.

The valid public-key object types are defined in subclause XXX.

The public-key object length represents the length of the public-key object. This is defined by the current security suite.

The public-key object is the instance of the public-key object type that the security manager wishes to use in the authentication protocol.

The challenge type may be an encrypted random value, a Diffie-Hellman style value or some other public-key related data item. This is defined by the current security suite.

The valid challenge type values are:

· 0 -> NULL

· 1 -> NTRU251 encrypted seed

· 2 -> RSA1024 OAEP encrypted seed

· 3 -> ECIES163p w/AES encrypted seed

· 4 -> ECC163 MQV challenge

· 5-255 -> Reserved

The challenge length represents the length of the challenge. This is defined by the current security suite.

The challenge is the instance of the challenge type that the security manager wishes to use in the authentication protocol.

6.4.1.4 Challenge response command

The challenge response command is used by a DEV in an authentication protocol to respond to a challenge sent by the security manager and to send a cryptographic challenge to the security manager.

The ACK policy shall be set to request immediate acknowledgement. The Del-ACK request, SEC and Repeater sub-fields in the frame control field of the MAC header in this command shall be set to zero and shall be ignored upon reception.

The challenge request command frame structure shall be formatted as illustrated in Figure XX.

	octets: 2
	2
	2
	2
	variable
	2
	2
	variable

	Command

Type
	Length
	Challenge type
	Challenge length
	Challenge
	Challenge response type
	Challenge response length
	Challenge response

Figure XX – Challenge response command format

The challenge type may be an encrypted random value, a Diffie-Hellman style value or some other public-key related data item. This is defined by the current security suite.

The valid challenge type values are defined is subclause XXX.

The challenge length represents the length of the challenge. This is defined by the current security suite.

The challenge type may be an encrypted random value, a Diffie-Hellman style value or some other public-key related data item. This is defined by the current security suite.

The valid challenge response type values are:

· 0 -> NULL

· 1 -> TDES CBC MAC

· 2 -> AES CBC MAC

· 3 -> Truncated AES CBC MAC

· 4 -> ECC163 MQV challenge response

· 5-255 -> Reserved

The challenge response length represents the length of the challenge response. This is defined by the current security suite.

The challenge response is the instance of the challenge response type that the DEV uses to demonstrate knowledge of its private key to the security manager.

6.4.1.5 Request key command

The request key command is used in a request key (“pull”) protocol to request a payload protection key from the security manager.

The ACK policy shall be set to request immediate acknowledgement. The SEC field shall be set to 1. The Del-ACK request and Repeater sub-fields in the frame control field of the MAC header in this command shall be set to zero and shall be ignored upon reception.

This command shall be protected using the management keys that are shared between the requesting DEV and the security manager. The sequence number (DEV direction) shall be incremented by the sending DEV and included in this command.

The request key command frame structure shall be formatted as illustrated in Figure XX.

	octets: 2
	2
	1

	Command Type
	Length
	Key purpose

Figure XX – Request key command format

The key purpose defines the use of the requested key. This is dependent on the current security suite.

The valid key purpose values are:

· 0 -> Seed

· 1 -> Key Encryption Key (KEK)

· 2 -> Data Encryption Key (DEK)

· 3 -> Data Integrity Key (DIK)

· 4-255 -> Reserved

6.4.1.6 Request key response command

The request key response command is used by a security manager in an authenticated relationship to send the requested key in encrypted format to the requesting DEV.

The ACK policy shall be set to request immediate acknowledgement. The SEC field shall be set to 1. The Del-ACK request and Repeater sub-fields in the frame control field of the MAC header in this command shall be set to zero and shall be ignored upon reception.

The request key command shall be protected using the management keys that are shared between the requesting DEV and the security manager. The sequence number (SM direction) shall be incremented by the sending DEV and included in this command.

The request key command frame structure shall be formatted as illustrated in Figure XX.

	octets: 2
	2
	1
	8
	2
	2
	variable

	Command

Type
	Length
	Key purpose
	SSID
	Encrypted key type
	Encrypted key length
	Encrypted key

Figure XX – Request key command format

The key purpose defines the use of the requested key. This is dependent on the current security suite.

The valid key purpose values are defined in subclause XXX.

The SSID is the unique identifier for the security relationship that the requested key is associated with.

The encrypted key type is an encrypted version of the key encrypted with the key encryption key related to the SSID protecting the command. The value that is encrypted is dependent on the key purpose in the request. This is defined by the current security suite.

The valid encrypted key type values are:

· 0 -> NULL

· 1 -> TDES CBC encrypted value

· 2 -> AES CBC encrypted value

· 3-255 -> Reserved

The encrypted key length represents the length of the encrypted key. This is defined by the current security suite.

The encrypted key is the instance of the encrypted key type that the security manager uses to transmit the requested key to the requesting DEV.

6.4.1.7 Distribute key request command

The distribute key request command is used in a distribute key (“push”) protocol to transmit a key to another DEV.

The ACK policy shall be set to request immediate acknowledgement. The SEC field shall be set to 1. The Del-ACK request and Repeater sub-fields in the frame control field of the MAC header in this command shall be set to zero and shall be ignored upon reception.

The distribute key request command shall be protected using the management keys that are shared between the requesting DEV and the security manager. The sequence number (SM direction) shall be incremented by the sending DEV and included in this command.

The distribute key request command frame structure shall be formatted as illustrated in Figure XX.

	octets: 2
	2
	1
	8
	2
	2
	variable

	Command

Type
	Length
	Key purpose
	SSID
	Encrypted key type
	Encrypted key length
	Encrypted key

Figure XX – Distribute key request command format

The key purpose defines the use of the requested key. This is dependent on the current security suite.

The valid KeyPurpose values are defined in subclause XXX.

The SSID is the unique identifier for the security relationship that the distributed key is associated with.

The encrypted key type is an encrypted version of the key encrypted with the key encryption key related to the SSID protecting the command. The value that is encrypted is dependent on the key purpose in the request. This is defined by the current security suite.

The valid encrypted key type values are defined in subclause XXX.

The encrypted key length represents the length of the encrypted key. This is defined by the current security suite.

The encrypted key is the instance of the encrypted key type that the security manager uses to transmit the key it is distributing to the DEV.

6.4.1.8 Distribute key response command

The distribute key response command is used in a distribute key protocol to inform the security manager whether or not the key was properly received.

The ACK policy shall be set to request immediate acknowledgement. The SEC field shall be set to 1. The Del-ACK request and Repeater sub-fields in the frame control field of the MAC header in this command shall be set to zero and shall be ignored upon reception.

This command shall be protected using the management keys that are shared between the requesting DEV and the security manager. The sequence number (DEV direction) shall be incremented by the sending DEV and included in this command.

The distribute key response command frame structure shall be formatted as illustrated in Figure XX.

	octets: 2
	2
	1
	8

	Command Type
	Length
	Key purpose
	SSID

Figure XX – Request key command format

The key purpose defines the use of the distributed key. This is dependent on the current security suite.

The valid key purpose values are defined in subclause XXX.

The SSID specifies the security session ID of the key that was received by the DEV.

6.4.1.9 De-authenticate command

The de-authenticate command is used by a DEV in a peer-to-peer relationship to end an authenticated relationship with the peer DEV.

The ACK policy shall be set to request immediate acknowledgement. The SEC field shall be set to 1. The Del-ACK request and Repeater sub-fields in the frame control field of the MAC header in this command shall be set to zero and shall be ignored upon reception.

This command shall be protected using the management keys that are shared between the requesting DEV and the security manager. The sequence number (DEV direction) shall be incremented by the sending DEV and included in this command.

After the de-authenticate command has been sent, the DEV shall securely delete the keys related to the security relationship that was de-authenticated.

The de-authenticate command frame structure shall be formatted as illustrated in Figure XX.

	octets: 2
	2
	1

	Command Type
	Length
	Reason code

Figure XX – Request key command format

The reason code specifies the reason the device ended the authentication relationship.

The valid reason code values are:

· 0 -> NULL (no reason given)

· 1 -> Timeout

· 2 -> Device disassociating

· 3 -> Re-authentication requested

· 4-255 -> Reserved

7 Clause 8 Text (MAC functional description)

Author’s note: There is currently no security text recommended for this clause.

Author’s note: Some of the descriptions of how secure operations that are included in the section 10 text may be included in this clause.

8 Clause 10 Text (Security)

This clause covers the operations within a WPAN to provide security services for the devices in the WPAN. The following topics will be covered in this clause.

· Security goals

· Context for the security implementation

· Security functionality

· Security framework

· Security requirements

· Replaceable security suites

A detailed description of the primary security protocols and the state machines relating to those protocols are provided in a separate clause. Additional security considerations for the security described in this clause are provided in a separate annex.

8.1 Security Goals

Security is considered to be an optional service for a given 802.15.3 piconet, however all compliant devices shall support security. If security is turned off in the piconet, there are no security requirements. If security is turned on, a minimum of security services shall be provided.

The security implemented in the 802.15.3 is intended for the protection of data at the MAC and PHY layers. Although in some instances the security provided by the MAC/PHY may be sufficient to satisfy application layer security goals it is not intended that the security of the WPAN be sufficient for all types of application layer services.

The two primary security goals for 802.15.3 WPANs are:

· Only authorized devices may join a secure piconet

· Communication between identified parties only

These goals are summarized in the following sub-clauses. In addition, there are goals for the functioning of the piconet that should be respected by the security solution.

8.1.1 Authorized Piconet Membership

When security is in use within a piconet, devices shall have the ability to control entry into the piconet and consequently control the use of the resources of the piconet. In particular, the PNC shall have a mechanism to determine whether devices are authorized to join the piconet.

8.1.2 Communication Between Identified Parties

When security is in use within a piconet, devices shall have the ability to restrict the data flow to be between only authorized piconet members. In particular, devices in the piconet shall have the ability to protect the privacy and integrity of the communicated data.

8.1.3 Implementation Goals

The implementation of security within a piconet should not prevent the proper operation of the piconet. In addition to the security goals, the following goals shall be satisfied by the security solution:

· Low cost increment – The security implementation shall not increase the cost of the devices significantly.

· Low complexity – The complexity of the logic required to implement the security algorithms and protocols shall be kept to a minimum.

· High performance – The increase to the time required for association and authentication in a secure piconet shall be minimized and the ability to transmit and receive data at the intended data rate (55 Mbps) shall be preserved.

8.2 Security Context

Before discussing the security requirements, it is important to understand the context within which the security will be implemented. The physical environment and operational aspects of the WPAN affect the type of security implementation and the effectiveness of security techniques.

In order to make statements about the security services provided by the security solution, assumptions must be made about the constraints on the devices and on the network and the capabilities of potential attackers. The following sub-clauses describe the physical assumptions, network assumptions and assumptions about the capabilities of attackers.

8.2.1 Physical Assumptions

The assumptions below are made about the physical environment for the WPAN. The physical constraints help to determine the security architecture.

· Open communications medium – Since the data being transmitted may be received by any device that is sufficiently close and has a sufficiently good receiver, it is assumed that transmissions may be heard by devices that are outside of the WPAN.

· Low cost devices – The price range for the devices implementing 802.15.3 may vary greatly. However, since all devices must be able to support security, it is assumed that the minimum security requirements may be implemented for a very low cost.

· Dynamic group membership – Devices are expected to be roaming and it is therefore assumed that the devices may enter or exit the network at any time.

· Connection to external networks – Unlike other wireless networking standards, the short range of the communications and the widely varied use cases discounts the possibility of all 802.15.3 WPANs having access to external networks. It is therefore assumed that the security must be able to operate efficiently without access to an external network.

· Bandwidth – 802.15.3 WPANs are intended to be used for high data rates. It is assumed that reasonable amounts of bandwidth overhead due to security is acceptable.

· Computational power – The devices that will be used are assumed to have very little computational power with only a small portion of that available for cryptographic computations.

· Memory – It is assumed that the low end devices implementing 802.15.3 will not have considerable memory available for security implementation.

8.2.2 Network Assumptions

The assumptions below are made about the network structure of the WPAN. The network constraints help to determine the security architecture.

· Network size – There is a fixed upper bound of 255 devices in a WPAN and it is assumed that the security solution will scale up to that size if necessary.

· Controller – One device, the PNC, has the role of managing message control and entry into the piconet. It is assumed that the PNC has more resources available to it and hence may be able to perform additional functions that other devices are not capable of performing.

· Network topology – All devices are within range of the PNC, but they may not be in range of each other. It is assumed that not all devices in the WPAN are able to receive frames from each other.

· Dynamic controller – The PNC is assumed to have the ability to leave the network or hand over the PNC role to other devices.

· Device relationships – The wide array of use cases describe multiple models for the pre-existing relationship of devices in the piconet. It is assumed that devices may have pre-existing security relationships or they may have never met and that both types of relationship may exist within a single piconet.

8.2.3 Attack Model Assumptions

In order to make statements about the effectiveness of security measures, it is necessary to describe the capabilities of the attackers and the nature of the attackers.

· Computational capabilities – It is assumed that the attacker has state of the art technologies to perform rapid computations.

· Listening capabilities – It is assumed that the attacker is within listening range of the devices in the WPAN and understands the communication mechanism.

· Broadcast capabilities – It is assumed that the attacker has sophisticated broadcasting equipment that is able to synchronize with the piconet and transmit data for the devices in the piconet at the appropriate time.

· Security setup – The security setup for the devices may occur before entry into the piconet or after the piconet has been established. No assumptions are made about the presence of attackers during security setup.

8.3 Security Functionality

Author’s discussion point: The term security suite is discussed in this clause, however since the part of the security suite that is needed to fully specify the standard is basically the algorithms. As such, it may be more appropriate to call it an algorithm suite.

The primary security functionality for protection of the WPAN are provided cryptographically. The security functionality varies by security suite, but certain security functionality may only be provided if other security functionality is provided as well. The security services include:

· Mutual authentication – Required for all security suites

· Methods to verify the authenticity of a public key – Required for all security suites

· Key establishment – Required for all security suites that use beacon protection, command protection or data payload protection

· Key transport – Required for all security suites that use data payload protection

· Beacon integrity protection – Required for all security suites that use data payload protection

· Freshness protection – Required for all security suites that use data payload protection

· Command integrity protection – Required for all security suites that use data payload protection

· ACK integrity protection – Required for all security suites that use data payload protection

· Data integrity protection – Required for all security suites that use data payload protection

· Data encryption – Required for all security suites that use data payload encryption

Each security suite shall specify which of these functions are supported by the security suite. Despite the optional nature of some security functions, the desire for a reasonable level of security implies that they should all be implemented. In particular, the lack of payload protection results in communications with no privacy or assurance as to the source or integrity of the transmitted data.

If the security suite offers payload protection, it shall provide for initial key establishment between a DEV and the security manager and the subsequent transport of the group payload protection keys from the security manager to the DEV. In addition, a security suite shall include at least one of the following types of payload protection:

· Integrity protection/source authentication only

· Data encryption and integrity protection/source authentication

8.3.1 Mutual Authentication

The authentication protocol is the initial source of all cryptographic protection within a piconet. All security suites shall define the parameters necessary to perform mutual authentication. This protocol may be used for either DEV-PNC mutual authentication (for joining the piconet) or for peer-to-peer mutual authentication for peer-to-peer communications.

Authentication between the DEV and PNC is used to provide evidence to the PNC that the DEV is authorized to join the secure piconet. Authentication between two DEVs is used to provide evidence to each DEV that the other is authorized to establish a secure peer-to-peer relationship with that DEV.

Since authentication is required before any other commands are allowed in the secure piconet, all security suites shall define an authentication method.

8.3.2 Verifying Authenticity of Public Keys

During the authentication process, the device shall determine whether the public key object and ID received are authentic and authorized to be authenticated. Conceptually, the DME provides an access control list for the MLME to check whether the public key object and ID are authorized. This access control list is implementation specific and may consist of a set of root keys for certificate chains, a list of trusted IDs with their associated public keys, a list of trusted IDs with the hash of the ID and public key object, or some other criteria.

Regardless of the type of ACL implemented, the security suite shall specify a method by which the MLME may determine whether or not to accept the public key sent in the authentication command.

8.3.3 Key Establishment

For all security suites that use keys for purposes other than authentication, the authentication protocol shall result in the establishment of a shared key or keys that may be used for future communications between the devices.

The key(s) that are agreed upon shall be used to protect commands between the two devices.

8.3.4 Key Transport

For all security suites that use keys for data payload protection, the security suite shall provide a mechanism for securely transporting keys. This key transport is accomplished using the key request and distribute key protocols. The key transport commands shall be protected using the keys established during the authentication process. All keys that are transported shall be encrypted.

If the transported keys are group keys for the piconet, the keys shall be used for payload protection of broadcast frames in the piconet. These keys may also be used for payload protection and command protection for peer-to-peer communications. If the transported keys are peer-to-peer keys, the keys shall be used for payload protection of data transmitted between the two participating DEVs.

8.3.5 Beacon integrity protection

For all security suites that use keys for data payload protection, the security suite shall provide a mechanism for protecting the integrity of the beacon. The PNC shall distribute a shared piconet-wide key to each authenticated DEV in the piconet.

This key shall be used by the PNC to provide integrity on the beacon. This integrity protection provides evidence to all the DEVs in the piconet that a member of the secure piconet transmitted the beacon.

8.3.6 Freshness protection

For all security suites that provide payload protection in the beacon, the time token in the beacon shall be used to protect freshness. The time token shall be strictly increasing and DEVs may reject the freshness of any frame that uses a frame with a time token that is not current.

All protected beacons, ACKs, commands and data shall include the current time token and integrity protection for freshness protection.

8.3.7 Command integrity protection

For all security suite that use keys for data payload protection, the security suite shall provide a mechanism for protecting the integrity of commands between DEVs.

The key used to protect the integrity of commands shall be the key agreed on during the authentication process that provides authentication. This is typically achieved using a message authentication code generated using a keyed hash function algorithm or a symmetric message authentication code algorithm.

8.3.8 ACK integrity protection

For all security suite that use keys for data payload protection, the security suite shall provide a mechanism for protecting an ACK to a secure command.

The key used to protect the integrity of the ACK shall be the key used for the command. This is typically achieved using a message authentication code generated using a keyed hash function algorithm or a symmetric message authentication code algorithm.

8.3.9 Data integrity protection

For all security suites that use keys for data payload protection, the security suite shall provide a mechanism for protecting the integrity of transmitted data. This is typically achieved using a message authentication code generated using a keyed hash function algorithm or a symmetric message authentication code algorithm.

If the data is broadcast to the piconet or sent to a device with which the device does not share a security relationship, the sending DEV shall use the shared integrity key for the piconet. If the data is sent in a peer-to-peer relationship, the data shall be protected using the shared integrity key for that relationship.

8.3.10 Data encryption

For all security suites that require privacy protection on transmitted data, the security suite shall provide a mechanism for encrypting transmitted data. This is typically achieved using a symmetric key encryption algorithm.

If the data is broadcast to the piconet or sent to a device with which the device does not share a security relationship, the sending DEV shall use the shared encryption key for the piconet. If the data is sent in a peer-to-peer relationship, the data shall be protected using the shared encryption key for that relationship.

8.4 Security Policies

Certain security policies shall be implemented by devices in the piconet in order to preserve the intended security properties of the piconet. The following sub-clauses describe the security policies that shall be implemented in the piconet.

8.4.1 Group membership change rekey

Sound security practice indicates that only devices that are currently members of the piconet should be allowed to generate, read or modify piconet data. This implies that when a device joins or leaves the piconet, the currently active group keys need to be changed.

Since group membership is controlled by the PNC, the PNC is responsible for determining when a device has joined or left the piconet and for changing and distributing the new group keys.

Before the PNC distributes the group piconet keys to a newly authenticated DEV, the PNC shall change the group piconet keys and issue a distribute key command to each of the authenticated DEVs to distribute the new key.

When the PNC disassociates a DEV from the piconet, the PNC shall change the group piconet keys and issue a distribute key command to each of the authentication DEVs to distribute the new key.

8.5 Security Suites Specifications

The following information shall be specified in all security suites.

8.5.1 Object Identifier

Each security suite shall have a globally unique object identifier associated with it that will never change. This security suite shall refer explicitly to a security suite defined for this standard. Object identifiers shall be obtained from an established numbering authority such as IANA (these look something like 1.3.6.1.4.1). The object identifier may be of any length and on any valid OID tree.

8.5.2 Security Functionality

Each security suite shall identify the security functionality that it supports from the security functionality described in sub-clause XX.

8.5.3 Data Formats

Each security suite shall specify the data elements that are not specified in the frame formats in clause 7. For each data element, the number of bytes shall be specified that is used in the command, the expected value (when appropriate) and a description of the meaning and nature of the data element.

8.5.4 Protocol Operations

For each protocol used by the security suite, the security suite shall provide a list of operations that are performed by each participating DEV. These protocol operations will typically include cryptographic operations, data manipulation and determination of the appropriate action based on the result of the operations.

8.5.4.1 Cryptographic Implementations

For all cryptographic implementations in the security suite, the security suite specification shall provide a complete and unambiguous description of the cryptographic operations performed. These descriptions may be provided by reference to external documents.

8.5.5 Security Considerations

Since different security suites employ different security methods, the security suite specification should include a security considerations section that justifies the security services claimed. This section should also describe any deficiencies in the security of the security suite.

8.5.6 Additional Information

It may be desirable for each security suite to provide additional information to the implementers and users of the security suite. This information may include efficiency statistics, methods for efficiently implementing the protocols or data elements that should be stored in the PAN information base (PIB). For instance, if public keys or symmetric keys need to be stored by the PNC or by individual DEVs, the security suite should mention these requirements.

9 Clause 11 (New Clause for State Machines)

9.1 Protocol Selection Criteria

The protocols in this document have been selected based on:

· Time to Market: The protocols make use of currently available technology.

· Selectable Components: The protocol framework must provide flexibility to allow different algorithms to be selected for use in the standard.

· Flexibility: The protocols described in this document are designed to meet a large range of security requirements. They should support the various security scenarios identified for 802.15.3 piconets.

· Market Suitability: The protocols in this document will be reviewed by 802.15.3 vendors to ensure that they satisfy their requirements.

9.2 High-level Protocol Descriptions

9.2.1 Authentication and Key Establishment

At the initial stages of the piconet setup, a controller is selected from among the local devices to perform the PNC and security manager roles. The security manager acts as the central security point for all devices to obtain keying material for the piconet. In the peer-to-peer scenario, one device acts as the security manager and the other acts as normal device, based on who initiates the protocol.

[image: image7.wmf]Ÿ

Requests to join the piconet by sending data

that the security manager can use to verify

the device's authenticity.

Device

Security Manager

Ÿ

Verifies the authenticity of the security

manager's identifying data.

Ÿ

Decrypts the challenge.

Ÿ

Encrypts a challenge for the security

manager.

Ÿ

Combines the challenges to generate the

shared key.

Ÿ

Sends the challenge along with

authentication information using the new

shared key.

Ÿ

Broadcasts the information necessary to

synchronize the piconet (no security included

in this message).

Ÿ

Verifies the authenticity of the device's

identifying data and determines whether the

device should be allowed to join the piconet.

Ÿ

Encrypts challenge for the device using the

device's public key.

Ÿ

Sends challenge and data that the device can

use to verify the security manager's

authenticity.

Ÿ

Decrypts the challenge.

Ÿ

Combines the challenges to generate the

shared key.

Ÿ

Checks that the authentication information

verifies correctly.

This verifies the device's identity.

Ÿ

Stores the new shared key.

Ÿ

Sends back a response with authentication

information using the shared key.

Ÿ

Checks that the authentication information

verifies correctly.

Ÿ

Stores the new shared key.

This verifies the security manager's

identity.

After the completion of mutual authentication, the payload protection seed is used to generate the payload protection keys. These keys are used to provide confidentiality and integrity protection on all WPAN data.

9.2.2 Distribute Key Protocol

The security manager may need to update the piconet protection keys periodically for security reasons. This may be due to a change in the group membership or some other reason that is implementation specific. When this occurs, the security manager may send the new key to each device using the shared secret key agreed upon in the authentication protocol. The security manager needs to store the symmetric keys shared with each device in the piconet in order to distribute a new key, but it does not need to store the public keys of these devices. Each device (other than the PNC) need only store the symmetric keys it shares with the PNC.

[image: image8.wmf]Ÿ

Decrypts the seed and verifies that it is

authentic.

Device

Security Manager

Ÿ

Sends an integrity-protected

acknowledgement indicating that the seed

has been received.

Security manager selects a seed that is used to

generate the new payload protection keys.

Ÿ

Encrypts the seed with integrity protection

using the keys it shares with the device.

Ÿ

Sends the encrypted and integrity protected

key.

9.2.3 Key Request Protocol

When the security manager updates the piconet protection key, the device may not have received the new key properly when it wants to start sending or receiving data. When this occurs, the device may request the current key from the security manager.

[image: image9.wmf]Ÿ

Sends an integrity-protected request key

command using the shared integrity key

between the device and the security

manager.

Device

Security Manager

Ÿ

Decrypts the seed and verifies that it is

authentic.

Ÿ

Checks that the message is authentic.

Ÿ

Encrypts the seed with integrity protection

using the keys it shares with the device.

Ÿ

Sends the encrypted and integrity protected

key.

9.2.4 Data Protection

Data in the piconet is protected by payload protection keys that provide both privacy and integrity (source authentication comes along with the integrity check). Each data message that is protected has a header that includes an identifier of the key that is being used, the source and destination addresses, the data encrypted with the encryption key and a message authentication code using the integrity key. These keys are derived from the payload protection seed that is generated by the security manager.

[image: image10.wmf]Ÿ

Encrypts the data with integrity protection

using the keys it shares with the other

device.

Ÿ

Sends the encrypted and integrity protected

data.

Device

Receiving Device

Ÿ

Decrypts the data and verifies that it is

authentic.

9.3 Notation

We use the following notation to describe specific implementations of the 802.15.3 protocols.

	Symbol
	Meaning

	ID_D
	The unique identifying name for the device.

	ID_SM
	The unique identifying name of the security manager.

	PKObj_D
	Device’s public key object (used to transmit Pub_D and build trust in the key).

	Pub_D
	Device's public key (used to encrypt challenges from security manager).

	Pr_D
	Device’s private key (used to decrypt challenges from security manager).

	PKObj_SM
	Security manager’s public key object (used to transmit Pub_SM and build trust in the key) .

	Pub_SM
	Security manager’s public key (used to encrypt challenges from devices).

	Pr_SM
	Security manager’s public key (used to decrypt challenges from devices).

	C1
	Challenge from device to security manager.

	C2
	Challenge from security manager to device.

	OID
	Object identifier of the cipher suite in use.

	SSID_D
	Unique security session identifier for the seed Seed_D.

	SSID_G
	Unique security session identifier for the seed Seed_G.

	Enc_D
	The encryption key shared between device D and the security manager.

	Int_D
	The integrity key shared between device D and the security manager.

	Seed_G
	The seed used to generate the encryption and integrity group payload protection keys.

	Enc_G
	The encryption key used for group payload privacy.

	Int_G
	The integrity key used for group payload integrity protection.

	seq_num_SM
	An 8-byte sequence number for the number of messages sent by the security manager using Enc_D.

	seq_num_D
	An 8-byte sequence number for the number of messages sent by the device using Enc_D.

	PP(h, m, K1, K2)
	Payload protection on the header h and message m using the encryption key K1 and the integrity key K2.

	Enc(m, K)
	Public-key encryption of the message m using the public key K.

	SymE(m, Enc)
	Symmetric encryption of the message m using the symmetric key Enc.

	SymI(m, Int)
	Symmetric integrity protection (message authentication code) using the symmetric key Int.

	H(m)
	Hash of the message m.

	||
	Concatenation.

	Key(m)
	The conversion of m to a symmetric key.

	KeyPurpose
	The numerical representation of the use for which the key will be used.

	TimeToken
	A strictly increasing fresh value transmitted in each beacon.

	AReq
	Authentication request header.

	CReq
	Challenge request header.

	CRes
	Challenge response header.

	ARes
	Authentication response header.

	KUReq
	Key update request header.

	KURes
	Key update response header.

	KRReq
	Key request header.

	KRRes
	Key request response header.

	SDH
	Secure Data Header.

	BH
	Beacon Header.

	finished1
	Shorthand notation for the hash of the protocol up to the first point with the shared secrets.

	finished2
	Shorthand notation for the hash of the protocol up to the second point with the shared secrets.

9.4 Protocol Details

The following protocol details include all cryptographic components and headers for the commands. The headers should be interpreted as being headers in the 802.15.3 WPAN command frames. In addition, each element should be interpreted as being packed as an information element including type and length as specified in section XXX. The algorithm choices for each operation in the protocols are specified in section XXX.

The states described refer to a single relationship, rather than an overall state for the device. Therefore it is assumed that if both peer-to-peer relationships and piconet-wide relationships are used, the device can either behave in a multi-threaded fashion or maintains the different states through information stores in the MAC information base.

9.4.1 Authentication and Key Establishment

Setup

	Symbol
	Initial Owner

	
	Device
	Security Manager

	PKObj_D
	
	–

	Pr_D
	
	–

	ID_D
	
	–

	Verification information for Pub_SM and ID_SM
	
	–

	PKObj_SM
	–
	

	Pr_SM
	–
	

	ID_SM
	–
	

	Verification information for Pub_D and ID_D
	–
	

	OID
	–
	

Capabilities

The cryptographic functionality required to implement this protocol is:

	Functionality
	Required

	
	Device
	Security Manager

	Public-key verification
	
	

	Public-key encryption
	
	

	Public-key decryption
	
	

	Symmetric message authentication code
	
	

Note:
Both devices must have some method for determining whether to trust each other’s public keys or not. This is generically called Public-key "verification" above. This will probably either require a public-key signature verification and an access control list (ACL) check or a context check and an ACL check.

In this protocol, the device and the security manager each authenticate each other, agree on a secret (symmetric) key between the two of them and the device obtains the group payload protection keys.

Protocol

[image: image11.wmf]Ÿ

Device sends the following to the Security

Manager: AReq, ID_D, PKObj_D.

Device

Security Manager

Ÿ

Verifies PKObj_SM and obtains Pub_SM.

Ÿ

Decrypts C2 using Pr_D.

Ÿ

Generates random C1.

Ÿ

Generates Enc_D and Int_D using the

formulas:

Enc_D = Key(H(C1||C2||0x00))

Int_D = Key(H(C1||C2||0x01)

Ÿ

Security Manager verifies PKObj_D and

obtains Pub_D.

Ÿ

Selects a unique SSID_D.

Ÿ

Generates random C2.

Ÿ

Encrypts C2 with Pub_D.

Ÿ

Decrypts C1 using Pr_SM.

Ÿ

Generates Enc_D and Int_D using the

formulas:

Enc_D = Key(H(C1||C2||0x00))

Int_D = Key(H(C1||C2||0x01))

Ÿ

Checks message authentication code using

Int_D.

Ÿ

Generates message authentication code on

entire protocol up to the current heading using

Int_D.

Ÿ

Sets seq_num_SM = 0;

Sets seq_num_D = 0.

Ÿ

Checks message authentication code .

Ÿ

Sets seq_num_SM = 0;

Sets seq_num_D = 0.

 AReq, ID_D, PKObj_D

 CReq, OID, SSID_D,

ID_SM, PKObj_SM,

Enc(C2, Pub_D)

Ÿ

Encrypts C1 using Pub_SM.

Ÿ

Generates message authentication code on

entire protocol up to this point using Int_D.

CRes, Enc(C1, Pub_SM),

SymI(AReq||ID_D||PKObj_D

||CReq||SSID_D||OID||ID_S

M||PKObj_SM||Enc(C2,

Pub_D)||CRes||Enc(C1,

Pub_SM), Int_D) = finished1

 ARes,

SymI(AReq||ID_D||PKObj_D

||CReq||SSID_D||OID||ID_S

M||PKObj_SM||Enc(C2,

Pub_D)||CRes||Enc(C1,

Pub_SM)||finished1||ARes||

C2||C1) = finished2

9.4.1.1 Device States

Figure 1 shows the states and state transitions that apply to the device during the authentication and key exchange protocol; Table 3 describes the device states.

[image: image12.wmf]Unauthenticated

State D0.0

Waiting for

Challenge

State D0.1

D0.2

Checking

Challenge

State D0.2

 D0.4

 D0.6

Waiting for

Authentication

Response

State D0.3

Checking

Authentication

Response

State D0.4

D0.8

D0.3

D0.5

D0.7

Send

Authentication

Request

Timeout and Failure

Sent or Failure

Message Received

Challenge

Received

ID/Public-key

Rejected or Failed

Decryption and

Failure Sent

 Challenge

Accepted and

Response Sent

Timeout and Failure Sent

or Failure Message

Received

Authentication

Failed and Failure

Sent

Authentication

Response

Received

D0.9

Any State

D0.1

Valid

Disassociation

Request Sent or

Received

Figure 1 – Authentication State Diagram – Device Perspective, Level 0

Table 3 – Authentication State – Device States

	State
	Name
	Description
	Action

	D0.0
	Unauthenticated
	Default state for the device; this is also the state returned to if a failure occurs during the authentication protocol or upon disassociation.
	Device ignores all security-related commands except the following:

· disassociate

· PNC handover

· distribute info

The only state a device can transition to is the "Waiting for Challenge" state.

	D0.1
	Waiting for Challenge
	Device waits for challenge from security manager.
	Device ignores all security-related commands except the following:

· authentication error

· challenge request

· disassociate

· PNC handover

· distribute info

	D0.2
	Checking Challenge
	Device processes the challenge sent by security manager.
	Device verifies that the public key and ID hash to the stored value and decrypts the challenge.

· If both succeed, the device generates own challenge and proof and sends a challenge response command to security manager.

· If either, or both, do not succeed, the device aborts the authentication process and returns the appropriate error message.

This is a transient and processing-only state wherein the device ignores all commands.

	D0.3
	Waiting for Authentication Response
	Device waits for an authentication response from security manager.
	Device ignores all security-related commands except the following:

· authentication error

· authentication response

· disassociate

· PNC handover

· distribute info

	D0.4
	Checking Authentication Response
	Device processes authentication response from security manager.
	Device verifies message authentication code calculated on the authentication protocol.

· If this passes, the device enters secure mode.

· If this does not pass, the device aborts the authentication process and returns the appropriate error message.

9.4.1.2 Device State Transitions

Figure 1 above shows the device states during the authentication and key exchange protocol. This section describes the processes and causes of the state transitions.

	State
	Transition
	Description

	D0.1
	Any State to Unauthenticated
	At any time during the relationship, the device may choose to disassociate or the security manager may send a disassociate message. If the device has the current key for the relationship, the disassociate message shall be protected. When the disassociation message is sent or received, the relationship key is securely deleted and the device returns to the unauthenticated state.

	D0.2
	Unauthenticated to Waiting for Challenge
	When a device is in the unauthenticated state, it may decide to attempt to authenticate in a piconet or with a peer. For instance, this can occur after the device has associated or directly after a PNC handover.

The device generates and sends an authentication request to the current security manager and starts a counter to determine how long it will wait for the challenge command. When this message has been sent and the counter started, the device performs this transition to the waiting for challenge state.

	D0.3
	Waiting for Challenge to Unauthenticated
	When a device is in the waiting for challenge state and receives an authentication error message or has not received a challenge before the timeout, it sends an appropriate authentication error message (if applicable) and performs this transition to the unauthenticated state.

Note that the authentication error is not protected by any key.

	D0.4
	Waiting for Challenge to Checking Challenge
	When a device is in the waiting for challenge state and receives a challenge from the security manager, it determines if the message is formatted correctly and comes from the correct device. If the challenge is formatted correctly, it performs this transition to the checking challenge state.

Note that the challenge request is not protected by any key.

	D0.5
	Checking Challenge to Unauthenticated
	When a device is in the checking challenge state and determines that the received challenge should be rejected, it sends an appropriate authentication error message and performs this transition to the unauthenticated state.

	D0.6
	Checking Challenge to Waiting for Authentication
	When a device is in the checking challenge state and determines that the challenge passes the checks, it generates and sends a challenge response for the security manager. In addition, it starts a counter to determine how long it will wait for the authentication response command and performs this transition to the waiting for authentication state.

	D0.7
	Waiting for Authentication to Unauthenticated
	When a device is in the waiting for authentication state and receives an authentication error or has not received an authentication response before the timeout, it sends an appropriate authentication error message (if applicable) and performs this transition to the unauthenticated state.

Note that the authentication error is not protected by any key.

	D0.8
	Waiting for Authentication to Checking Authentication Response
	When a device is in the waiting for authentication state and receives an authentication response from the security manager, it determines if the message is formatted correctly and comes from the correct device. If the challenge is formatted correctly, it performs this transition to the checking authentication response state.

Note that the authentication response is not protected by any key.

	D0.9
	Checking Authentication Response to Unauthenticated
	When a device is in the checking authentication response state and determines that the authentication response should be rejected, it sends an appropriate authentication error message and performs this transition to the unauthenticated state.

9.4.1.3 Security Manager States

The security manager maintains a separate authentication state for each of the devices it is willing to authenticate with. While the security manager is authenticating a specific device, it may perform other operations unrelated to the authentication protocol. In particular, the PNC may authenticate multiple devices in separate threads at the same time. Figure 2 shows the states and state transitions that apply to the security manager during the authentication and key exchange protocol.

[image: image13.wmf]Startup Mode

State SM0.0 or

Secure Mode

State SM1.1

Checking

Authentication

Request

State SM0.1

 SM0.1

Waiting for

Challenge

Response

State SM0.2

 SM0.3

Checking

Challenge

Response

State SM0.3

 SM0.5

SM0.7

SM0.2

SM0.4

SM0.6

Authentication

Request Received

ID/Public Key

Rejected

Authentication

Request Accepted

and Challenge Sent

Timeout or Failure

Message Received

Challenge

Response Received

Decryption or

Authentication

Failed and Failure

Response Sent

Authentication

Accepted and

Response Sent

Critical

Section

Figure 2 – Authentication State Diagram – Security Manager Perspective, Level 0

	State
	Name
	Description
	Action

	SM0.0
	Startup Mode
	Initial state for the security manager when it starts any group.

The security manager has not yet sent keys to any other device in the group.

· If the relationship is peer-to-peer, this state shall be transitioned out of immediately following successful authentication.

· If the security manager is acting as the first PNC of the secure piconet, the security manager can choose to authenticate several devices before distributing the group keys or it may choose to transition out of this state after the first successful authentication.

· If the security manager has just completed PNC handover, the device should attempt to authenticate each device on the list of (previously) authenticated devices before transitioning out of this state in order to prevent interruption of service.
	Security manager ignores all security-related commands from the device except the following:

· disassociate

· authentication request

· distribute info commands

The only state, not in a critical section, the security manager can transition to is the "Pending Key" state.

	SM0.1
	Checking Authentication Request
	A processing-only state in which the device is processing an authentication request.

This state is in the critical section and should be considered independent of any non-critical states.
	Security manager ignores all commands from the device.

Security manager checks that the public key and ID hash to the correct value.

· If so, the security manager shall send a challenge request command to the device.

· If not, the security manager shall return the appropriate authentication error message.

	SM0.2
	Waiting for Challenge Response
	Security manager has sent a challenge to the device and is waiting for a challenge response command.

This state is in the critical section and should be considered independent of any non-critical states.
	Security manager ignores all security-related commands from the device except the following:

· challenge response

· authentication error

· authentication response

· disassociate

· distribute info

	SM0.3
	Checking Challenge Response
	A processing-only state in which the security manager is processing a challenge response command.
	Security manager decrypts the challenge and checks the device authentication.

· If these checks succeed, the security manager sends an authentication response to the device.

· If not, the security manager returns the appropriate error message and aborts the authentication protocol.

Security manager ignores all commands from the device.

9.4.1.4 Security Manager State Transitions

Figure 2 shows the security manager states during the authentication and key exchange protocol. This section describes the processes and causes of the state transitions.

	State
	Transition
	Description

	SM0.1
	Startup Mode or Secure Mode to Checking Authentication Request
	When a security manager is in the startup mode or secure mode state, it may receive an authentication request from a device.

If this request is properly formatted and the security manager is willing to authenticate devices, it accepts the command and performs this transition to the checking authentication request state.

	SM0.2
	Checking Authentication Request to Startup Mode or Secure Mode
	When a security manager is in the checking authentication request state and determines that the authentication request should be rejected, it sends an authentication failure message to the device and performs this transition to return the device to the state it entered the protocol from.

If the security manager is performing multi-threading, then this transition may be thought of simply as aborting the authentication thread with this device.

	SM0.3
	Checking Authentication Request to Waiting for Challenge Response
	When a security manager is in the checking authentication request state and determines that the device is authorized to attempt to authenticate to the piconet, it sends a challenge request to the device and starts a counter to determine how long it will wait for the challenge response command.

When this message has been sent and the counter started, the device performs this transition to the waiting for challenge response state.

	SM0.4
	Waiting for Challenge Response to Startup Mode or Secure Mode
	When a security manager is in the waiting for challenge response state and receives an authentication error message or has not received a challenge response before the timeout, it sends an authentication error message (if applicable) and performs this transition to the state it entered the protocol from.

Note that the authentication error message is not protected by any key.

	SM0.5
	Waiting for Challenge Response to Checking Challenge Response
	When a security manager is in the waiting for challenge response state and receives a properly formatted challenge response command, the security manager accepts the command for processing and performs this transition to the checking challenge response state.

	SM0.6
	Checking Challenge Response to Startup Mode or Secure Mode (1)
	When a security manager is in the checking challenge response state and determines that the challenge response should be rejected, it sends an authentication failure message to the device and performs this transition to return the device to the state it entered the protocol from.

If the security manager is performing multi-threading, then this transition may be thought of simply as aborting the authentication thread with this device.

	SM0.7
	Checking Challenge Response to Startup Mode or Secure Mode (2)
	When a security manager is in the checking challenge response state and determines that the challenge response is valid, it sends an authentication response command, stores the agreed on key in its table and performs this transition to the state it entered the protocol from.

9.4.1.5 Combined Authentication States

The following figure shows the states of both entities during the authentication protocol and the transitions between states.

[image: image14.wmf]Unauthenticated

State D0.0

Waiting for

Challenge

State D0.1

Checking

Challenge

State D0.2

Waiting for

Authentication

Response

State D0.3

Checking

Authentication

Response

State D0.4

Authentication

Request Command

Challenge Request

Command

 Challenge

Accepted and

Response Sent

Authentication

Response

Received

Checking

Authentication

Request

State SM0.1

Waiting for

Challenge

Response

State SM0.2

Checking

Challenge

Response

State SM0.3

Authentication

Request Accepted

and Challenge Sent

Startup Mode

State SM0.0 or

Secure Mode

State SM1.1

Challenge Response

Command

DEVICE

SECURITY MANAGER

Authentication

Request Sent

Challenge

Received

Challenge

Response Received

Authentication

Request Accepted

and Challenge Sent

Startup Mode

State SM0.0 or

Secure Mode

State SM1.1

Authentication

Accepted and

Response Sent

Authentication Response

Command

Secure Group

Membership

State D1.0

Authentication

Response

Accepted

Figure XX―Successful authentication protocol run

9.4.2 Beacon Protection

In a secure WPAN, the security manager shall use the current group data integrity key to provide integrity protection on the beacon. In addition, each beacon shall include a strictly increasing time token counter that is used by the devices to guarantee freshness. This time token is used in all of the following protocols except for the authentication and key establishment protocol.

Setup

	Symbol
	Initial Owner

	
	Device
	Security Manager

	Int_G
	
	

	SSID_G
	
	

	TimeToken
	–
	

Capabilities

The cryptographic functionality required to implement this protocol is:

	Functionality
	Required

	
	Device
	Security Manager

	Public-key verification
	–
	–

	Public-key encryption
	–
	–

	Public-key decryption
	–
	–

	Symmetric message authentication code
	
	

The security manager should initiate this protocol each time it transmits a beacon.

Protocol

[image: image15.wmf]Ÿ

Checks time token.

Ÿ

Checks message authentication code using

Int_G.

Ÿ

Sets current time token to received value.

Device

Security Manager

Ÿ

Generates or retrieves the current integrity key

Int_G.

Ÿ

Generates message authentication code on

beacon using Int_G.

BH, SSID_G,

TimeToken,

SymI(BH||SSID_G||

TimeToken, Int_D)

9.4.3 Key Update Protocol

Setup

	Symbol
	Initial Owner

	
	Device
	Security Manager

	Enc_D
	
	

	Int_D
	
	

	SSID_D
	
	

	TimeToken
	
	

	seq_num1
	
	

	seq_num2
	
	

	seed_G (for current key)
	–
	

Capabilities

The cryptographic functionality required to implement this protocol is:

	Functionality
	Required

	
	Device
	Security Manager

	Symmetric decryption
	
	–

	Symmetric encryption
	–
	

	Symmetric message authentication code
	
	

The security manager should initiate this protocol with each device with their respective shared keys whenever the key is updates.

Protocol

[image: image16.wmf]Device

Security Manager

Ÿ

Checks time token.

Ÿ

Decrypts seed_G using Enc_D.

Ÿ

Checks message authentication code using

Int_D.

Ÿ

Checks that received sec_num1 is greater

than stored sec_num1 and replaces

seq_num1 with received value.

Ÿ

Optionally computes Enc_G and Int_G

using the formulas:

Enc_G = Key(H(seed_G||0))

Int_G = Key(H(seed_G||1))

Ÿ

Increments seq_num2.

Ÿ

Generates a message authentication code

on the response using Int_D .

Ÿ

Generates or retrieves the new seed_G.

Ÿ

Selects a device that is authenticated.

Ÿ

Increments seq_num1.

Ÿ

Encrypts group seed using Enc_D.

Ÿ

Generates message authentication code on

message using Int_D.

Ÿ

Checks time token.

Ÿ

Checks that seq_num2 is greater than stored

seq_num2 and replaces seq_num2 with

received value.

Ÿ

Checks the message authentication code on

the message.

KUReq, SSID_D,

TimeToken,

KeyPurpose, seq_num1,

SSID_G,

SymE(seed_G, Enc_D),

SymI(KUReq||SSID_D||

TimeToken||KeyPurpose|

|seq_num1||SSID_G||

SymE(seed_G, Enc_D),

Int_D)

KURes, SSID_D,

TimeToken, KeyPurpose,

seq_num2, SSID_G,

SymI(KURes||SSID_D||Time

Token||KeyPurpose||

seq_num2||SSID_G, Int_D)

9.4.4 Key Request Protocol

Setup

	Symbol
	Initial Owner

	
	Device
	Security Manager

	Enc_D
	
	

	Int_D
	
	

	SSID_D
	
	

	TimeToken
	
	

	seq_num1
	
	

	seq_num2
	
	

	seed_G (for current key)
	–
	

Capabilities

The cryptographic functionality required to implement this protocol is:

	Functionality
	Required

	
	Device
	Security Manager

	Symmetric decryption
	
	–

	Symmetric encryption
	–
	

	Symmetric message authentication code
	
	

The device should initiate this protocol with the security manager if it is already authenticated, but does not have the current payload protection key.

Protocol

[image: image17.wmf]Device

Security Manager

Ÿ

Checks the time token.

Ÿ

Checks the message authentication code

using Int_D.

Ÿ

Checks that seq_num1 is greater than

stored seq_num1 and replaces seq_num1

with new value.

Ÿ

Decrypts seed_G using Enc_D.

Ÿ

Optionally computes Enc_G and Int_G

using the formulas:

Enc_G = Key(H(seed_G||0))

Int_G = Key(H(seed_G||1))

Ÿ

Checks the time token.

Ÿ

Checks the message authentication code

using Int_D.

Ÿ

Checks that seq_num2 is greater than stored

seq_num2 and replaces seq_num2 with new

value.

Ÿ

Increments seq_num1.

Ÿ

Retrieves the seed_G.

Ÿ

Generates encrypted group seed.

Ÿ

SymE(seed_G, Enc_D).

Ÿ

Generates message authentication code on

response using Int_D.

KRReq, SSID_D,

TimeToken,

KeyPurpose, seq_num2,

SymI(KRReq||SSID_D||

TimeToken||KeyPurpose

||seq_num2, Int_D)

KRRes, SSID_D,

TimeToken, KeyPurpose,

SSID_G, seq_num1,

SymE(seed_G, Enc_D),

SymI(KRRes||SSID_D||Time

Token||KeyPurpose||

SSID_G||seq_num1||

SymE(seed_G, Enc_D),

Int_D

Ÿ

Increments seq_num2.

Ÿ

Generates message authentication code on

request using Int_D.

Device States

Figure 3 shows the states and state transitions that apply to the device during the key update and key request protocols.

[image: image18.wmf]Unuthenticated

State D0.0

Checking

Authentication

Response

State D0.5

D1.1

D1.3

Waiting for Key

Response

State D1.1

D1.4

D1.2

Authentication

Response Accepted

Disassociate Command Sent

or Received or New PNC

D1.6

Unknown SSID in

Beacon Received

and Key Request

Sent

Disassociate

Command Sent or

Received

Valid Key Update

Received and

Acknowledgement

Sent

D1.5

Valid Key Response

or Valid Beacon

Received or

Timeout

Valid Key Update

Received and

Acknowledgement

Sent

D1.7

Secure Group

Membership

State D1.0

D2.1

Waiting for Device

Info

State D2.0

PNC Handover Command

Received and Device Info

Request Sent

D2.2

Startup Mode

State SM0.0

Timeout or Device

Info Response

Received

Figure 3 – Key Management State Diagram – Device Perspective, Levels 1-2

	State
	Name
	Description
	Action

	D1.0
	Secure Group Membership
	State in which the device is authenticated and may actively participate in the secure piconet.
	Device may accept secure data communications, secure disassociate commands, distribute info commands, PNC handover commands and distribute key requests.

	D1.1
	Waiting for Key Response
	Device is waiting to receive a key and is unable to verify the validity of the beacon.
	Device ignores all commands except the following:

· distribute key

· distribute info commands

· key response

· disassociate

	D2.0
	Waiting for Device Info
	Device has been selected as the next PNC and is waiting to receive information from the old PNC about the authenticated devices in the piconet before the transition to PNC.
	Device ignores all commands except a secure device information response command.

9.4.4.1 Device State Transitions

Figure 3 shows the device states relating to key management and PNC handover. This section describes the processes and causes of the state transitions.

	State
	Transition
	Description

	D1.1
	Checking Authentication Response to Secure Group Membership
	When a device is in the checking authentication response state and determines that the authentication response should be accepted, it sends an authentication acknowledgement to the security manager and performs this transition to the secure group membership state.

	D1.2
	Secure Group Membership to Unauthenticated
	When a device is in the secure group membership state and receives a disassociate command from the PNC or the DME or receives a new PNC command, the device securely deletes the shared keys with the security manager and performs this transition to the unauthenticated state.

	D1.3
	Secure Group Membership to Waiting for Key Response
	When a device is in the secure group membership state and receives a beacon with a security session ID that is unfamiliar to it, it sends a key request command to the security manager, starts a counter to determine how long it will wait for the key response command and performs this transition to the waiting for key response state.

	D1.4
	Waiting for Key Response to Unauthenticated
	When a device is in the waiting for key response state and receives a disassociate command from the security manager or the DME, the device sends the disassociate command (if applicable), securely deletes its shared keys with the security manager and performs this transition to the unauthenticated state.

	D1.5
	Waiting for Key Response to Secure Group Membership (1)
	When a device is in the waiting for key response state and times out, receives a valid key response command or receives a beacon with a recognizable security session ID, the device updates its current key (if applicable) and performs this transition to the secure group membership state.

	D1.6
	Waiting for Key Response to Secure Group Membership (2)
	When a device is in the waiting for key response state and receives a valid distribute key command from the security manager, the device updates its current key and performs this transition to the secure group membership state.

	D1.7
	Secure Group Membership to Secure Group Membership
	When a device is in the secure group membership state and receives a valid distribute key command, the device shall update the key, send a distribute key response command and remain in the secure group membership state.

	D2.1
	Secure Group Membership to Waiting for Device Info
	When a device that is an alternate PNC is in secure group membership mode and receives a secure PNC handover command, it sends a device information request command for the whole piconet to the PNC (security manager), sets the timeout to be the appropriate value and performs this transition to the waiting for device info state.

	D2.2
	Waiting for Device Info to Startup Mode
	When a device is in the waiting for device info state and receives a device information response command or times out, the device shall update its device information table (if applicable) and performs this transition to the startup mode, which is a security manager state.

At this point, the device takes on the role of security manager and PNC.

9.4.4.2 Security Manager States

Figure 4 shows the states and state transitions that apply to the security manager during the key update and key request protocols.

[image: image19.wmf]Secure Mode

State SM1.1

SM1.2

Pending Key

State SM1.0

Valid Key Request

Received and Key

Response Sent

SM1.3

Secure Mode

State SM1.1

Key Updates Sent

and Key Activated

SM1.4

Valid Disassociation

Sent or Received,

Authentication

Completed or Key

Expired

Startup Mode

State SM0.0

SM1.1

Startup Mode

Completed

SM2.1

SM2.3

Unauthenticated

State D0.0

PNC Handover

Initiated

Timeout

Device Information

Request Received

and Device

Information

Response Sent

SM2.2

PNC Handover

Pending

State SM2.0

Figure 4 – Key Management State Diagram – Security Manager Perspective, Levels 1-2

	State
	Name
	Description
	Action

	SM1.0
	Pending Key
	Security manager generates new group keys and sends distribute key commands to each of the authenticated devices in the piconet.

When all of the key updates have been sent (which should occur very rapidly), the security manager will transition to the secure mode state.
	Security manager shall accept all valid commands.

	SM1.1
	Secure Mode
	Default state for the security manager in a secure piconet.
	Security manager shall accept all valid commands.

	SM2.0
	PNC Handover Pending
	PNC has already sent a PNC handover command and is waiting for the timeout to complete the PNC handover.

After the timeout, the security manager will transition to the unauthenticated state, which is a device state.
	Security manager shall only accept device information request commands from the next PNC.

9.4.4.3 Security Manager State Transitions

Figure 4 shows the security manager states relating to key management and PNC handover. This section describes the processes and causes of the state transitions.

	State
	Transition
	Description

	SM1.1
	Startup Mode to Pending Key (1)
	When a security manager is in startup mode and completes all of the authentication protocols for the startup process, the security manager performs this transition to the pending key state.

	SM1.2
	Pending Key to Secure Mode
	When a security manager is in pending key state, has generated a new group key for the security relationship and has sent distribute key commands to each of the authenticated devices in the group, the security manager shall change the beacon to include the security session key of the new key (if it is the PNC) and perform this transition to the secure mode state.

	SM1.3
	Secure Mode to Pending Key
	When a security manager is in secure mode and a device is disassociated, a new device is authenticated or upon instruction by the DME, the security manager shall prepare to update the key and perform this transition to the pending key state.

	SM1.4
	Secure Mode to Secure Mode
	When the security manager is in secure mode and receives a valid key request command from an authenticated device, the security manager shall send a key response command to the device and remain in the secure mode state.

	SM2.1
	Secure Mode to PNC Handover Pending
	When the PNC is in secure mode and receives a command from the DME to perform PNC handover, the PNC sends a PNC handover command to an appropriate device and performs this transition to the PNC handover pending state.

	SM2.2
	PNC Handover Pending to PNC Handover Pending
	When the PNC is in PNC handover pending mode and receives a valid device information request from the next PNC, the security manager shall send a device information response and remain in the PNC handover pending state.

	SM2.3
	PNC Handover Pending to Unauthenticated
	When the PNC is in PNC handover pending mode and the specified time for PNC handover completion has occurred, the PNC ceases sending beacons and performs the transition to the unauthenticated state, which is a device state.

9.4.4.4 Combined Key Request States

The following figure shows the states of both entities during the key request protocol and the transitions between states.

[image: image20.wmf]Waiting for Key

Response

State D2.0

Secure Group

Membership

State D1.0

Key Response

Command

Secure Mode

State SM1.1

Secure Mode

State SM1.1

SECURITY MANAGER

Key Response

Accepted

DEVICE

Key Request

Accepted (No State

Change)

Secure Group

Membership

State D1.0

Unknown SSID

in Beacon

Key Request

Command

Figure XX―Successful key request protocol run

9.4.4.5 Combined Key Distribution States

The following figure shows the states of both entities during the key distribution protocol and the transitions between states.

[image: image21.wmf]Secure Group

Membership

State D1.0

Secure Group

Membership

State D1.0

Key Update Command

Key Pending

State SM1.0

Secure Mode

State SM1.1

Startup Mode

Completed

Secure Mode

State SM1.1

Key Update

Acknowledgement

SECURITY MANAGER

Key Update

Accepted (No

State Change)

Key Activated

DEVICE

Startup Mode

State SM0.0

Key Change

Pending

Figure XX―Successful key distribution protocol run

9.4.4.6 Combined PNC Handover States

The following figure shows the states of both entities during the PNC handover protocol and the transitions between states. Other devices transition to the unauthenticated state after the device ID in the beacon is modified to indicate the new PNC.

[image: image22.wmf]Secure Group

Membership

State D1.0

Waiting for Device

Information

Response

State D3.0

Device Information

Request Command

PNC Handover

Pending

State SM2.0

Secure Mode

State SM1.1

SECURITY MANAGER

(CURRENT PNC)

Device

Information

Request Sent

DEVICE (NEXT PNC)

PNC Handover

Initiated

Secure Group

Membership

State D1.0

Prepare Device

Information

Request (No

State Change)

PNC Handover

Command

PNC Handover

Pending

State SM2.0

Device Information

Request Accepted

(No State Change)

Device Information

Response

Device

Information

Received

Startup Mode

State SM0.0

Timeout

Unauthenticated

State D0.0

Figure XX―Successful PNC Handover

9.4.5 Data Protection Protocol

Setup

	Symbol
	Initial Owner

	
	Sending Device
	Receiving Device

	data
	
	–

	seed_G
- OR -
Enc_G AND
Int_G, SSID_G, TimeToken
	
	

Capabilities

The cryptographic functionality required to implement this protocol is:

	Functionality
	Required

	
	Sending Device
	Receiving Device

	Symmetric decryption
	–
	

	Symmetric encryption
	
	–

	Symmetric message authentication code
	
	

The sending device may be acting as a normal device or a security manager for the particular key. In either case, the key is mutually shared between all members of the group.

Protocol

[image: image23.wmf]Device

Security Manager

Ÿ

Retrieve or calculate Enc_G and Int_G as:

Enc_G = Key(H(seed_G||0))

Int_G = Key(H(seed_G||1))

Ÿ

Checks the time token.

Ÿ

Decrypt data using Enc_G.

Ÿ

Check message authentication code using

Int_G.

SDH, SSID_G,

TimeToken,

SymE(data, Enc_G),

SymI(SDH||SSID_G||

TimeToken||SymE(data,

Enc_G), Int_G)

Ÿ

Retrieve or calculate Enc_G and Int_G as:

Enc_G = Key(H(seed_G||0))

Int_G = Key(H(seed_G||1))

Ÿ

Encrypts data using Enc_G.

Ÿ

Computes message authentication code on

message using Int_G.

9.4.5.1 Device States

Figure 5 shows the states and state transitions that apply to the device when it receives secure data packets.

[image: image24.wmf]Any State

Checking Message

State DR0.0

DR0.2

DR0.3

DR0.1

Secure Data

Message Received

Unknown or Invalid Key or

Failed Integrity Check and

Data Rejected

Integrity Check

Successful and Data

Accepted

Figure 5 – Secure Data Reception State Diagram – Device Perspective, Level 0

	State
	Name
	Description
	Action

	DR0.0
	Checking Message
	A processing-only state in which the device processes the data message to determine what to do with it.

The device checks that a valid time token is in the data and that the MAC verifies with a valid key.

· If any of these checks fail, the data is discarded and the device returns to the previous state.

· If all of the checks pass, the data is accepted as secure data and the device returns to the previous state.
	Device rejects all commands.

9.4.5.2 Device State Transitions

Figure 5 shows the device states and transitions relating to secure data reception. This section describes the processes and causes of the state transitions.

	State
	Transition
	Description

	DR0.1
	Any State to Checking Message
	At any time while a device is associated with a security manager and possesses payload protection keys, the device may receive a secure data message.

If the message is properly formatted and contains a valid time token and a known key, the device begins processing of the data and performs the transition to the checking message state.

	DR0.2
	Checking Message to Any State (1)
	When a device in the checking message state determines that the message authentication code on the data is not valid, the data is rejected by the device and the device transitions back to the previous state.

	DR0.3
	Checking Message to Any State (2)
	When a device in the checking message state determines that the message authentication code on the data is valid, the data is decrypted and accepted by the device and the device transitions back to the previous state.

9.4.5.3 Security Manager States

Figure 6 shows the states and state transitions that apply to the security manager when it receives secure data packets:

[image: image25.wmf]Any State

Checking Message

State SR0.0

SR0.3

SR0.2

SR0.1

Secure Data

Message Received

Invalid Key or Failed Integrity

Check and Data Rejected

Integrity Check

Successful. Accept

Data and Return to

Previous State

Figure 6 – Secure Data Reception State Diagram – Security Manager Perspective, Level 0

	State
	Name
	Description
	Action

	SR0.0
	Checking Message
	A processing-only state in which the security manager processes the data message to determine what to do with it.

The device checks that the correct time token is in the data and that the MAC verifies with the current key.

· If any of these checks fail, the data is discarded and the security manager returns to the previous state.

· If all of the checks pass, the data is accepted as secure data and the device returns to the previous state.
	Security manager rejects all commands.

9.4.5.4 Security Manager State Transitions

Figure 6 shows the security manager states and transitions relating to secure data reception. This section describes the processes and causes of the state transitions.

	State
	Transition
	Description

	SR0.1
	Any State to Checking Message
	At any time when there are active payload protection keys, the security manager may receive a secure data message.

If the message is properly formatted and contains the correct time token and the current key, the security manager begins processing of the data and performs the transition to the checking message state.

	SR0.2
	Checking Message to Any State (1)
	When the security manager is in the checking message state and determines that the message authentication code on the data is not valid, the data is rejected by the security manager and the security manager transitions back to the previous state.

	SR0.3
	Checking Message to Any State (2)
	When a security manager in the checking message state determines that the message authentication code on the data is valid, the data is decrypted and accepted by the security manager and the security manager transitions back to the previous state.

10 Security Considerations (for an informative annex)

10.1 Claimed Security Services

Each of the protocols defined in clause XX are designed to offer specific security services. These security services are consistent with the security services required by the 802.15.3 security model. The following sub-clauses described the security services provided by each protocol and the method implemented to provide the security service.

10.1.1 Authentication and Key Establishment Protocol

The following table specifies the security services provided by the authentication and key establishment protocol specified in clause XX along with a description of the method employed to provide the security service:

	Security Service
	Method Provided

	Verification by the security manager that the authenticating device possesses its private key
	The successful decryption of the challenge, and hence ownership of the private key is demonstrated by the proper generation of the integrity key and the computation and transmission of the integrity code on the challenge response command.

	Verification by the authenticating device that the security manager possesses its private key
	The successful decryption of the challenge, and hence ownership of the private key is demonstrated by the proper generation of the integrity key and the computation and transmission of the integrity code on the authentication response command.

	Verification by the security manager of the linkage of the following items to the current run of the protocol:

· current session ID

· current security suite

· public keys of each participating entity

· identities of each participating entity

· challenges by each participating entity
	The linkage of the items to the current run of the protocol are demonstrated by the device with the correctly formed integrity code that is computed on the items.

	Verification by the device of the linkage of the following items to the current run of the protocol:

· current session ID

· current security suite

· public keys of each participating entity

· identities of each participating entity

· challenges by each participating entity

· device's proof of ownership of private key

· current group payload protection seed

	The linkage of the items to the current run of the protocol are demonstrated by the security manager with the correctly formed integrity code that is computed on the items.

	The device obtains two-party management keys for transfer of protected commands between the security manager and the authenticating device
	The successful decryption of the challenge from the security manager and the combination of that challenge with the challenge from the device establishes the two-party management keys.

	The security manager obtains two-party management keys for transfer of protected commands between the security manager and the authenticating device
	The successful decryption of the challenge from the device and the combination of that challenge with the challenge from the security manager establishes the two-party management keys.

	Both devices initialize freshness information for messages sent using new keys by security manager and by device
	At the conclusion of the protocol, each device stores the initialized sequence numbers for the security manager and device.

10.1.2 Beacon Protection Protocol

The following table specifies the security services provided by the beacon protection protocol specified in clause XX along with a description of the method employed to provide the security service:

	Security Service
	Method Provided

	Communication of current time token to the devices in the piconet
	The PNC increments the time token for each superframe and protects it using the current group key. The integrity protection on the beacon and the storage of the previous time token allows each device to determine that the time token is fresh.

	Indication of the identity of the PNC to the devices in the piconet
	If PNC handover has not occurred, the device address of the current PNC appears in the beacon. If PNC handover has occurred, the device address of the new PNC appears in the beacon. The integrity protection on the beacon and the freshness from the time token allow each device to determine the identity of the current PNC.

10.1.3 Distribute Key Protocol

The following table specifies the security services provided by the distribute key protocol specified in clause XX along with a description of the method employed to provide the security service:

	Security Service
	Method Provided

	Privacy protection on distributed key
	The encryption of the key with the shared key encryption key ensures that the key remains private

	Integrity protection on the distributed key
	The receiving device verifies that the integrity code verifies properly and that the freshness checks succeed.

	Verification by the security manager that the device received the key
	The security manager verifies that the integrity code verifies properly and that the freshness checks succeed.

10.1.4 Key Request Protocol

The following table specifies the security services provided by the key request protocol specified in clause XX along with a description of the method employed to provide the security service:

	Security Service
	Method Provided

	Privacy protection on requested key
	The encryption of the key with the shared key encryption key ensures that the key remains private

	Integrity protection on the requested key
	The receiving device verifies that the integrity code verifies properly and that the freshness checks succeed.

10.1.5 Data Transport Protocol

The following table specifies the security services provided by the data transport protocol specified in clause XX along with a description of the method employed to provide the security service:

	Security Service
	Method Provided

	Privacy protection on the data
	The encryption of the data with the shared encryption key ensures that the key remains private

	Integrity protection on the data
	The receiving device verifies that the integrity code verifies properly and that the freshness checks succeed.

10.1.6 Identity Binding

The identity binding method to the public key is critical for the security of the authentication and key establishment protocol. The goals of the identity binding are:

· Verification by the security manager that the device public key is bound to the device identity.

· Verification by the security manager that the device identity is authorized to join the WPAN.

· Verification by the device that the security manager key is bound to the security manager identity.

Verification by the device that the security manager identity is authorized to perform the security manager role for the device.

10.2 Public Key and Identity Binding Method

The DME bears the responsibility for establishing a binding between a public key and a device’s identity.

As part of the authentication process, a device provides its public key and device ID. The security manager checks if the public key and ID are represented in its access control list (ACL). If so, the protocol continues. If not, the security manager passes the public key and ID pair to its DME and returns a failure message to the device, indicating the cause of failure.

The DME may use any method to decide if the public key and ID pair is to be trusted. This method is out of scope, but may include:

· A digital certificate.

· An analog certificate. A device manufacturer may print the device ID and a hash of the public key on the bottom of the device for the user to verify.

· Low-power transmission. Two devices may be brought into close physical proximity so they can “whisper” public keys over their radios.

· Range. The user confirms the distance between the two devices.

· Open enrollment. While located in a secure environment like a free-standing house, devices may simply trust public keys they receive over the air.

· Pre-loading. A device manufacturer selling matched devices, like the components of a home-entertainment system, may pre-load the ACLs with the IDs and public keys the system needs.

· User action. The user could push a button on both devices simultaneously.

This range of options is allowed to enable cost-effective and user-friendly applications.

Submission
Page

Daniel V. Bailey, Ari Singer, NTRU

_1077004086.vsd

_1077017884.vsd

_1077018183.vsd

_1077018235.vsd

_1077018374.vsd

_1077018078.vsd

_1077017682.vsd

_1077017759.vsd

_1077004163.vsd

_1076752836.vsd

_1076755341.vsd

_1076757745.vsd

_1076758453.vsd

_1076756659.vsd

_1076753130.vsd

_1076505442.vsd

