March, 2002
 IEEE P802.15-02/171r0

IEEE P802.15

Wireless Personal Area Networks

	Project
	IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs)

	Title
	IEEE P802-15_TG3 Security Text Recommendations

	Date Submitted
	[March 29, 2002]

	Source
	[Daniel V. Bailey, Ari Singer, William Whyte]
[NTRU]
[5 Burlington Woods

Burlington, MA 01803 USA]
	Voice:
[+1 781 418-2522]
Fax:
[+1 781 418-2532]
E-mail:
[dbailey@ntru.com]

	Re:
	802.15.3 TG3 Letter Ballot Draft D09, 02074r1P802.15_TG3-Security-CFP.doc, 02130r1P802-15_TG3-NTRU-Security-Architecture-Proposal.doc

	Abstract
	[This document offers recommended text for the ECC security algorithm suite for the 802.15.3 draft standard that matches the architecture described in 02130r1P802-15_TG3-NTRU-Security-Architecture-Proposal. The algorithm suites proposed in this document include the ECIES, SHA-256 and AES-128 algorithms as well as specifying various types of public key representations including X.509 certificates, implicit certificates and “raw” ECC public keys. The ability to trust public keys is established by the DME. The binding between the ID and the public key are verified by the MLME.]

	Purpose
	[This document is intended as a proposal for algorithm suite text for inclusion in the 802.15.3 draft standard. The text from this submission may be incorporated directly into the draft standard and is offered as a set of algorithm suites for inclusion in 802.15.3.]

	Notice
	This document has been prepared to assist the IEEE P802.15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

	Release
	The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P802.15.

Table of Contents

21
Introduction

21.1
Scope

21.2
Purpose

31.3
Document Organization

31.4
Notes to the Reader

42
References

53
Notes on Key Management

53.1
Acquiring a Trusted Key, Recognizing a Trusted Key

53.1.1
ACL-based use case

73.1.2
Certificate-based Use Case

73.1.3
Implicit Certificate-based Use Case

73.2
Certificate Management: General Issues

73.3
Certificate Management: X.509 Certificates

83.4
Certificate Management: Implicit Certificates

84
Algorithm Suite Specifications

94.1
Object Identifier

94.2
Security Functionality Provided

104.3
Data Formats (ECC with X.509)

124.4
Cryptographic Operation Selections (ECC with X.509)

174.5
Data Formats (ECC with Implicit Certificates)

204.6
Cryptographic Operation Selections (ECC with Implicit Certificates)

254.7
Data Formats (ECC with ACL)

274.8
Cryptographic Operation Selections (ECC with ACL)

1
Introduction

[02130] supplies a security architecture designed to accommodate a variety of cryptographic algorithms and trust establishment methods. This text has been included in the 802.15.3 draft standard by vote of the working group. The security architecture is necessarily under-specified and requires supporting text for algorithm suites to include in the standard. This document instantiates all underspecified items to build a complete security solution using the proposed architecture and different algorithm selections and public key trust mechanisms.

This document provides standards text for inclusion of these algorithm suites in the 802.15.3 draft standard.

1.1 Scope

This document specifies proposed security suites using ECC technologies for the 802.15.3 draft standard. In particular, this includes text to completely instantiate the security architecture proposed in [02130] as well as additional informative text and security considerations. We present three security suites, which differ only in the method used to distribute public key information.

1.2 Purpose

This document is intended as an algorithm suite text recommendation for the 802.15 TG3 for inclusion in the 802.15.3 draft standard. The text from this submission may be incorporated directly into the draft standard or merged with an algorithm suite proposal offered by other working group members.

1.3 Document Organization

This document contains text for proposed algorithm suites for the 802.15.3 draft standard. In addition, this submission includes informative text that may or may not be included in the draft standard to support the architecture.

The document is organized into the following categories:

· References (Normative)

· Notes on Key Management (Informative)

· Instantiation of the algorithm suites (Normative)

The reference section describes the external documents that are required in order to implement the cryptographic algorithms proposed in this document.

The instantiation section provides text and information for the aspects of the algorithm suites that must be defined in order to fully implement the security architecture. This text may be added to the main section of the document or to annexes.

1.4 Notes to the Reader

Throughout the document, the author has included notes to the reader that are not part of the proposed text or submission. These notes are supplied to aid in the review process of this document and the consideration for inclusion in the standard. These notes are not intended to be a part of the standard itself.

Author’s note: Notes are underlined, indented and written in this font to indicate that they are not part of the intended draft text.

References

[02130]
D. V. Bailey and A. Singer, IEEE P802-15_TG3 NTRU Security Architecture Proposal, submitted to IEEE P802.15.3 as 02130r1P802-15_TG3-NTRU-Security-Architecture-Proposal.doc

[02150]
D. V. Bailey and A. Singer, IEEE P802-15_TG3 Consolidated Security Architecture Proposal, submitted to IEEE P802.15.3 as 02150r0P802-15_TG3-Consolidated-Security-Architecture-Proposal.doc

[ASN1]
ISO/IEC 8824: Information technology -- Open Systems Interconnection -- Specification of Abstract Syntax Notation One (ASN.1)3.

[FIP180]
NIST FIPS Pub 180-2, Draft Specification for the Secure Hash Standard, Federal Information Processing Standards Publication 180-2, US Department of Commerce/N.I.S.T., draft, 20014.

[FIP197]
NIST FIPS Pub 197, Advanced Encryption Standard (AES), Federal Information Processing Standards Publication 197, US Department of Commerce/N.I.S.T., draft, 20014.
[HMAC] NIST FIPS Pub #HMAC, The Keyed-Hash Message Authentication Code (HMAC), Federal Information Processing Standards Publication #HMAC, US Department of Commerce/N.I.S.T., draft, 20014.
[PKIX]
Housley, Ford, Polk and Solo, “Internet Public Key Infrastructure Certificate and CRL Profile” January 19991.

[SEC4]
Standards for Efficient Cryptography, SEC 4: Implicit Certificates, working draft, Version 0.2, Certicom Research, November 14, 20005.

[TLS]
Dierks, T. and C. Allen, "The TLS Protocol, Version 1.0," RFC 2246, January 19991.

[X962]
ANSI X9.62-1998, Public Key Cryptography for the Financial Services Industry: The Elliptic Curve Digital Signature Algorithm (ECDSA), American Bankers Association, January 7, 1999

[X963]
ANSI X9.63-2001, Public Key Cryptography for the Financial Services Industry, Key Agreement and Key Transport Using Elliptic Curve Cryptography, American Bankers Association, January 10, 2002.

[MODES]
Recommendation for Block Cipher Modes of Operation – Methods and Techniques, NIST Special Publication 800-38A, 2001 Edition, NIST4.

1IETF RFCs are available from the Internet Engineering Task Force (http://www.ietf.org)

2EESS publications are available from the Consortium for Efficient Embedded Security (http://www.ceesstandards.org)

3ISO/IEC publications are available from the ISO Central Secretariat, Case Postale 56, 1 rue de Varembe, CH-1211, Geneve 20, Switzerland/Suisse (http://www.iso.ch). Electronic copies are available in the United States from the American National Standards Institute, 11 West 42nd Street, 13th Floor, New York, NY 10036 (http://www.ansi.org)

4NIST FIPS publications are available from the National Institute for Standards and Technology, 100 Bureau Drive, Stop 8900, Gaithersburg, MD 20899-8900 (http://www.nist.gov)

5SECG publications are available from the Standards for Efficient Cryptography Group (http://www.secg.org)

2 Notes on Key Management

Author’s note: This text is informative, not normative, and need not be included in the standard.

The security suites specified in this document pass public keys in a PublicKeyObject type. This type is security suite dependent, and may take many forms, including:

· “raw” public key

· X.509 certificate [PKIX]

· “implicit” certificate [SEC4]

In [02130], an architecture is presented in which public key management is the concern of the DME, not of the MAC/PHY layer. The purpose of defining different types of PublicKeyObject in this document is to allow the MLME to parse the PublicKeyObject unambiguously and extract the public key information from it. The use of a particular PublicKeyObject type in the MLME messages is not to be taken as directly mandating a particular method of establishing trust in that public key.

Nevertheless, we make the following observations about key management issues that must be considered by DME and application developers. These issues will be revisited in the form of author’s notes in the relevant parts of the document.

2.1 Acquiring a Trusted Key, Recognizing a Trusted Key

The architecture specified in [02130] does not specify a means of acquiring the public key of another device, or of recognizing that a received public key has already been trusted. The authentication protocol includes the transmission of public key objects in both directions, but this is not the only way that two devices can receive keys from each other. For example, devices can pass public keys (or certificates, or implicit certificates) to each other in probe messages exchanged between the time of the associate request and the time of the authenticate request.

The simplest use case, however, is the one where keys are only passed in the context of the authentication protocol. We outline here several different ways in which this could be implemented.

2.1.1 ACL-based use case

This use case makes it clear that all public key management is performed by the DME. The methods outlined here are appropriate for use by all forms of PublicKeyObject – raw keys, certificates, or implicit certificates. The nature of the check performed by the DME varies depending on the form of the PublicKeyObject

Initial Contact:

1) DEV1 sends DEV2 PublicKeyObject_Dev1

2) The MAC layer in DEV2 checks its ACL and sees that PublicKeyObject_Dev1 is not there. It passes PublicKeyObject_Dev1 to the DME to establish trust and sets a timeout.

3) The DME in DEV2 establishes trust in PublicKeyObject_Dev1 and places a hash of that public key object in the MAC layer’s ACL.

4) The MAC layer in DEV2 checks its ACL, either on notification by the DME or at the expiry of the timeout. It sees that Pub PublicKeyObject_Dev1 is there this time, and continues with the authentication protocol.

If the DME does not complete step 3) before the timeout in step 2) expires, DEV2 returns “reject” to DEV1 but the DME in DEV2 carries on step 3).

Subsequent Contact:

1) DEV1 sends DEV2 PublicKeyObject_Dev1 again

2) The MAC layer in DEV2 checks its ACL, sees that Pub PublicKeyObject_Dev1 is there this time, and continues with the authentication protocol.

Neither this document nor [02130] address the question of what exactly is hashed, or how the MAC layer extracts the public key from the PublicKeyObject if this object is not a raw public key itself. We identify the following options for further discussion:

· PublicKeyObject_Dev1 is a certificate. The DME on DEV2 places a hash of the certificate in the ACL. In “Subsequent Contact”, the MAC hashes the incoming certificate, checks it against the ACL, and then extracts the public key (or implicit certification information) from the certificate.

· PublicKeyObject_Dev1 is a certificate, or an implicit certificate. The ACL contains a hash of the certificate AND also the (unhashed) public key extracted from that certificate (or derived from that implicit certificate). In “Subsequent Contact”, the MAC hashes the incoming object and checks it against the ACL. If the hash is present in the ACL, the MAC uses the public key that is indexed by that hash.

· PublicKeyObject_Dev1 is a certificate. The DME on DEV2 places a hash of the public key in the ACL. In “Subsequent Contact”, the MAC extracts the public key (or implicit certification information) from the certificate, hashes this, and checks it against the ACL.

· PublicKeyObject_Dev1 is a raw public key. Certificates are distributed, not in this protocol, but in a distribute information command. This minimizes the requirements on the MLME, but requires additional text to be written around the distribute information command and requires devices to transmit their own public keys as both certificates and raw public keys.

· PublicKeyObject_Dev1 is a raw public key. The DME on DEV2 obtains the hash of the public key and ID out-of-band (e.g. from an analog certificate) and places this hash in the ACL. In “Subsequent Contact”, the MAC verifies that the hash of the public key and ID received in the authentication request match the hash in the ACL. If this matches, the public key is then used for the remainder of the authentication process.

2.1.2 Certificate-based Use Case

In this case, the MAC layer may have an access control mechanism which consists simply of one or more trusted root certificates, and instructions to admit all devices which present a public key certified by one of these roots (or a cert chain leading back to one of these roots). This relieves the MAC layer of having to maintain a list of trusted devices’ public keys. However, other checks must be carried out on the certificates, as detailed in section 3.2 and 3.3 below. This document does not address how the MAC layer and DME should interact to ensure that the checks are carried out.

2.1.3 Implicit Certificate-based Use Case

In this case, the MAC layer may have an access control mechanism which consists simply of one or more trusted root certificates, and instructions to admit all devices which present an implicit certificate which has been produced by one of these roots (or a cert chain leading back to one of these roots). This relieves the MAC layer of having to maintain a list of trusted devices’ public keys. However, other checks must be carried out on the certificates, as detailed in section 3.2 and 3.4 below. This document does not address how the MAC layer and DME should interact to ensure that the checks are carried out.

2.2 Certificate Management: General Issues

In order to prevent the use of expired certificates, the DME needs to check the validity period of the certificate. This requires knowledge of absolute time.

In order to prevent the use of a compromised certificate, the DME would need to verify a CRL of some sort, or construct an OCSP response, to be sure that the certificate is still valid.

A certificate binds an identity to a public key. It needs to be determined exactly what this identity is. Possibilities include the IEEE MAC address, manufacturer name and serial number or some other uniquely identifying information. This identity needs to be verified by the DME (or MLME) to appropriately bind the correct ID to the public key for use in the piconet.

We also note that even if a device presents a valid certificate, this may not automatically mean the device should be admitted to the network. A simple example would be the case where a family has two televisions, within range of each other but operating as the PNCs of different piconets. If the family buys a DVD player, its certificate will be considered valid by both TVs, but the family may only want the DVD player to join one piconet, not both. In this case, although the certificate provides evidence that the device is a trusted device, additional manual intervention is required to decide which network the device should actually join.

2.3 Certificate Management: X.509 Certificates

The DME (or MLME) needs to be able to extract the public key and do other ASN.1 parsing of the X.509 certificate to obtain and verify information in the certificate.

The identity of the device must be carried in a specified field. This could be “subject” or “subjectAltName”.

In order to verify that the key is being used for the appropriate purpose, the DME may check that the key usage extension, if present, specifies that the key may be used for key exchange.

2.4 Certificate Management: Implicit Certificates

To the authors’ knowledge, there is no publicly available specification for implicit certificates. A reference has been given to [SEC4], but this is not known to be publicly available. Because of this, it is unclear how the identity information that is bound to the cryptographic part of the implicit certificate is transmitted. However, since the point of certificates is to bind identity information to a public key, this information must exist somewhere, and the DME must be able to parse it.

The implicit certificate along with additional information is used as the public key object. The additional information may contain information such as issuer, issue date, expiry date, serial number. This is currently left unspecified in this proposal. If flexibility is desired, the length of the additional information should be variable. For maximized interoperability, the length and content of the additional information should be fixed and specified.

The use of implicit certificates may lead to changes in the MLME messages to specify the data that is passed between the DME and MLME. It appears, for instance, that it would be appropriate for the MLME to pass the ID information to the DME (which may include information such as validity period) for verification before it performs the operations on the certificate to extract the public key. Alternately, the DME can pass trusted ID information down to the MLME for storage in an ACL. In that instance, the MLME may check the ID information against the ACL and perform all cryptographic operations using the implicit certificate without intervention from the DME.

3 Algorithm Suite Specifications

Author’s note: Each algorithm suite would presumably be included in its own annex, however the mandatory to implement algorithm suite will contain additional statements indicating that it is the mandatory to implement.

Author’s note: The techniques specified in this document were selected with the intention of limiting the potential exposure to intellectual property. However, the inclusion of a technique in this document should not be taken as a statement of fact about the existence or lack of existence of intellectual property covering the technique.

Author's note: The following pairs of sub-clauses represent the 3 different algorithm suites offered in this document: Sub-clauses 3.3-3.4 represent an algorithm suite using ECC, AES, SHA-256 and X.509 certificates, sub-clauses 3.5-3.6 represent an algorithm suite using ECC, AES, SHA-256 and implicit certificates, and sub-clauses 3.7-3.8 represent an algorithm suite using ECC, AES, SHA-256 and keys transmitted in raw form. The text in each algorithm suite is substantially similar except that the form of the public key object and the method of verifying trust in the public key varies.

The algorithm suite specified in this clause shall be supported by all implementations supporting security.

3.1 Object Identifier

Author’s note: The object identifiers for each algorithm suite may be built off of the following OID root or they may be specified under another root. This may be determined by the document editor and is not mandated here.

The object identifiers for algorithm suites may be built off of the following OID root. This root is written in ASN.1 format.

id-ntru-security-suites OBJECT IDENTIFIER ::= {
iso(1) identified-organization(3) dod(6) internet(1) private(4) enterprises(1) ntruCryptosystems(8342) ieee802-15-3(2) securitySuites(1)}

The object identifiers for the algorithm suite proposed in this clause may be defined as:

id-ntru-security-suite-xx OBJECT IDENTIFIER ::= {
id-ntru-security-suites xx}

where xx specifies the integer corresponding to the particular algorithm suite. The DER encoding of this element, which shall be included in the OID field when these OIDs are used would be the hex value: 06 0A 2B 06 01 04 01 C1 16 02 01 xx.

3.2 Security Functionality Provided

Author’s note: Each of the algorithm suites specified in this document provide the full range of security functionality that may be specified by an algorithm suite.

This security suite provides the following security services.

	Security Service
	Provided

	Mutual Authentication
	

	Verification of Public-Key
	

	Key Establishment
	

	Key Transport
	

	Beacon Integrity Protection
	

	Freshness Protection
	

	Command Integrity Protection
	

	ACK Integrity Protection
	

	Data Integrity Protection
	

	Data Encryption
	

Table XX - Supported security services

Author’s note: The following two sub-clauses specify the data formats and operations for the use of ECIES, AES-128 CBC mode, SHA-256 and X.509 certificates.

3.3 Data Formats (ECC with X.509)

Author’s note: The following notes specify information about the data elements table.

Author’s note: In order to allow the full flexibility of X.509 certificates, the length of the X.509 certificate is left variable.

Author’s Note: The HMAC specification defines full HMAC or truncated HMAC. The non-truncated HMAC (using SHA-256) is included, but the truncated version that includes the first 128 bits of the HMAC is recommended and would provide bandwidth savings of 16 bytes without affecting the believed security level provided.

Author’s note: It was agreed at the meeting to use HMAC with SHA-256 for integrity protection. It is recommended that the group consider the use of an AES MAC instead. Since the implementation of AES will need to meet the data rate for encryption, it may be more efficient to perform AES MAC than SHA-256 HMAC. The group should also consider the mode of AES specified for encryption, as integrity may be provided along with the encryption.

Author’s note: The length of the seed for generating keys has been set to 256 bits. This is recommended because it is twice the length of the security level specified, which is 128 bits, provided 128-bits of collision resistance.

The following table specifies the length and meaning of the undefined data elements from clause 7.

	Notation
	Length
	Value
	Description

	PublicKeyObjectType
	2
	4
	An X.509 certificate containing an elliptic curve public key on the elliptic curve ansip256r1 as specified in [X963].

	PublicKeyObjectLength
	2
	Variable
	The length of the particular instance of an X.509 certificate containing an elliptic curve public key on the elliptic curve ansip256r1 as specified in [X963].

	PublicKeyObject
	Variable
	Variable
	The particular instance of an X.509 certificate containing an elliptic curve public key on the elliptic curve ansip256r1 as specified in [X963].

	AuthResponseType
	2
	3
	The auth response type specifies the result of an HMAC computation as defined in [HMAC] using a 32-byte key and the SHA-256 hash algorithm as defined in [FIP180].

	AuthResponseLength
	2
	32
	The length of an HMAC computation using a 32-byte key as defined in [HMAC].

	AuthResponse
	32
	Variable
	The result of the HMAC computation using a 32-byte key as defined in [HMAC].

	OIDLength
	1
	12
	The length of the DER encoding of the OID 1.3.6.1.4.1.8342.2.1.xx.[[TBD]]

	OID
	12
	OID Value
	The DER encoding of the object identifier 1.3.6.1.4.1.8342.2.1.xx, which is the hex value 06 0A 2B 06 01 04 01 C1 16 02 01 xx. [[TBD]]

	ChallengeType
	2
	3
	The challenge type specifies an ECIES encryption with XOR encryption and HMAC-SHA-256 of a 32-octet secret that is randomly and unpredictably generated at the time of the challenge, as specified in [X963], [HMAC] and [FIP180].

	ChallengeLength
	2
	(1+ 32) + 32 + 32 = 97
	The length of a compressed ECC public key on the curve ansip256r1 with a 32-byte XOR encrypted seed and a 32-byte HMAC-SHA-256.

	Challenge
	97
	Variable
	The result of the ECIES encryption with XOR encryption and HMAC-SHA-256 of the 32-octet secret, as specified in [X963], [HMAC] and [FIP180].

	ChallengeResponseType
	2
	2
	The challenge response type specifies the result of an HMAC computation as defined in [HMAC] using a 32-byte key and the SHA-256 hash algorithm as defined in [FIP180].

	ChallengeResponseLength
	2
	32
	The length of an HMAC computation as defined in [HMAC] using a 32-byte key and the SHA-256 hash algorithm as defined in [FIP180].

	ChallengeResponse
	32
	Variable
	The result of the HMAC computation as defined in [HMAC] using a 32-byte key and the SHA-256 hash algorithm as defined in [FIP180].

	KeyPurpose
	1
	0
	The type of key requested in key request protocols. Only seeds are transmitted in this security suite.

	EncryptedKeyType
	2
	2
	The encrypted key type specifies the result of AES-256 CBC encryption of the 256-bit seed with random IV as specified in [FIP197] and [MODES].

	EncryptedKeyLength
	2
	64
	The length of an encrypted 256-bit seed encrypted using AES-256 CBC encryption with random IV as specified in [FIP197] and [MODES].

	EncryptedKey
	64
	Variable
	The result of the encryption of the 256-bit seed using AES-256 CBC encryption with random IV as specified in [FIP197] and [MODES}.

Table XX – Frame object formats

3.4 Cryptographic Operation Selections (ECC with X.509)

The security architecture is instantiated by the following algorithms.

· ECIES encryption and decryption with XOR and HMAC-SHA-256 using the elliptic curve ansip256r1 for public key operations as specified in [X963] section 5.8, [HMAC] and [FIP180].

· 128-bit AES-CBC mode for symmetric encryption as specified in [FIP197] and [MODES].

· HMAC with SHA-256 message authentication codes for symmetric integrity protection as specified in [HMAC] and [FIP180].

· SHA-256 cryptographic hash for all cryptographic hashing as specified in [FIPS180].

· X.509 public-key certification for establishing authenticity of public keys as specified in [PKIX].

· ECDSA signature verification for certificates as specified in ANSI X9.62 [X962].

· Elliptic curve keys and point arithmetic on the elliptic curve ansip256r1 defined in [X963], appendix J.5.4. All implementations shall support the compressed form of points as specified in [X963], section 4.3.6 and may support uncompressed or hybrid form. All points shall be transmitted in compressed form.

Author’s note: Certificate verification operations seem best handled by the DME in order to not bog down the specification of the MLME. This implies that some changes may be needed to the MLME messages to indicate that the DME may pass down additional information to the MLME such as the extracted public key and ID. The checks that may be performed on the certificate are enumerated below:

Author’s note: In order to prevent the use of expired certificates, the DME would need to check the validity period of the certificate. This requires knowledge of absolute time.

Author’s note: In order to prevent the use of a compromised certificate, the DME would need to verify a CRL of some sort to be sure that the certificate is still valid.

Author’s note: The DME (or MLME) needs to be able to extract the public key and do other ASN.1 parsing of the X.509 certificate to obtain and verify information in the certificate.

Author’s note: In order to tie the identity of the device to the public-key, the X.509 certificate would need to include the IEEE MAC address, manufacturer name and serial number or some other uniquely identifying information. This could be specified in fields such as “subject” or “subjectAltName”. This identity needs to be verified by the DME (or MLME) to appropriately bind the correct ID to the public key for use in the piconet.

Author’s note: In order to verify that the key is being used for the appropriate purpose, the DME may check that the key usage extension, if present, specifies that the key may be used for key exchange.

The use of the cryptographic algorithms for each of the security operations performed in the piconet are specified in the following table:

	Use
	Operation

	Verification of Public-Key
	The X.509 certificate received during the authentication protocol is verified by retrieving the appropriate CA key, computing the SHA-256 hash of the contents of the certificate and verifying the ECDSA signature on the certificate. The device shall verify the identity of the device and extract the public key for use in the authentication protocol. There are several other checks that should be performed by the device to ensure the security properties of the certificate including a CRL check, validity period verification and key use.

	Challenge generation
	The challenges generated during the authentication protocol are computed by performing an ECIES encryption with XOR encryption and HMAC-SHA-256 on a fresh, randomly generated 32-byte challenge using the other device’s public key.

	Challenge decryption
	The challenge decryption operation is performed using ECIES decryption with XOR and HMAC-SHA-256 of the challenge received.

	Seed generation (for authentication protocol)
	The 64-byte seed for the authentication protocol consists of the decrypted challenge from the security manager, concatenated with the decrypted challenge of the DEV.

	Integrity Key Derivation
	All integrity keys are generated from a seed by first calculating the SHA-256 hash of the seed concatenated with the byte 0x00 and then setting the key to be the first 128 bits of the result.

	Encryption Key Derivation
	All encryption keys are generated from a seed by first calculating the SHA-256 hash of the seed concatenated with the byte 0x01 and then setting the key to be the first 128 bits of the result.

	Challenge response generation
	The challenge response is computed by computing the HMAC-SHA-256 message authentication code on the entire authentication protocol up to that point using the integrity key.

	Authentication response generation
	The authentication response is computed by computing the HMAC-SHA-256 message authentication code on the entire authentication protocol up to that point using the integrity key.

	Beacon message authentication code generation (Integrity Code information element)
	The message authentication code included in the beacon is computed as the HMAC-SHA-256 message authentication code on the entire beacon up to the integrity code information element using the integrity key.

	Command message authentication code generation
	The message authentication code included in command frames is computed as the HMAC-SHA-256 message authentication code on the entire command up to the message authentication code using the integrity key.

	ACK message authentication code generation
	The message authentication code included in ACK frames is computed as the HMAC-SHA-256 message authentication code on the entire ACK up to the message authentication code using the integrity key.

	Data message authentication code generation
	The message authentication code included in data frames is computed as the HMAC-SHA-256 message authentication code on the entire data frame up to the message authentication code after encryption has been performed using the integrity key.

	Seed encryption operation (for request key and distribute key)
	The seed for key transport is encrypted using AES-CBC with a random IV using the encryption key.

	Data encryption generation
	Data in a data frame is encrypted using AES-CBC with a random IV using the encryption key.

Table XREF – Security related operations

The following table specifies the instantiation of the protocols in the notation from clause XREF.

	Notation
	Definition

	Enc(m, K)
	ECIES public-key encryption with XOR and HMAC-SHA-256 of the message m using the public key K as specified in [X963] section 5.8, [HMAC] and [FIP180].

	ID_D
	The 48-bit IEEE MAC address uniquely identifying the device.

	ID_SM
	The 48-bit IEEE MAC address uniquely identifying the device.

	PKObj_D

	The device’s X.509 public-key certificate containing a public encryption key on the curve ansip256r1, signed using ECDSA and SHA-256 as defined by [PKIX], [X962], [X963], [FIP180]. This may contain additional information such as the issuer, issue data, expiry data, the identity of the key owner and key usage.

	PKObj_SM
	The security manager’s X.509 public-key certificate containing a public encryption key on the curve ansip256r1, signed using ECDSA and SHA-256 as defined by [PKIX], [X962], [X963], [FIP180]. This may contain additional information such as the issuer, issue data, expiry data, the identity of the key owner and key usage.

	Pub_D
	The device’s ECIES public encryption key, which is a point on the curve ansip256r1 as specified in [X963].

	Pr_D
	The device’s ECIES private decryption key, which is an integer less than the order of the elliptic curve ansip256r1 as specified in [X963].

	Pub_SM
	The security manager’s ECIES public encryption key, which is a point on the curve ansip256r1 as specified in [X963].

	Pr_SM
	The device’s ECIES private decryption key, which is an integer less than the order of the elliptic curve ansip256r1 as specified in [X963].

	C1

	32-octet secret that is randomly and unpredictably generated at the time of the challenge.

	C2
	32-octet secret that is randomly and unpredictably generated at the time of the challenge.

	OID
	Uniquely identifies the security suite. The object identifier is the ASN.1 DER encoding of the OID as defined by ISO/ITU 8824. For this security suite, this is the hex value 0x060A2B06010401C1160201xx. [[TBD]]

	SSID_D

	8-octet random value chosen by the security manager to uniquely identify the keys used to communicate with device D.

	SSID_G
	8-octet random value chosen by the security manager to uniquely identify the keys used to communicate in the piconet.

	Seed_G
	32-octet random value associated with a particular SSID_G used to generate the encryption key Enc_G and integrity key Int_G.

	Enc_D

	128-bit AES key associated with a particular SSID_D, to be used in AES-CBC mode.

	Enc_G
	128-bit AES key associated with a particular SSID_G, to be used in AES-CBC mode.

	Int_D

	128-bit HMAC-SHA-256 key associated with a particular SSID_D

	Int_G
	128-bit HMAC-SHA-256 key associated with a particular SSID_G

	seq_num_SM

	4-octet integer in network byte order associated with a particular SSID_D, used to count commands sent by the SM using that key. The sequence number shall begin counting with 0.

	seq_sum_D
	4-octet integer in network byte order associated with a particular SSID_D, used to count commands sent by the device using that key. The sequence number shall begin counting with 0.

	SymE(m, Enc, IV)
	The result of AES encryption of the message m with the AES key Enc using CBC mode with initialization vector IV as defined in [FIP197] and [MODES].

	SymI(m, Int)
	The result of calculating the HMAC-SHA-256 message authentication code on the message m with the 128-bit HMAC key Int. If m is “…”, the message authentication code is computed over all preceding fields in the frame.

	H(m)
	The 32-octet result of SHA-256 hash on the message m as defined in [FIP180].

	m||n
	The concatenation of two messages m and n.

	Key(m)
	The 128-bit result of truncating the message m to be used as a 128-bit AES key.

	AReq
	Authentication Request command header

	CReq
	Challenge Request command header

	CRes
	Challenge Response command header

	ARes
	Authentication Response command header

	KUReq
	Key Update Request command header

	KURes
	Key Update Response command header

	KRReq
	Key Request command header

	KRRes
	Key Request Response command header

	finished1

	SymI(m, Int) where m is the entire set of data in order in the preceding protocol up to the point of the message authentication code and Int is Int_D.

	finished2
	SymI(m, Int) where m is the entire set of data in order in the preceding protocol up to the point of the message authentication code and Int is Int_D.

Author’s note: The following two sub-clauses specify the data formats and operations for the use of ECIES, AES-128 CBC mode, SHA-256 and implicit certificates.

3.5 Data Formats (ECC with Implicit Certificates)

Author’s note: The following notes specify information about the data elements table.

Author’s note: In order to allow the full flexibility of implicit certificates, the length of the implicit certificate is left variable.

Author’s Note: The HMAC specification defines full HMAC or truncated HMAC. The non-truncated HMAC (using SHA-256) is included, but the truncated version that includes the first 128 bits of the HMAC is recommended and would provide bandwidth savings of 16 bytes without affecting the believed security level provided.

Author’s note: It was agreed at the meeting to use HMAC with SHA-256 for integrity protection. It is recommended that the group consider the use of an AES MAC instead. Since the implementation of AES will need to meet the data rate for encryption, it may be more efficient to perform AES MAC than SHA-256 HMAC. The group should also consider the mode of AES specified for encryption, as integrity may be provided along with the encryption.

Author’s note: The length of the seed for generating keys has been set to 256 bits. This is recommended because it is twice the length of the security level specified, which is 128 bits, provided 128-bits of collision resistance.

Author’s note: The implicit certificate along with additional information is used as the public key object. The additional information may contain information such as issuer, issue date, expiry date, serial number. This is currently left unspecified in this proposal. If flexibility is desired, the length of the additional information should be variable. For maximized interoperability, the length and content of the additional information should be fixed and specified.

Author’s note: To the author’s knowledge, there is no publicly available specification for implicit certificates. It has been asserted that the specification is included in SEC4, however this is not known to be publicly available.

Author’s note: The use of implicit certificates may lead to changes in the MLME messages to specify the data that is passed between the DME and MLME. It appears, for instance, that it would be appropriate for the MLME to pass the ID information to the DME (which may include information such as validity period) for verification before it performs the operations on the certificate to extract the public key. Alternately, the DME can pass trusted ID information down to the MLME for storage in an ACL. In that instance, the MLME may check the ID information against the ACL and perform all cryptographic operations using the implicit certificate without intervention from the DME.

The following table specifies the length and meaning of the undefined data elements from clause 7.

	Notation
	Length
	Value
	Description

	PublicKeyObjectType
	2
	5
	The public key object type consists of the following elements: identifying information that is used in the construction of the implicit certificate and an ECC implicit certificate as specified in [SEC4] using the elliptic curve ansip256r1 as specified in [X963].

	PublicKeyObjectLength
	2
	33 + length of add. info
	The length of the additional information concatenated with the implicit certificate on the elliptic curve ansip256r1 as specified in [X963].

	PublicKeyObject
	33 + length of add. info
	Variable
	The additional information for construction of the implicit certificate and the particular instance of the ECC implicit certificate as specified in SEC 4 using the elliptic curve ansip256r1 as specified in [X963].

	AuthResponseType
	2
	3
	The auth response type specifies the result of an HMAC computation as defined in [HMAC] using a 32-byte key and the SHA-256 hash algorithm as defined in [FIP180].

	AuthResponseLength
	2
	32
	The length of an HMAC computation using a 32-byte key as defined in [HMAC].

	AuthResponse
	32
	Variable
	The result of the HMAC computation using a 32-byte key as defined in [HMAC].

	OIDLength
	1
	12
	The length of the DER encoding of the OID 1.3.6.1.4.1.8342.2.1.xx.[[TBD]]

	OID
	12
	OID Value
	The DER encoding of the object identifier 1.3.6.1.4.1.8342.2.1.1, which is the hex value 06 0A 2B 06 01 04 01 C1 16 02 01 xx. [[TBD]]

	ChallengeType
	2
	3
	The challenge type specifies an ECIES encryption with XOR encryption and HMAC-SHA-256 of a 32-octet secret that is randomly and unpredictably generated at the time of the challenge, as specified in [X963], [HMAC] and [FIP180].

	ChallengeLength
	2
	(1+ 32) + 32 + 32 = 97
	The length of a compressed ECC public key on the curve ansip256r1 with a 32-byte XOR encrypted seed and a 32-byte HMAC-SHA-256.

	Challenge
	97
	Variable
	The result of the ECIES encryption with XOR encryption and HMAC-SHA-256 of the 32-octet secret with compressed points, as specified in [X963], [HMAC] and [FIP180].

	ChallengeResponseType
	2
	2
	The challenge response type specifies the result of an HMAC computation as defined in [HMAC] using a 32-byte key and the SHA-256 hash algorithm as defined in [FIP180].

	ChallengeResponseLength
	2
	32
	The length of an HMAC computation as defined in [HMAC] using a 32-byte key and the SHA-256 hash algorithm as defined in [FIP180].

	ChallengeResponse
	32
	Variable
	The result of the HMAC computation as defined in [HMAC] using a 32-byte key and the SHA-256 hash algorithm as defined in [FIP180].

	KeyPurpose
	1
	0
	The type of key requested in key request protocols. Only seeds are transmitted in this security suite.

	EncryptedKeyType
	2
	2
	The encrypted key type specifies the result of AES-256 CBC encryption of the 256-bit seed with random IV as specified in [FIP197] and [MODES].

	EncryptedKeyLength
	2
	64
	The length of an encrypted 256-bit seed encrypted using AES-256 CBC encryption with random IV as specified in [FIP197] and [MODES].

	EncryptedKey
	64
	Variable
	The result of the encryption of the 256-bit seed using AES-256 CBC encryption with random IV as specified in [FIP197] and [MODES}.

Table XX – Frame object formats

3.6 Cryptographic Operation Selections (ECC with Implicit Certificates)

The security architecture is instantiated by the following algorithms.

· ECIES encryption and decryption with XOR and HMAC-SHA-256 using the elliptic curve ansip256r1 for public key operations as specified in [X963] section 5.8, [HMAC] and [FIP180].

· ECC point compression and de-compression techniques as specified in [X963], section 4.2.

· 128-bit AES-CBC mode for symmetric encryption as specified in [FIP197] and [MODES].

· HMAC with SHA-256 message authentication codes for symmetric integrity protection as specified in [HMAC] and [FIP180].

· SHA-256 cryptographic hash for all cryptographic hashing as specified in [FIP180].

· Implicit ECC public-key certification for establishing authenticity of public keys as specified in [SEC4].

· Elliptic curve keys and point arithmetic on the elliptic curve ansip256r1 defined in appendix J.5.4 of [X963]. All implementations shall support the compressed form of points as specified in [X963], section 4.3.6 and may support uncompressed or hybrid form. All points shall be transmitted in compressed form.

Author’s note: Certificate verification operations seem best handled by the DME in order to not bog down the specification of the MLME. This implies that some changes may be needed to the MLME messages to indicate that the DME may pass down additional information to the MLME such as the extracted public key and ID. Note that with implicit certificates, the DME would not perform the cryptographic verification of the certificate since that verification is intrinsically linked to the authentication process. The checks that may be performed on the certificate are enumerated below:

Author’s note: In order to prevent the use of expired certificates, the DME would need to check the validity period of the certificate. This requires knowledge of absolute time.

Author’s note: In order to prevent the use of a compromised certificate, the DME would need to verify a CRL of some sort to be sure that the certificate is still valid.

Author’s note: In order to tie the identity of the device to the public-key, the additional information related to the implicit certificate would need to include the IEEE MAC address, manufacturer name and serial number or some other uniquely identifying information. This identity needs to be verified by the DME (or MLME) to appropriately bind the correct ID to the public key for use in the piconet.

The use of the cryptographic algorithms for each of the security operations performed in the piconet are specified in the following table:

	Use
	Operation

	Verification of Public-Key
	The public key in the received implicit certificate is implicitly verified by retrieving the appropriate CA key, generating the public key by performing computations using the implicit certificate, identifying information and CA key, and verifying that the authentication protocol succeeds. The device shall also verify the expected identity of the device matches the identity in the certificate. There are several other checks that should be performed by the device to ensure the security properties of the certificate including a CRL check and validity period verification.

	Challenge generation
	The challenges generated during the authentication protocol are computed by performing an ECIES encryption with XOR encryption and HMAC-SHA-256 on a fresh, randomly generated 32-byte challenge using the other device’s public key.

	Challenge decryption
	The challenge decryption operation is performed using ECIES decryption with XOR and HMAC-SHA-256 of the challenge received.

	Seed generation (for authentication protocol)
	The 64-byte seed for the authentication protocol consists of the decrypted challenge from the security manager, concatenated with the decrypted challenge of the DEV.

	Integrity Key Derivation
	All integrity keys are generated from a seed by first calculating the SHA-256 hash of the seed concatenated with the byte 0x00 and then setting the key to be the first 128 bits of the result.

	Encryption Key Derivation
	All encryption keys are generated from a seed by first calculating the SHA-256 hash of the seed concatenated with the byte 0x01 and then setting the key to be the first 128 bits of the result.

	Challenge response generation
	The challenge response is computed by computing the HMAC-SHA-256 message authentication code on the entire authentication protocol up to that point using the integrity key.

	Authentication response generation
	The authentication response is computed by computing the HMAC-SHA-256 message authentication code on the entire authentication protocol up to that point using the integrity key.

	Beacon message authentication code generation (Integrity Code information element)
	The message authentication code included in the beacon is computed as the HMAC-SHA-256 message authentication code on the entire beacon up to the integrity code information element using the integrity key.

	Command message authentication code generation
	The message authentication code included in command frames is computed as the HMAC-SHA-256 message authentication code on the entire command up to the message authentication code using the integrity key.

	ACK message authentication code generation
	The message authentication code included in ACK frames is computed as the HMAC-SHA-256 message authentication code on the entire ACK up to the message authentication code using the integrity key.

	Data message authentication code generation
	The message authentication code included in data frames is computed as the HMAC-SHA-256 message authentication code on the entire data frame up to the message authentication code after encryption has been performed using the integrity key.

	Seed encryption operation (for request key and distribute key)
	The seed for key transport is encrypted using AES-CBC with a random IV using the encryption key.

	Data encryption generation
	Data in a data frame is encrypted using AES-CBC with a random IV using the encryption key.

Table XREF – Security related operations

The following table specifies the instantiation of the protocols in the notation from clause XREF.

	Notation
	Definition

	Enc(m, K)
	ECIES public-key encryption with XOR and HMAC-SHA-256 of the message m using the public key K as specified in [X963] section 5.8, [HMAC] and [FIP180].

	ID_D
	The 48-bit IEEE MAC address uniquely identifying the device.

	ID_SM
	The 48-bit IEEE MAC address uniquely identifying the device.

	PKObj_D

	The device’s implicit certificate object. This contains the device’s implicit certificate and additional information such as issuer, issue date, expiry date and serial number. The device’s implicit certificate is on the curve ansip256r1 and the additional information is hashed using SHA-256 as defined by [X963], [FIP180] and SEC-4.

	PKObj_SM
	The security manager’s implicit certificate object. This contains the security manager’s implicit certificate and additional information such as issuer, issue date, expiry date and serial number. The security manager’s implicit certificate is on the curve ansip256r1 and the additional information is hashed using SHA-256 as defined by [X963], [FIP180] and SEC-4.

	Pub_D
	The device’s ECIES public encryption key, which is a point on the curve ansip256r1 derived from the implicit certificate as specified in [X963], [SEC4].

	Pr_D
	The device’s ECIES private decryption key, which is an integer less than the order of the elliptic curve ansip256r1 as specified in [X963].

	Pub_SM
	The security manager’s ECIES public encryption key, which is a point on the curve ansip256r1 derived from the implicit certificate as specified in [X963], [SEC4].

	Pr_SM
	The device’s ECIES private decryption key, which is an integer less than the order of the elliptic curve ansip256r1 as specified in [X963].

	C1

	32-octet secret that is randomly and unpredictably generated at the time of the challenge.

	C2
	32-octet secret that is randomly and unpredictably generated at the time of the challenge.

	OID
	Uniquely identifies the security suite. The object identifier is the ASN.1 DER encoding of the OID as defined by ISO/ITU 8824. For this security suite, this is the hex value 0x060A2B06010401C1160201xx. [[TBD]]

	SSID_D

	8-octet random value chosen by the security manager to uniquely identify the keys used to communicate with device D.

	SSID_G
	8-octet random value chosen by the security manager to uniquely identify the keys used to communicate in the piconet.

	Seed_G
	32-octet random value associated with a particular SSID_G used to generate the encryption key Enc_G and integrity key Int_G.

	Enc_D

	128-bit AES key associated with a particular SSID_D, to be used in AES-CBC mode.

	Enc_G
	128-bit AES key associated with a particular SSID_G, to be used in AES-CBC mode.

	Int_D

	128-bit HMAC-SHA-256 key associated with a particular SSID_D

	Int_G
	128-bit HMAC-SHA-256 key associated with a particular SSID_G

	seq_num_SM

	4-octet integer in network byte order associated with a particular SSID_D, used to count commands sent by the SM using that key. The sequence number shall begin counting with 0.

	seq_sum_D
	4-octet integer in network byte order associated with a particular SSID_D, used to count commands sent by the device using that key. The sequence number shall begin counting with 0.

	SymE(m, Enc, IV)
	The result of AES encryption of the message m with the AES key Enc using CBC mode with initialization vector IV as defined in [FIP197] and [MODES].

	SymI(m, Int)
	The result of calculating the HMAC-SHA-256 message authentication code on the message m with the 128-bit HMAC key Int. If m is “…”, the message authentication code is computed over all preceding fields in the frame.

	H(m)
	The 32-octet result of SHA-256 hash on the message m as defined in [FIP180].

	m||n
	The concatenation of two messages m and n.

	Key(m)
	The 128-bit result of truncating the message m to be used as a 128-bit AES key.

	AReq
	Authentication Request command header

	CReq
	Challenge Request command header

	CRes
	Challenge Response command header

	ARes
	Authentication Response command header

	KUReq
	Key Update Request command header

	KURes
	Key Update Response command header

	KRReq
	Key Request command header

	KRRes
	Key Request Response command header

	finished1

	SymI(m, Int) where m is the entire set of data in order in the preceding protocol up to the point of the message authentication code and Int is Int_D.

	finished2
	SymI(m, Int) where m is the entire set of data in order in the preceding protocol up to the point of the message authentication code and Int is Int_D.

3.7 Data Formats (ECC with ACL)

Author’s note: The following notes specify information about the data elements table.

Author’s note: In the ACL mode, the public-key object is simply the ECC public key.

Author’s note: This mode is the most flexible mode for key trust and does not preclude the use of any kind of certificate. If a certificate is to be used, the certificate should be passed in a distribute information command. The DME can then verify the certificate and decide whether or not to use the key included in that certificate. If it is accepted, the DME can add that public key to the access control list. This way, the trust established by the certificate is maintained and the protocol (which passes the raw public key) does not need to be modified to include the certificate.

Author’s ote: The HMAC specification defines full HMAC or truncated HMAC. The non-truncated HMAC (using SHA-256) is included, but the truncated version that includes the first 128 bits of the HMAC is recommended and would provide bandwidth savings of 16 bytes without affecting the believed security level provided.

Author’s note: It was agreed at the meeting to use HMAC with SHA-256 for integrity protection. It is recommended that the group consider the use of an AES MAC instead. Since the implementation of AES will need to meet the data rate for encryption, it may be more efficient to perform AES MAC than SHA-256 HMAC. The group should also consider the mode of AES specified for encryption, as integrity may be provided along with the encryption.

Author’s note: The length of the seed for generating keys has been set to 256 bits. This is recommended because it is twice the length of the security level specified, which is 128 bits, provided 128-bits of collision resistance.

The following table specifies the length and meaning of the undefined data elements from clause 7.

	Notation
	Length
	Value
	Description

	PublicKeyObjectType
	2
	3
	An ECC public key in compressed form on the elliptic curve ansip256r1 as specified in [X963].

	PublicKeyObjectLength
	2
	(1 + 32) = 33
	The length of a compressed elliptic curve public key on the elliptic curve ansip256r1 as specified in [X963].

	PublicKeyObject
	33
	Variable
	The particular instance of a compressed elliptic curve public key on the elliptic curve ansip256r1 as specified in [X963].

	AuthResponseType
	2
	3
	The auth response type specifies the result of an HMAC computation as defined in [HMAC] using a 32-byte key and the SHA-256 hash algorithm as defined in [FIP180].

	AuthResponseLength
	2
	32
	The length of an HMAC computation using a 32-byte key as defined in [HMAC].

	AuthResponse
	32
	Variable
	The result of the HMAC computation using a 32-byte key as defined in [HMAC].

	OIDLength
	1
	12
	The length of the DER encoding of the OID 1.3.6.1.4.1.8342.2.1.xx.[[TBD]]

	OID
	12
	OID Value
	The DER encoding of the object identifier 1.3.6.1.4.1.8342.2.1.xx, which is the hex value 06 0A 2B 06 01 04 01 C1 16 02 01 xx. [[TBD]]

	ChallengeType
	2
	3
	The challenge type specifies an ECIES encryption with XOR encryption and HMAC-SHA-256 of a 32-octet secret that is randomly and unpredictably generated at the time of the challenge, as specified in [X963], [HMAC] and [FIP180].

	ChallengeLength
	2
	(1+ 32) + 32 + 32 = 97
	The length of a compressed ECC public key on the curve ansip256r1 with a 32-byte XOR encrypted seed and a 32-byte HMAC-SHA-256.

	Challenge
	97
	Variable
	The result of the ECIES encryption with XOR encryption and HMAC-SHA-256 of the 32-octet secret, as specified in [X963], [HMAC] and [FIP180].

	ChallengeResponseType
	2
	2
	The challenge response type specifies the result of an HMAC computation as defined in [HMAC] using a 32-byte key and the SHA-256 hash algorithm as defined in [FIP180].

	ChallengeResponseLength
	2
	32
	The length of an HMAC computation as defined in [HMAC] using a 32-byte key and the SHA-256 hash algorithm as defined in [FIP180].

	ChallengeResponse
	32
	Variable
	The result of the HMAC computation as defined in [HMAC] using a 32-byte key and the SHA-256 hash algorithm as defined in [FIP180].

	KeyPurpose
	1
	0
	The type of key requested in key request protocols. Only seeds are transmitted in this security suite.

	EncryptedKeyType
	2
	2
	The encrypted key type specifies the result of AES-256 CBC encryption of the 256-bit seed with random IV as specified in [FIP197] and [MODES].

	EncryptedKeyLength
	2
	64
	The length of an encrypted 256-bit seed encrypted using AES-256 CBC encryption with random IV as specified in [FIP197] and [MODES].

	EncryptedKey
	64
	Variable
	The result of the encryption of the 256-bit seed using AES-256 CBC encryption with random IV as specified in [FIP197] and [MODES}.

Table XX – Frame object formats

3.8 Cryptographic Operation Selections (ECC with ACL)

The security architecture is instantiated by the following algorithms.

· ECIES encryption and decryption with XOR and HMAC-SHA-256 using the elliptic curve ansip256r1 for public key operations as specified in [X963] section 5.8, [HMAC] and [FIP180].

· 128-bit AES-CBC mode for symmetric encryption as specified in [FIP197] and [MODES].

· HMAC with SHA-256 message authentication codes for symmetric integrity protection as specified in [HMAC] and [FIP180].

· SHA-256 cryptographic hash for all cryptographic hashing as specified in [FIP180].

· Elliptic curve keys and point arithmetic on the elliptic curve ansip256r1 defined in appendix J.5.4 of [X963]. All implementations shall support the compressed form of points as specified in [X963], section 4.3.6 and may support uncompressed or hybrid form. All points shall be transmitted in compressed form.

Author’s note: In order to ensure that the ID and public key are properly bound to each other, the DME should ensure that they are bound (using physical methods, logical methods, certificates or other techniques) and pass the hash of the public key and ID to the MLME. During the authentication process, the MLME should hash the received public key and ID and verify that this hash matches the hash received from the DME that it has stored in its ACL.

The use of the cryptographic algorithms for each of the security operations performed in the piconet are specified in the following table:

	Use
	Operation

	Verification of Public-Key
	The ID and public-key received during the authentication protocol is verified by generating the SHA-256 hash of the device address concatenated with the public key of the device and comparing it to the stored hash of the ID and public key stored in the MAC PIB.

	Challenge generation
	The challenges generated during the authentication protocol are computed by performing an ECIES encryption with XOR encryption and HMAC-SHA-256 on a fresh, randomly generated 32-byte challenge using the other device’s public key.

	Challenge decryption
	The challenge decryption operation is performed using ECIES decryption with XOR and HMAC-SHA-256 of the challenge received.

	Seed generation (for authentication protocol)
	The 64-byte seed for the authentication protocol consists of the decrypted challenge from the security manager, concatenated with the decrypted challenge of the DEV.

	Integrity Key Derivation
	All integrity keys are generated from a seed by first calculating the SHA-256 hash of the seed concatenated with the byte 0x00 and then setting the key to be the first 128 bits of the result.

	Encryption Key Derivation
	All encryption keys are generated from a seed by first calculating the SHA-256 hash of the seed concatenated with the byte 0x01 and then setting the key to be the first 128 bits of the result.

	Challenge response generation
	The challenge response is computed by computing the HMAC-SHA-256 message authentication code on the entire authentication protocol up to that point using the integrity key.

	Authentication response generation
	The authentication response is computed by computing the HMAC-SHA-256 message authentication code on the entire authentication protocol up to that point using the integrity key.

	Beacon message authentication code generation (Integrity Code information element)
	The message authentication code included in the beacon is computed as the HMAC-SHA-256 message authentication code on the entire beacon up to the integrity code information element using the integrity key.

	Command message authentication code generation
	The message authentication code included in command frames is computed as the HMAC-SHA-256 message authentication code on the entire command up to the message authentication code using the integrity key.

	ACK message authentication code generation
	The message authentication code included in ACK frames is computed as the HMAC-SHA-256 message authentication code on the entire ACK up to the message authentication code using the integrity key.

	Data message authentication code generation
	The message authentication code included in data frames is computed as the HMAC-SHA-256 message authentication code on the entire data frame up to the message authentication code after encryption has been performed using the integrity key.

	Seed encryption operation (for request key and distribute key)
	The seed for key transport is encrypted using AES-CBC with a random IV using the encryption key.

	Data encryption generation
	Data in a data frame is encrypted using AES-CBC with a random IV using the encryption key.

Table XX – Security related operations

The following table specifies the instantiation of the protocols in the notation from clause XX.

	Notation
	Definition

	Enc(m, K)
	ECIES public-key encryption with XOR and HMAC-SHA-256 of the message m using the public key K as specified in [X963] section 5.8, [HMAC] and [FIP180].

	ID_D
	The 48-bit IEEE MAC address uniquely identifying the device.

	ID_SM
	The 48-bit IEEE MAC address uniquely identifying the device.

	PKObj_D

	The device’s ECIES public encryption key in compressed form on the curve ansip256r1 as defined by [X963].

	PKObj_SM
	The security manager’s ECC public key in compressed form on the curve ansip256r1 as defined by [X963].

	Pub_D
	The device’s ECIES public encryption key, which is a point on the curve ansip256r1 as specified in [X963].

	Pr_D
	The device’s ECIES private decryption key, which is an integer less than the order of the elliptic curve ansip256r1 as specified in [X963].

	Pub_SM
	The security manager’s ECIES public encryption key, which is a point on the curve ansip256r1 as specified in [X963].

	Pr_SM
	The security manager’s ECIES private decryption key, which is an integer less than the order of the elliptic curve ansip256r1 as specified in [X963].

	C1

	32-octet secret that is randomly and unpredictably generated at the time of the challenge.

	C2
	32-octet secret that is randomly and unpredictably generated at the time of the challenge.

	OID
	Uniquely identifies the security suite. The object identifier is the ASN.1 DER encoding of the OID as defined by ISO/ITU 8824. For this security suite, this is the hex value 0x060A2B06010401C1160201xx. [[TBD]]

	SSID_D

	8-octet random value chosen by the security manager to uniquely identify the keys used to communicate with device D.

	SSID_G
	8-octet random value chosen by the security manager to uniquely identify the keys used to communicate in the piconet.

	Seed_G
	32-octet random value associated with a particular SSID_G used to generate the encryption key Enc_G and integrity key Int_G.

	Enc_D

	128-bit AES key associated with a particular SSID_D, to be used in AES-CBC mode.

	Enc_G
	128-bit AES key associated with a particular SSID_G, to be used in AES-CBC mode.

	Int_D

	128-bit HMAC-SHA-256 key associated with a particular SSID_D

	Int_G
	128-bit HMAC-SHA-256 key associated with a particular SSID_G

	seq_num_SM

	4-octet integer in network byte order associated with a particular SSID_D, used to count commands sent by the SM using that key. The sequence number shall begin counting with 0.

	seq_sum_D
	4-octet integer in network byte order associated with a particular SSID_D, used to count commands sent by the device using that key. The sequence number shall begin counting with 0.

	SymE(m, Enc, IV)
	The result of AES encryption of the message m with the AES key Enc using CBC mode with initialization vector IV as defined in [FIP197] and [MODES].

	SymI(m, Int)
	The result of calculating the HMAC-SHA-256 message authentication code on the message m with the 128-bit HMAC key Int. If m is “…”, the message authentication code is computed over all preceding fields in the frame.

	H(m)
	The 32-octet result of SHA-256 hash on the message m as defined in [FIP180].

	m||n
	The concatenation of two messages m and n.

	Key(m)
	The 128-bit result of truncating the message m to be used as a 128-bit AES key.

	AReq
	Authentication Request command header

	CReq
	Challenge Request command header

	CRes
	Challenge Response command header

	ARes
	Authentication Response command header

	KUReq
	Key Update Request command header

	KURes
	Key Update Response command header

	KRReq
	Key Request command header

	KRRes
	Key Request Response command header

	finished1

	SymI(m, Int) where m is the entire set of data in order in the preceding protocol up to the point of the message authentication code and Int is Int_D.

	finished2
	SymI(m, Int) where m is the entire set of data in order in the preceding protocol up to the point of the message authentication code and Int is Int_D.

Submission
Page

Daniel V. Bailey, Ari Singer, NTRU

