
IEEE C802.16n-11/00xx-Security

	Project
	IEEE 802.16 Broadband Wireless Access Working Group <http://ieee802.org/16>

	Title
	Consolidated Contributions for Security Ad Hoc Group in IEEE 802.16n

	Date Submitted
	2011-05-10

	Source(s)
	Joseph Teo Chee Ming

	E-mail:
cmteo@i2r.a-star.edu.sg

	Re:
	in response to the Security Ad Hoc Group activity

	Abstract
	Consolidated Contributions for Security discussion in IEEE 802.16n

	Purpose
	Initial GRIDMAN System Requirements working document to enable capturing the requirements for the prospective IEEE 802.16n AWD.

	Notice
	This document does not represent the agreed views of the IEEE 802.16 Working Group or any of its subgroups. It represents only the views of the participants listed in the “Source(s)” field above. It is offered as a basis for discussion. It is not binding on the contributor(s), who reserve(s) the right to add, amend or withdraw material contained herein.

	Release
	The contributor grants a free, irrevocable license to the IEEE to incorporate material contained in this contribution, and any modifications thereof, in the creation of an IEEE Standards publication; to copyright in the IEEE’s name any IEEE Standards publication even though it may include portions of this contribution; and at the IEEE’s sole discretion to permit others to reproduce in whole or in part the resulting IEEE Standards publication. The contributor also acknowledges and accepts that this contribution may be made public by IEEE 802.16.

	Patent Policy
	The contributor is familiar with the IEEE-SA Patent Policy and Procedures:

<http://standards.ieee.org/guides/bylaws/sect6-7.html#6> and <http://standards.ieee.org/guides/opman/sect6.html#6.3>.

Further information is located at <http://standards.ieee.org/board/pat/pat-material.html> and <http://standards.ieee.org/board/pat>.

Consolidated Contributions for Security in IEEE 802.16n
Joseph Teo Chee Ming
Introductions
This consolidated contribution contains proposed text from all contributions submitted before/during session #72, Singapore. The following is the list of contributions that were marked for the Security. The Multicast Security proposed by ETRI is also shown in this document. The contributions are tagged based on the “802.16n-11/0003r6” as follows:

· yellow : Security
Table 1 – List of contributions related to Security
	
	Contribution
	Title
	Author
	Affiliation
	Category
	Note

	1
	C80216n-11_0009r1.doc
	Network-aided and Autonomous Secure Direct Communications in wireless access network
	Joseph Chee Ming Teo, Jaya Shankar, Yeow Wai Leong, Hoang Anh Tuan, Wang Haiguang, Zheng Shoukang, Mar Choon Hock
	Institute for Infocomm Research
	Security
	

	2
	C80216n-11_0010r1.doc
	Secure Direct Communications in wireless access network without network infrastructure
	Joseph Chee Ming Teo, Jaya Shankar, Yeow Wai Leong, Hoang Anh Tuan, Wang Haiguang, Zheng Shoukang, Mar Choon Hock
	Institute for Infocomm Research
	Security
	

	3
	C80216n-11_0011r1.doc
	Autonomous Secure Direct Communications in wireless access network
	Joseph Chee Ming Teo, Jaya Shankar, Yeow Wai Leong, Hoang Anh Tuan, Wang Haiguang, Zheng Shoukang, Mar Choon Hock
	Institute for Infocomm Research
	Security
	

The following procedure was used in consolidating the proposed texts from all contributions.

1. Proposed texts are placed in the Section they address. If the text in the contribution addresses more than one section, then the text is split and placed under the appropriate Section numbers (or categories).

2. All proposed texts from different contributions that address a particular section are together.

3. Existing Section numbers are in black color with a bold face.

4. Existing text are colored black

5. Proposed text and sections from a contribution are bound by the delimiters [Begin of Text Proposal: From C802.16n- 11/xxxx] and [End of Text Proposal: From C802.16n- 11/xxxx] where xxxx is the contribution number from where the proposed text was taken. They will be removed from the RG contribution that is going to be submitted to the TG.

6. All proposed sections are colored blue with an underline and bold face.
7. All proposed text are initially colored blue with an underline.
[---Begin of Text Proposal--]

***** BEGIN: SECURITY*****

[Begin of Text Proposal: From C802.16n-11/0009r1]
17.2.10.1 Security procedures for HR-Networks
The following security procedures shall be used for secure communication and session establishment amongst HR-stations, and between HR-stations and external AAA-server.

17.2.10.1.1 Network Aided Mutual Authentication of HR-MS and Data Security

The security procedure shall be executed between HR-BS, Authenticator, AAA Server, HR-MS1 and HR-MS2 to establish the direct communication pre-shared key DMK between HR-MS1 and HR-MS2 so that HR-MS1 and HR-MS2 can communicate with each other directly in the event of a backbone failure (i.e. there is no HR-BS around).
The HR-BS/Authenticator is used to denote that the HR-BS may pass the messages to the AAA-server via the Authenticator for verification and the AAA-server may compute the direct communication pre-shared key DMK and send it to the HR-BS via the Authenticator. The flow diagram is shown in Figure AAA while the flow chart is shown in Figure BBB.
This security procedure includes the following steps:

Step 1: HR-MS1 selects nonce NHR-MS1, computes θHR-MS1 = MACCMAC1(“DC_REQ_MS”|THR-MS1| NHR-MS1|HR-MS1Addr|HR-MS2Addr) and sends a DC_Request_MSG#1 message to HR-BS/Authenticator to request for a direct communication pre-shared key DMK to be shared with HR-MS2, where DC_Request_MSG#1 = “DC_REQ_MS"|THR-MS1|NHR-MS1|HR-MS1Addr|HR-MS2Addr|θHR-MS1 .
Step 2: HR-BS/Authenticator checks THR-MS1, NHR-MS1 for message freshness and θHR-MS1 for message authentication. If the verifications fail, HR-BS/Authenticator shall silently discard DC_Request_MSG#1 message. If the verifications are correct, HR-BS/Authenticator selects NHR-BS, computes θHR-BS = MACCMAC2(“DC_REQ_BS”| THR-BS|NHR-BS|HR- MS1Addr|HR-MS2Addr) and sends DC_Request_MSG#2 to HR-MS2 to inform HR-MS2 of the direct connection request from HR-MS1, where DC_Request_MSG#2 = “DC_REQ_BS”|THR-BS|NHR-BS|HR- MS1Addr|HR-MS2Addr|θHR-BS.

Step 3: HR-MS2 checks THR-BS, NHR-BS for message freshness and θHR-BS for message authentication. If the verifications fail, HR-MS2 shall ignore the DC_Request_MSG#2 message. If the verifications are correct, HR-MS2 selects NHR-MS2, computes θHR-MS2 = MACCMAC2(“DC_REPLY_MSG”| THR-MS2|NHR-MS2|HR-MS1Addr|HR-MS2Addr|NHR-BS) and sends DC_REPLY_MSG#3 to HR-BS/Authenticator to inform HR-BS/Authenticator of its decision to directly communicate with HR-MS1, where DC_REPLY_MSG#3 = “DC_REPLY_MSG”|THR-MS2|NHR-MS2|HR-MS1Addr|HR-MS2Addr|NHR-BS|θHR-MS2. Note that “DC_REPLY_MSG” = “DC_REPLY_OK” if HR-MS2 agrees to direct communications with HR-MS1 and “DC_REPLY_MSG” = “DC_REPLY_NOTOK” if HR-MS2 refuses direct communications with HR-MS1.
Step 4: HR-BS/Authenticator checks THR-MS2, NHR-MS2 for message freshness and θHR-MS2 for message authentication. If the verifications fail, HR-BS/Authenticator shall ignore the DC_REPLY_MSG#3. If the verifications are correct, HR-BS/Authenticator checks the response from HR-MS2. If “DC_REPLY_MSG” = “DC_REPLY_NOTOK”, then the protocol stops and HR-BS/Authenticator selects NHR-BS', computes θHR-BS' = MACCMAC1(“DC_REPLY_NOK_BS”|THR-BS'|NHR-BS'| NHR-MS1) and sends DC_REPLY_MSG#4 message to HR-MS1, where DC_REPLY_MSG#4 = “DC_REPLY_NOK_BS”|THR-BS'|NHR-BS'|NHR-MS1|θHR-BS'.

Otherwise, If “DC_REPLY_MSG” = “DC_REPLY_OK”, then HR-BS/Authenticator generates DMK, selects NHR-BS' and encrypts EHR-MS1_KEK(DMK, key_lifetime, HR-MS1Addr, HR-MS2Addr) and computes θHR-BS' = MACCMAC1(“DC_REPLY_OK_BS”| THR-BS'|NHR-BS'| EHR-MS1_KEK(DMK, key_lifetime, HR-MS1Addr, HR-MS2Addr)|HR-MS1Addr|HR-MS2Addr| NHR-MS1) and sends DC_REPLY_MSG#5 message to HR-MS1, where DC_REPLY_MSG#5 = “DC_REPLY_OK_BS”| THR-BS'|NHR-BS'| EHR-MS1_KEK(DMK, key_lifetime, HR-MS1Addr, HR-MS2Addr)|HR-MS1Addr|HR-MS2Addr| NHR-MS1|θHR-BS'. HR-BS/Authenticator also encrypts EHR-MS2_KEK(DMK, key_lifetime, HR-MS2Addr, HR-MS1Addr) and computes θHR-BS'' = MAC CMAC2(“DC_REPLY_OK_BS”|THR-BS''|NHR-BS|EHR-MS2_KEK(DMK, key_lifetime, HR-MS2Addr, HR-MS1Addr)|HR-MS2Addr|HR-MS1Addr|NHR-MS2) and sends DC_REPLY_MSG#6 message to HR-MS2, where DC_REPLY_MSG#6 = “DC_REPLY_OK_BS”| THR-BS''|NHR-BS|EHR-MS2_KEK(DMK, key_lifetime, HR-MS2Addr, HR-MS1Addr)|HR-MS2Addr|HR-MS1Addr|NHR-MS2| θHR-BS''.
If HR-BS/Authenticator does not receive DC_REPLY_MSG#3 message from HR-MS2 within DC_REPLY_MSG#2 Timeout, it shall resend the DC_REPLY_MSG#2 message up to DC_REPLY_MSG#2 MaxResends times. If HR-BS/Authenticator reaches its maximum number of resends, it shall drop the request and inform HR-MS1 of unsuccessful request by selecting NHR-BS', computes θHR-BS' = MACCMAC1(“DC_REPLY_NOK_BS”|THR-BS'|NHR-BS'| NHR-MS1) and sending DC_REPLY_MSG#4 message to HR-MS1, where DC_REPLY_MSG#4 = “DC_REPLY_NOK_BS”|THR-BS'|NHR-BS'|NHR-MS1|θHR-BS'.

Step 5a: If HR-MS1 received DC_REPLY_MSG#4 message from HR-BS/Authenticator, HR-MS1 first checks THR-BS', NHR-BS' and NHR-MS1 for freshness and θHR-BS' for message authentication. If the verifications fail, then HR-MS1 shall ignore DC_REPLY_MSG#4 message. If the verifications are correct, then HR-MS1 receives the “DC_REPLY_NOK_BS” message which means that HR-MS2 refuses direct communications with HR-MS1.
Step 5b: If HR-MS1 received DC_REPLY_MSG#5 message from HR-BS/Authenticator, HR-MS1 first checks THR-BS', NHR-BS' and NHR-MS1 for freshness and θHR-BS' for message authentication. If the verifications fail, then HR-MS1 shall ignore DC_REPLY_MSG#5 message. If the verifications are correct, then HR-MS1 decrypts EHR-MS1_KEK(DMK, key_lifetime, HR-MS1Addr, HR-MS2Addr) and obtains DMK and its lifetime key_lifetime.
If HR-MS1 does not receive DC_REPLY_MSG#4 or DC_REPLY_MSG#5 message from HR-BS/Authenticator within DC_REPLY_MSG#1 Timeout, it shall resend the DC_REPLY_MSG#1 message up to DC_REPLY_MSG#1 MaxResends times. If HR-MS1 reaches its maximum number of resends, it shall initiate another network-aided authentication and key exchange or drop the request.

Step 5c: Upon receiving the DC_REPLY_MSG#6 message, HR-MS2 first checks THR-BS'', NHR-BS and NHR-MS2 for freshness and θHR-BS'' for message authentication. If the verifications fail, HR-MS2 shall ignore the DC_REPLY_MSG#6 message. If the verifications are correct, then HR-MS2 decrypts EHR-MS2_KEK(DMK, key_lifetime, HR-MS2Addr, HR-MS1Addr) and obtains DMK and its lifetime key_lifetime. If HR-MS2 does not receive DC_REPLY_MSG#6 message from HR-BS/Authenticator within DC_REPLY_MSG#3 Timeout, it shall resend the DC_REPLY_MSG#3 message up to DC_REPLY_MSG#3 MaxResends times. If HR-MS2 reaches its maximum number of resends, it shall initiate drop the request.

[image: image8.png]HR-MS1

DirectComms_KeyAgreement_MSG_#1

HR-MS2

DirectComms_KeyAgreement_MSG_#2

DirectComms_KeyAgreement_MSG_#3

 [image: image9.png]HR-BS*

DirectComms_KeyAgreement_MSG_#1

HR-MS2

DirectComms_KeyAgreement_MSG_#2

DirectComms_KeyAgreement_MSG_#3

DirectComms_KeyAgreement_MSG_#4

Note: HR-BS* refers to HR-MS1 converted to HR-BS during network failure

[image: image10.wmf]HR

-

MS1

HR

-

BS /

Authenticator

HR

-

MS2

DC_REQUEST_MSG#1

DC_REQUEST_MSG#2

DC_REPLY_MSG#3

DC_REPLY_MSG#4 or

DC_REPLY_MSG#5

DC_REQUEST_MSG#6

[image: image1]
17.2.10.1.2 Autonomous Mutual Authentication of HR-MS and data security for Direct Communications
17.2.10.1.2.1 Pre-established Key Approach
HR-MS shall mutually authenticate themselves without access to a security server using the pre-established shared key DMK. The following security procedure shall be executed to provide Autonomous Mutual Authentication of HR-MS and data security for Direct Communications. HR-MS1 and HR-MS2 has already established a pre-shared key DMK with the aid of the Network Infrastructure. The establishment of the pre-shared key DMK can be done using the procedure mentioned in Section 17.2.10.1.1. Figure CCC shows the flow diagram while Figure DDD shows the flow chart for this scenario.
This security procedure includes the following steps:
Step 1: HR-MS1 selects nonce NHR-MS1 and uses the shared DMK and computes DAK = Dot16KDF (DMK, HR-MS1Addr|HR-MS2Addr| “DAK”, 160), the DCMAC = Dot16KDF(DAK, “DCMAC_KEYS”, 128) and θHR-MS1 = MACDCMAC(N HR-MS1|DMK_Sequence_No|DAKID|Key_lifetime) and DTEK = DOT16KDF(DAK, “DTEK_KEY”, 128). Finally, HR-MS1 sends the DirectComms_KeyAgreement_MSG_#1 message to HR-MS2, where DirectComms_KeyAgreement_MSG_#1 = NHR-MS1| DMK_Sequence_No| DAKID|Key_lifetime| θHR-MS1.
Step 2: HR-MS2 first verifies the received nonce is fresh and uses the shared DMK and computes DAK =Dot16KDF (DMK, HR-MS1Addr|HR-MS2Addr|”DAK”, 160), the DCMAC = Dot16KDF(DAK, “DCMAC_KEYS”, 128), DTEK = DOT16KDF(DAK, “DTEK_KEY”, 128) and uses DCMAC to checks θHR-MS1. If the verification fails, HR-MS2 shall ignore the DirectComms_KeyAgreement_MSG_#1 message. If the verification is correct, HR-MS2 selects NHR-MS2 and computes θHR-MS2 = MACDCMAC(N HR-MS1|N HR-MS2|DAKID|DMK_Sequence_No|DC_Security_Parameters). Finally, HR-MS2 sends DirectComms_KeyAgreement_MSG_#2 message to HR-MS1, where DirectComms_KeyAgreement_MSG_#2 = N HR-MS1|N HR-MS2|DAKID|DMK_Sequence_No|DC_Security_Parameters|θHR-MS2.
Step 3: HR-MS1 receives the DirectComms_KeyAgreement_MSG_#2 message from HR-MS2 and checks the received nonces for freshness and also checks DAKID and θHR-MS2. If the verifications fail, HR-MS1 shall ignore the DirectComms_KeyAgreement_MSG_#2 message. If the verifications are correct, HR-MS1 computes θHR-MS1' = MACDCMAC(NHR-MS1|N HR-MS2|DMK_Sequence_No|DC_SAID|DC_Security_Parameters). Finally, HR-MS1 sends DirectComms_KeyAgreement_MSG_#3 message to HR-MS2, where DirectComms_KeyAgreement_MSG_#3 = NHR-MS1|N HR-MS2|DMK_Sequence_No|DC_SAID| DC_Security_Parameters|θHR-MS1'. If HR-MS1 does not receive DirectComms_KeyAgreement_MSG_#2 message from HR-MS2 within DirectComms_KeyAgreement_MSG_#1 Timeout, it shall resend the DirectComms_KeyAgreement_MSG_#1 message up to DirectComms_KeyAgreement_MSG_#1 MaxResends times. If HR-MS1 reaches its maximum number of resends, it shall initiate another authentication or drop the request.

Step 4: Upon receiving the DirectComms_KeyAgreement_MSG_#3 message, HR-MS2 checks the received nonces for freshness and θHR-MS1'. If the verifications are invalid, then HR-MS2 shall ignore the DirectComms_KeyAgreement_MSG_#3 message. If the verifications are correct, HR-MS2 applies the negotiated security parameters and is ready for direct communications with HR-MS1. Otherwise, if θHR-MS1' is invalid, then HR-MS2 shall ignore the DirectComms_KeyAgreement_MSG_#3 message. If HR-MS2 does not receive DirectComms_KeyAgreement_MSG_#3 message from HR-MS1 within DirectComms_KeyAgreement_MSG_#2 Timeout, it shall resend the DirectComms_KeyAgreement_MSG_#2 message up to DirectComms_KeyAgreement_MSG_#2 MaxResends times. If HR-MS2 reaches its maximum number of resends, it shall initiate another authentication or drop the request.

[image: image2]

[image: image3]
[End of Text Proposal: From C802.16n-11/0009r1]
[Begin of Text Proposal: From C802.16n-11/0010r1]
17.2.10.1.2 Autonomous Mutual Authentication of HR-MS and data security for Direct Communications
17.2.10.1.2.2 Public Key Infrastructure (PKI) Approach
HR-MS shall mutually authenticate themselves without access to a security server using the security procedure described below. Each HR-node has a public/private key pair and digital certificate (e.g. X.509) issued by a certification authority for mutual authentication and key exchange. The flow diagram for this scenario is depicted in Figure EEE and the Flow Chart for this scenario is shown in Figure FFF.
The security procedure includes the following steps:

Step 1: HR-MS1 first generates nonce NHR-MS1. Next, HR-MS1 computes the signature σHR-MS1 = SIGN(T HR-MS1|N HR-MS1|HR-MS2Addr|HR-MS1Addr) and sends DirectComms_KeyAgreement_MSG_#1 message to HR-MS2, where DirectComms_KeyAgreement_MSG_#1 = T HR-MS1|NHR-MS1|HR-MS2Addr|HR-MS1Addr|σHR-MS1|Cert(HR-MS1).

Step 2: HR-MS2 first verifies the received timestamp and nonce for freshness and the certificate Cert(HR-MS1) and signature σHR-MS1. If the verifications fail, then HR-MS2 ignores the DirectComms_KeyAgreement_MSG_#1 message. If the verifications are correct, then HR-MS2 generates nonce NHR-MS2 and DMK and computes DAK =Dot16KDF (DMK, HR-MS1Addr|HR-MS2Addr| “DAK”, 160) and the DCMAC = Dot16KDF(DAK, “DCMAC_KEYS”, 128) and DTEK = DOT16KDF(DAK, “DTEK_KEY”, 128) and θHR-MS2 = MACDCMAC(N HR-MS2|NHR-MS1|HR-MS2Addr|HR-MS1Addr). HR-MS2 then uses HR-MS1's public key to encrypt and obtain EHR-MS1_PK(DMK, key_lifetime, HR-MS1Addr, HR-MS2Addr). Finally, HR-MS2 computes signature σHR-MS2 = SIGN(THR-MS2|NHR-MS2|HR-MS1Addr|HR-MS2Addr|NHR-MS1|EHR-MS1_PK(DMK, key_lifetime, HR-MS1Addr, HR-MS2Addr)|θHR-MS2) and sends DirectComms_KeyAgreement_MSG_#2 message to HR-MS1, where DirectComms_KeyAgreement_MSG_#2 = THR-MS2|NHR-MS2|HR-MS1Addr|HR-MS2Addr|NHR-MS1|EHR-MS1_PK(DMK, key_lifetime, HR-MS1Addr, HR-MS2Addr)|θHR-MS2|σHR-MS2|Cert({HR-MS2).
Step 3: HR-MS1 first verifies the received timestamp and nonces for freshness and the certificate Cert(HR-MS2) and signature σHR-MS2. If the verification is invalid, then HR-MS1 ignores the DirectComms_KeyAgreement_MSG_#2 message. If the verifications are correct, then HR-MS1 decrypts EHR-MS1_PK(DMK, key_lifetime, HR-MS1Addr, HR-MS2Addr) and obtains DMK and key_lifetime. Next, HR-MS1 computes DAK, DCMAC and DTEK and verifies θHR-MS2. If the verification is invalid, then HR-MS1 ignores the DirectComms_KeyAgreement_MSG_#2 message. If the verification is correct, then HR-MS1 computes θHR-MS1 = MACDCMAC(N HR-MS1|N HR-MS2|HR-MS1Addr|HR-MS2Addr) and sends DirectComms_KeyAgreement_MSG_#3 message to HR-MS2, where DirectComms_KeyAgreement_MSG_#3 = NHR-MS2|HR-MS2Addr|HR-MS1Addr| θHR-MS1. If HR-MS1 does not receive DirectComms_KeyAgreement_MSG_#2 message from HR-MS2 within DirectComms_KeyAgreement_MSG_#1 Timeout, it shall resend the DirectComms_KeyAgreement_MSG_#1 message up to DirectComms_KeyAgreement_MSG_#1 MaxResends times. If HR-MS1 reaches its maximum number of resends, it shall initiate another authentication or drop the request.

Step 4: HR-MS2 receives the DirectComms_KeyAgreement_MSG_#3 message and verifies received nonce and the CMAC tuple. If the verification fails, then HR-MS2 ignores DirectComms_KeyAgreement_MSG_#3 message. If the verification is correct, then HR-MS2 confirms that HR-MS1 has computed the correct keys and commence secure direct communications. If HR-MS2 does not receive DirectComms_KeyAgreement_MSG_#3 message from HR-MS1 within DirectComms_KeyAgreement_MSG_#2 Timeout, it shall resend the DirectComms_KeyAgreement_MSG_#2 message up to DirectComms_KeyAgreement_MSG_#2 MaxResends times. If HR-MS2 reaches its maximum number of resends, it shall initiate another authentication or drop the request.

[image: image4]

[image: image5]
[End of Text Proposal: From C802.16n-11/0010r1]
[Begin of Text Proposal: From C802.16n-11/0011r1]
17.2.10.1.2 Autonomous Mutual Authentication of HR-MS and data security for Direct Communications
17.2.10.1.2.3 Multi-mode Approach
In the case where one of the HR-MS, say HR-MS1 is capable of multi-mode operations and is able to switch to a base station (HR-BS*) for secure direct communication with HR-MS2, then the two direct communicating HR-MSs (HR-MS1(HR-BS*) and HR-MS2) shall mutually authenticate each other without access to a security server.

The security procedure below shall be executed establish a secure direct communication channel between HR-MS1 (HR-BS*) and HR-MS2. Figure GGG shows the flow diagram and Figure HHH shows the flow chart in this scenario.

Step 1: The transformed HR-BS* shall send the DirectComms_KeyAgreement_MSG_#1 message to HR-MS2, where DirectComms_KeyAgreement_MSG_#1 = Cert(HR-BS*).

Step 2: HR-MS2 first verifies the certificate Cert(HR-BS*). If the verification fails, then HR-MS2 shall ignore the DirectComms_KeyAgreement_MSG_#1 message. If the verifications are correct, then HR-MS2 generates nonce NHR-MS2. Next, HR-MS2 computes the signature σHR-MS2 = SIGN(THR-MS2|NHR-MS2|HR-BS*Addr|HR-MS2Addr) and sends the DirectComms_KeyAgreement_MSG_#2 message to HR-BS*, where DirectComms_KeyAgreement_MSG_#2 = THR-MS2|NHR-MS2|HR-BS*Addr|HR-MS2Addr|σHR-MS2|Cert(HR-MS2).

Step 3: HR-BS* first verifies the received timestamp and nonce for freshness and certificate Cert(HR-MS2) and signature σHR-MS2. If the verifications fail, then HR-BS* ignores the DirectComms_KeyAgreement_MSG_#2 message. If the verifications are correct, then HR-BS* generates nonce NHR-BS* and DMK and computes DAK =Dot16KDF (DMK, HR-BS*Addr|HR-MS2Addr| “DAK”, 160), the DCMAC = Dot16KDF(DAK, “DCMAC_KEYS”, 128), the DTEK = DOT16KDF(DAK, “DTEK_KEY”, 128) and θHR-BS* = MACDCMAC(N HR-BS*|N HR-MS2|{HR-BS*Addr|{HR-MS2Addr). HR-BS* then uses HR-MS2's public key to encrypt and obtain EHR-MS2_PK(DMK, key_lifetime, HR-BS*Addr, HR-MS2Addr). Finally, HR-BS* computes signature σHR-BS* = SIGN(T HR-BS*|N HR-BS*|HR-MS2Addr|HR-BS*Addr|N HR-MS2|EHR-MS2_PK(DMK, key_lifetime, HR-BS*Addr, HR-MS2Addr)| θHR-BS*) and sends DirectComms_KeyAgreement_MSG_#3 message to HR-MS2, where DirectComms_KeyAgreement_MSG_#3 = T HR-BS*|N HR-BS*|HR-MS2Addr|HR-BS*Addr|N HR-MS2|EHR-MS2_PK(DMK, key_lifetime, HR-BS*Addr, HR-MS2Addr)| θHR-BS* | σHR-BS*|Cert(HR-BS*). If HR-BS* does not receive DirectComms_KeyAgreement_MSG_#2 message from HR-MS2 within DirectComms_KeyAgreement_MSG_#1 Timeout, it shall resend the DirectComms_KeyAgreement_MSG_#1 message up to DirectComms_KeyAgreement_MSG_#1 MaxResends times. If HR-BS* reaches its maximum number of resends, it shall initiate another authentication or drop the request.
Step 4: HR-MS2 first verifies the received timestamp, nonce and signature σHR-BS*. If the verifications are invalid, HR-MS2 shall ignores the DirectComms_KeyAgreement_MSG_#3 message. If the verifications are correct, then HR-MS2 decrypts EHR-MS2_PK(DMK, key_lifetime, HR-BS*Addr, HR-MS2Addr) and obtains DMK and its lifetime key_lifetime. Next, HR-MS2 computes DAK, DCMAC key and DTEK and verifies θ HR-BS*. If the verification is correct, then HR-MS2 can compute θHR-MS2 = MACDCMAC(N HR-MS2|NHR-BS*|HR-MS2Addr|HR-BS*Addr) and sends DirectComms_KeyAgreement_MSG_#4 message to HR-BS*, where DirectComms_KeyAgreement_MSG_#4 = NHR-BS*|HR-BS*Addr|HR-MS2Addr|θHR-MS2. If HR-MS2 does not receive DirectComms_KeyAgreement_MSG_#3 message from HR-BS* within DirectComms_KeyAgreement_MSG_#2 Timeout, it shall resend the DirectComms_KeyAgreement_MSG_#2 message up to DirectComms_KeyAgreement_MSG_#2 MaxResends times. If HR-MS2 reaches its maximum number of resends, it shall initiate another authentication or drop the request.

Step 5: HR-BS* receives the above message and verifies the received nonce and CMAC tuple. If the verifications fail, HR-BS* shall ignore the DirectComms_KeyAgreement_MSG_#4 message. If the verification are correct, then HR-BS* confirms that HR-MS2 has computed the correct keys and commence secure direct communications. If HR-BS* does not receive DirectComms_KeyAgreement_MSG_#4 message from HR-MS2 within DirectComms_KeyAgreement_MSG_#3 Timeout, it shall resend the DirectComms_KeyAgreement_MSG_#3 message up to DirectComms_KeyAgreement_MSG_#3 MaxResends times. If HR-BS* reaches its maximum number of resends, it shall initiate another authentication or drop the request.

[image: image6]

[image: image7]
[End of Text Proposal: From C802.16n-11/0011r1]
[Begin of Text Proposal: From C802.16n-11/0009/0010/0011r1]
17.2.10.1.3 Key Derivation

The key hierarchy defines what keys are present in the system and how the keys are generated.

17.2.10.1.3.1 DMK Derivation
The Direct Communication pre-shared Master Key DMK is a 160-bit key that is randomly generated by HR-BS or a network entity (e.g. an AAA Server etc).

The DMK may be used as a source for keying materials required by upper layers.
The DMK is used to derive the Direct Communication Authentication Key (DAK).
17.2.10.1.3.2 DAK Derivation
DAK is derived from DMK and belongs to a pair of HR-MSs. The DAK is used for Direct Communications in the event of failure in the backbone.

The DAK derivation is as follows:

DAK =Dot16KDF (DMK, HR-MS1Addr|HR-MS2Addr|”DAK”, 160)

where: HR-MS1Addr and HR-MS2Addr are the addresses of HR-MS1 and HR-MS2 respectively.
The DAK is used to derive other keys:

· Direct Communication Cipher-based Message Authentication Code (DCMAC) key

· Direct Communication Traffic Encryption Key (DTEK)

17.2.10.1.3.3 DCMAC Key Derivation
DCMAC key is derived from DAK and used for message authentication for the messages sent during direct communications.

DCMAC key is derived as follows:

DCMAC = Dot16KDF(DAK, “DCMAC_KEYS”, 128)
17.2.10.1.3.4 DTEK Derivation
DTEK is the transport encryption key used to encrypt data in direct communications.

DTEK is derived as follows:

DTEK = Dot16KDF(DAK, “DTEK_KEY”, 128)

[End of Text Proposal: From C802.16n-11/0009/0010/0011r1]
***** END: SECURITY *****

 [---End of Text Proposal--]

Figure AAA: Flow Diagram of Authentication and Key Establishment of Network Aided Direct Communication scenario.

Figure BBB: Flow Chart of Network Aided Direct Communication Authentication and Key Establishment Security Procedure.

HR-MS1 sends a DC_Request_MSG#1

message to HR-BS/Authenticator to request for a direct communication pre-shared

key DMK to be shared with HR-MS2.

HR-BS/Authenticator verifies the received message. If the verification is correct, HR-BS/Authenticator sends a DC_Request_MSG#2 message to HR-MS2.

HR-MS2 verifies the received message. If the verification is correct, then HR-MS2 decides on whether to accept or deny the direct communication key establishment request. HR-MS2 sends its response in DC_Reply_MSG#3 to HR-BS/Authenticator.

HR-BS/Authenticator verifies the received message. If the verification is correct, then HR-BS/Authenticator checks the response from HR-MS2. If HR-MS2 denies the direct communication key establishment, then the protocol stops and HR-BS/Authenticator sends DC_Reply_MSG#4 to inform HR-MS1. Otherwise, HR-BS/Authenticator generates the DMK and sends the DMK securely to HR-MS1 and HR-MS2 via DC_Reply_MSG#5 and DC_Reply_MSG#6 respectively.

HR-MS1 and HR-MS2 verifies the received message. If the verification is correct, then HR-MS1 and HR-MS2 decrypts and obtains DMK and key_lifetime for direct communications.

Figure CCC: Flow Diagram of Authentication and Key Establishment of Direct Communication without Infrastructure (Pre-shared key case).

Figure DDD: Flow Chart of Pre-shared key-based Autonomous Direct Communication Authentication and Key Establishment Security Procedure.

HR-MS2 verifies the received CMAC tuple. If the verification is correct, HR-MS2 generates its nonce and uses the pre-shared DMK to compute DAK, DCMAC key and DTEK. HR-MS2 then computes the CMAC tuple and sends DirectComms_KeyAgreement_MSG_#2 message to HR-MS1.

HR-MS1 verifies the received CMAC tuple and checks the DAKID. If the verifications are correct, then HR-MS1 computes its new CMAC tuple and sends DirectComms_KeyAgreement_MSG_#3 message to HR-MS2.

HR-MS1 selects its nonce and uses the pre-shared DMK to compute DAK, DCMAC key and DTEK. HR-MS1 then computes the CMAC tuple and sends DirectComms_KeyAgreement_MSG_#1 message to HR-MS2.

HR-MS2 receives the above message and verifies the CMAC tuple. If the verification is correct, then HR- MS2 confirms that HR-MS1 has computed the correct keys and commence secure direct communications.

Figure 9: Flow Chart of Multimode-based (HR-MS converts to HR-BS*) Autonomous Direct Communication Authentication and Key Establishment Security Procedure.

Figure EEE: Flow Diagram of Authentication and Key Establishment of Direct Communication without Infrastructure (HR-MS becomes HR-BS*case).

Figure FFF: Flow Chart of PKI-based Autonomous Direct Communication Authentication and Key Establishment Security Procedure.

HR-MS1 sends a DirectComms_KeyAgreement_MSG_#1 message to HR-MS2 to request for a direct communication authentication and key establishment. The message contains a nonce, signature generated by HR-MS1, HR-MS1 and HR-MS2 addresses and HR-MS1’s digital certificate.

HR-MS2 verifies the received certificate and signature. If the verification is correct, HR-MS2 generates its nonce and DMK. Next, HR-MS2 computes DAK, DCMAC key, DTEK and the CMAC tuple of the message. HR-MS2 then uses the public key of HR-MS1 to encrypt the DMK. Finally, HR-MS2 computes the signature and sends DirectComms_KeyAgreement_MSG_#2 message to HR-MS1. The message also contains HR-MS2’s digital certificate.

HR-MS1 verifies the received certificate and signature. If the verification is correct, then HR-MS1 decrypts the received encrypted message and obtains DMK. Next, HR-MS1 computes DAK, DCMAC key and DTEK and verifies the received CMAC tuple. If the verification is correct, then HR-MS1 computes its CMAC tuple and sends DirectComms_KeyAgreement_MSG_#3 message to HR-MS2.

HR-MS2 receives the above message and verifies the CMAC tuple. If the verification is correct, then HR-MS2 confirms that HR-MS1 has computed the correct keys and commence secure direct communications.

Figure 6: Flow Chart of PKI-based Autonomous Direct Communication Authentication and Key Establishment Security Procedure.

Figure GGG: Flow Diagram of Autonomous Authentication and Key Establishment of Direct Communication without Infrastructure

Figure HHH: Flow Chart of Autonomous Direct Communication Authentication and Key Establishment Security Procedure.

HR-MS1 converts to HR-BS*.

HR-MS2 verifies the received certificate. If the verification is correct, HR-MS2 generates its nonce and computes the signature and sends DirectComms_KeyAgreement_MSG_#2 message to HR-MS1. The message also contains HR-MS2’s digital certificate.

HR-BS* verifies the received certificate and signature. If the verification is correct, then HR-BS* generates its nonce and DMK and computes DAK, DCMAC key and DTEK. HR-BS* then encrypts the DMK using HR-MS2’s public key and computes its CMAC tuple and signature. Finally, HR-BS* sends DirectComms_KeyAgreement_MSG_#3 message to HR-MS2.

HR-MS2 receives the above message and verifies the received signature. If the verification is correct, HR-MS2 decrypts and obtains DMK. Next, HR-MS2 computes DAK, DCMAC key and DTEK and verifies the CMAC tuple. If the verification is correct, HR-MS2 computes its CMAC tuple and sends DirectComms_KeyAgreement_MSG_#4 back to HR-BS*.

HR-BS* sends DirectComms_KeyAgreement_MSG_#1 message to HR-MS2 which contains its certificate.

HR-BS* receives the above message and verifies the CMAC tuple. If the verification is correct, then HR- BS* confirms that HR-MS2 has computed the correct keys and commence secure direct communications.

1
1

