Draft IEEE Standard for

— Local and Metropolitan Area Networks

Part 16: Air Interface for Fixed Broadband Wireless Access Systems

Amendment for Improved Coexistence Mechanisms for License-Exempt Operation

Sponsor

LAN MAN Standards Committee of the IEEE Computer Society and the IEEE Microwave Theory and Techniques Society

Copyright © 2005 by the Institute of Electrical and Electronics Engineers, Inc. Three Park Avenue New York, New York 10016-5997, USA All rights reserved. This document is NOT an unapproved draft of a proposed IEEE Standard. As such, thisdocument is subject to change. USE AT YOUR OWN RISK! Because this is an unapproved draft, this document must not be utilized for any conformance/compliance purposes. Permissionis hereby granted for IEEE Standards Committee participants to reproduce this document for purposes of IEEE standardization activities only. Prior to submitting this document to anotherstandards development organization for standardization activities, permission must first be obtained from the Manager, Standards Licensing and Contracts, IEEE Standards Activities Department. Other entities seeking permission to reproduce this document, in whole or in part, must obtain permission from the Manager, Standards Licensing and Contracts, IEEE Standards-Activities Department. **IEEE Standards Activities Department** Standards Licensing and Contracts 445 Hoes Lane, P.O. Box 1331 Piscataway, NJ 08855-1331, USA

Participants

IEEE 802.16 Working Group Officers

Roger B. Marks, Chair Ken Stanwood, Vice Chair Dean Chang, Secretary

Primary development is to be carried out by the Working Group's License-Exempt Task Group:

Mariana Goldhamer, Chair Barry Lewis, Vice-chair Xuyong Wu, Editor Nader Zein, Secretary

The following members of the IEEE 802.16 Working Group on Broadband Wireless Access participated in the Working Group Letter Ballot in which the draft of this standard was prepared and finalized for IEEE Ballot: [to be determined]

The following participated as non-members in the Working Group Letter Ballot: [to be determined]

The following members of the IEEE Balloting Committee voted on this standard, whether voting for approval or disapproval, or abstaining. [to be determined]

The following persons, who were not members of the IEEE Balloting Committee, participated (without voting) in the IEEE Sponsor Ballot in which the draft of this standard was approved: [to be determined]

When the IEEE-SA Standards Board approved this standard on [date], it had the followingmembership: [to be determined]

Contents

Part 16: Air Interface for Fixed Broadband Wireless Access Systems1
1 Overview
1.1 IEEE 802.16h scope9
1.2 IEEE 802.16h applicability9
2 References
3 Definitions
4 Abbreviations and acronyms
5 Service-specific CS
6 MAC common part sublayer
6.3 Data/Control plane10
6.3.2 MAC PDU formats10
6.3.2.3 MAC management messages10
6.3.2.3.33 Channel measurement Report Request/Response (REP-REQ/RSP)10
6.4 MAC enhancement for coexistence11
6.4.1 Extension to [WirelessHUMAN] operation11
6.4.1.1 Capability Negotiation11
6.4.1.2 Extended channel numbering structure
6.4.1.3 Reporting
7 Privacy sublayer
8 PHY12
9 Configuration
10 Parameters and constants
11 TLV encodings
11.7 REG-REQ/RSP management message encodings
11.7.8 SS capability encodings
11.7.8.14 [WirelessHUMAN] capability13
11.11 REP-REQ management message encodings
11.12 REP-REQ management message encodings14
12 System profiles
13 802.16 MIB structure for SNMP 15
14 Management Interfaces and Procedures15
15 Mechanism for improved coexistence15
15.1 General15
15.2 Interference detection and prevention – general architecture
15.2.1 Operational Principles and Policies15
15.2.1.1 General Principles15
15.2.1.1.1 Cooperation with other networks
15.2.1.1.2 Scheduling of interference free intervals in the context of IEEE 802.16
MAC 18
15.2.1.1.3 Coexistence Time Slot
15.2.1.1.4 Energy Symbols Used in the CTS25
15.2.1.1.5 CTS Frame Structure
15.2.1.2 Interference Control

15.2.1.3 Commun	ity Entry of new BS	
15.2.1.4 Network	and Community Entry for SS	34
15.2.1.5 BS regul	ar operation	34
15.2.1.6 Operation	nal dynamic changes	34
15.2.1.7 Creation	of a new sub-frame	34
15.2.1.8 Controlli	ng interference during master sub-frame	35
15.2.1.8.1 Inter	ferer identification	35
15.2.1.8.2 Inter	ference to BS	35
	ference to SS	
15.2.1.9 Controlli	ng interference during not-interfering traffic sub-frames	36
15.2.1.10 Power (Control	36
15.2.1.11 Coexist	ence with non-802.16 wireless access systems	36
15.2.2 Shared dist	ributed system architecture	36
15.2.2.1 Architect	ture	36
15.2.2.2 Inter-net	work communication	
15.2.2.3 Coexister	nce Protocol	
15.2.2.3.1 Same	e PHY Profile	40
15.2.2.3.2 Mixe	ed-PHY Profile communication	40
15.2.2.4 Informat	ion table in share database	41
15.3 Interference vic	tims and sources	43
15.3.1 Identification	on of the interference situations	43
15.3.1.1 Interferen	r identification	43
15.3.1.2 Grouping	g of interfering/not-interfering units	44
	on of spectrum sharers	
15.3.2.1 Regulation	ons	44
15.3.2.2 Message	s to disseminate the information	44
	lse-identification situations	
15.3.2.4 Using ce	ntralized server	44
15.3.2.4.1 Base	Station Identification Server	44
15.4 Interference pre	evention	45
15.4.1 Adaptive C	hannel Selection – ACS	45
15.4.1.1 Between	802.16 systems	45
•	requency Selection – DFS	
15.4.2.1 Frequence	cy selection for regulatory compliance	45
15.5 Pro-active cogn	itive approach	45
15.5.1 Signaling to	o other systems	45
15.5.1.1 Ad-hoc s	ystems - operating principles using Cognitive Radio sign	aling45
15.5.1.2 Registrat	ion	45
15.5.1.3 Selection	of suitable reception sub-frames	46
15.5.1.4 Signaling	g procedures for Cognitive Radio applications	46
15.5.1.5 Using the	e coexistence slot for transmitting the BS IP identifier	
0	n of other systems	
	f information	
	e Protocol (CP) messages (LE_CP-REQ/ LE_CP-RSP)	
15.6.1.1 Identify	Coexistence Request message	52

15.6.1.2	Identify Coexistence Reply message	52
15.6.1.3	Coexistence Neighbor Topology Request message	53
15.6.1.4	Coexistence neighbor Topology Reply message	
15.6.1.5	Registration Request message	
15.6.1.6	Registration Reply message	54
15.6.1.7	Registration Update Request message	54
15.6.1.8	Registration Update Reply message	
15.6.1.9	De-registration Request message	55
15.6.1.10) De-registration Reply message	55
15.6.1.1	Add Coexistence Neighbor Request message	55
15.6.1.12	2 Add Coexistence Neighbor Reply message	55
15.6.1.13	3 Update Coexistence Neighbor Request message	55
15.6.1.14	Update Coexistence Neighbor Reply message	56
15.6.1.15		
15.6.1.16		
15.6.1.17	7 Get_Param_Request message	56
15.6.1.18	3 Get_Param_Reply message	56
15.6.1.19	• Evaluate_Interference_Request message	56
15.6.1.20) Evaluate_Interference_Reply message	57
15.6.1.21		
15.6.1.22		
15.6.1.23		
15.6.1.24		
15.6.1.25		
15.6.1.26	5 Create_New_Sub_Frame_Request message	57
15.6.1.27	7 Reduce_Power_Request message	57
15.6.1.28	Reduce_Power_Reply message	58
15.6.1.29	Stop_Operating_Request message	58
15.6.1.30) Stop_Operating_Reply message	58
15.6.1.3	BS_CCID_IND message	58
15.6.1.32	2 BS_CCID_RSP message	58
15.6.1.33		
15.6.1.34	SS_CCID_RSP message	59
15.6.1.35	5 PSD_REQ message	59
15.6.1.36	5 PSD_RSP message	60
15.6.1.37	-	
15.6.1.38	Channel Switch Negotiation Reply message	61
15.6.1.39		
15.6.1.40) Channel Switch reply message	61
15.6.2	Sequencing and Retransmission	
	Message Validity Check	
15.6.4	Fragmentation	62
	Fransport Protocol	
15.6.6	Using dedicated messages	62
15.6.6.1	Common PHY	62

15.6.6.2 Between BS and SS	62
15.6.6.2.1 IBS_IPBC	62
15.6.6.2.2 SS_MEM	63
15.6.6.2.3 SSURF	
15.6.6.3 BS to BS	
15.6.6.4 Connection sponsorship	
15.6.6.5 Using a common management system	
15.6.6.6 Higher layers communication	
15.6.6.7 Decentralized control	
15.6.6.8 Information sharing	
15.6.6.9 IP / MAC address dissemination	
15.7 Common policies	
15.7.1 How to select a "free" channel (for ACS and DFS)	
15.7.1.1 Acceptable S/(N+I)	
15.7.1.2 Acceptable time occupancy	
15.7.1.3 Capability of sharing the spectrum	
15.7.1.4 Optimization of Channel Distribution	
15.7.2 Interference reduction policies	
15.7.2.1 BS synchronization	
15.7.2.1.1 Synchronization of the IEEE 802.16h Networks	
15.7.2.1.1.1 Network Time Interval	
15.7.2.1.1.2 Granularity of the NTI	
15.7.2.1.1.3 UTC Standard Time	66
15.7.2.1.2 Ad-hoc	67
15.7.2.2 Shared Radio Resource Management	
15.7.2.2.1 Fairness criteria	67
15.7.2.2.1.1 Power control	
15.7.2.2.1.2 Mutual tolerance	
15.7.2.2.2 Distributed scheduling	
15.7.2.2.2.1 Assignments	67
15.7.2.2.3 Distributed power control	67
15.7.2.2.4 Distributed bandwidth control	67
15.7.2.2.5 Beam-forming	67
15.7.2.2.6 Credit token based coexistence protocol	67
15.7.2.2.6.1 General principle	68
15.7.2.2.6.2 Credit tokens assignment and usage principles	
15.7.2.2.6.3 Negotiation between master NWs	69
15.7.2.2.6.4 Inter BSs communication	73
15.7.2.2.7 Legitimate Request for Bandwidth and Transmission Time	74
15.7.2.2.8 Coverage Area	
15.7.2.2.9 Direction of Coverage Area	
15.7.2.2.10 Bandwidth Utilization	74
ANNEX 1. Machanism of security in coexistence –reference	74
A 1.1 General Principal	
A 1.2 Coexistence Protocol	78

A 1.3	Base Station Identification Server	.81
A 1.4	RADIUS Protocol Usage	.81
A 1.5	Privacy Key Management protocol usage	.84
A 1.6	Security consideration	.87
A 1.7	RADIUS Protocol Messages	.87
A 1.8	Privacy Key Management protocol messages	.90
ANNEX	2. GPS Timing and Base Station Synchronization	.93

List of Figures

Figure h1.	Interference due to overlapping networks	7
Figure h2.	Equal splitting of radio resource between networks	7
Figure h3.	Usage of the spectrum by every system	
Figure h4.	Sub-frame structure type1	9
Figure h5.	Sub-frame structure type 2	0
Figure h6.	Sub-frame structure type 3	0
Figure h7.	Allocation of slots for BS and SS radio signature	2
Figure h8.	Timing of Coexistence Time Slot	4
Figure h9.	CTS parameters	5
Figure h10.	CTS usage example- IBS broadcast IP address to CoNBR's SS	5
Figure h11.	CTS frame construction	7
Figure h12.	CTS frame PLD	7
Figure h13.	802.16 LE Coexistence neighbor BSs discovery and definition of coexisten	nce
neighbor a	and community29	
Figure h14.	Initialization procedures — BS	2
Figure h15.	System Architecture	7
Figure h16.	Network Architecture	8
Figure h17.	802.16h BS Protocol architecture Model	9
Figure h18.	LE BS architecture with Coexistence Protocol	9
Figure h19.	BSIS architecture with co-located regional LE database 40	0
Figure h20.	Desired spectral densities for different channel BWs 4'	7
Figure h21.	Obtainable spectral densities with MAC PDU approach 4'	7
Figure h22.	Example of PSD Display	0
Figure h23.	Process of ACS	5
Figure h24.	Example of TDD based MAC frame sharing structure between M NWs. 68	8
Figure h25. 69	Dynamic (iterative) credit tokens based scheduling cycle – (sequences (1)	to (5))
Figure h26. 70	Dynamic (iterative) credit tokens based scheduling cycle – (sequences (5)	to (10))
Figure h27.	Simplified MAC frame structure illustrating master NW sub-frame renting	5
principle a	and associated notations70	
Figure h28.	Network Architecture	4
Figure h29.	BSs/BSISs connection encrypted in IPSec	6
Figure h30.	Network Architecture under multi-Operators with multi-RADIUS Servers	77
Figure h31.	Individual Session-Key78	8

Figure h32.	802.16h BS Protocol architecture Model	79
Figure h33.	LE BS architecture with Coexistence Protocol	79
Figure h34.	BSIS architecture with co-located regional LE database	80
Figure h35.	RADIUS protocol example	82
Figure h36.	Figure 5 PKM Session-Key-Handshaking procedures	84
Figure h37.	Figure 6 PKM Session-Key Re-Key procedures	85
Figure h38.	PKM Session-Key Re-Key procedures with the MK update of PKM-Tar	get86
Figure h39.	the 640-bits Key generated by PRF640	87
Figure h40.	Session-Key-Start message format	91
Figure h41.	Session-Key-Request message format	92
Figure h42.	Session-Key-Response message format	92
Figure h43.	Session-Key-Accept message format	92
Figure h44.	GPS 1pps Pulse	93

List of Tables

Table h1.	CTS symbol Format	26
Table h2.	This BS information table	41
Table h3.	BS information table	42
Table h4.	SS information table	42
Table h5.	Cognitive signal definition	48
Table h6.	LE_CP MAC messages	48
Table h7.	LE_CP message format	49
Table h8.	LE_CP message codes	51
Table h9.	TLV types for CP payload	52
Table h10.	Identify Coexistence Request message attribute	52
Table h11.	Coexistence neighbor Topology Parameter Set	53
Table h12.	Coexistence Neighbor Topology Request message attribute	53
Table h13.	Coexistence neighbor Topology Parameter Set	54
Table h14.	Registration Request message attributes	54
Table h15.	De-registration Request message attributes	55
Table h16.	Add Coexistence Neighbor Request message attributes	55
Table h17.	Update Coexistence Neighbor Request message attributes	56
Table h18.	Delete Coexistence Neighbor Request message attrubutes	56
Table h19.	table of co-channel interference source for SS	58
Table h20.	IBS_IPBC message TLV encoding	62
Table h21.	Security Block Format	83
Table h22.	RADIUS-BS/BSIS-Registration-Access-Request	88
Table h23.	RADIUS-BS/BSIS-Registration-Access-Accept	88
Table h24.	RADIUS-BS/BSIS- Access-Request	89
Table h25.	RADIUS-BS/BSIS- Access-Accept	89
Table h26.	ESP Transform identifiers	90
Table h27.	ESP Authentication algorithm identifiers	90
Table h28.	Session Key frame TLV	91

Draft Amendment to IEEE Standard for Local and metropolitan area networks

Part 16: Air Interface for Fixed Broadband Wireless Access Systems

Amendment for Improved Coexistence Mechanisms for License-Exempt

Operation

NOTE-The editing instructions contained in this corrigendum define how to merge the material contained herein into theexisting base standard IEEE Std 802.16-2004. The editing instructions are shown bold italic. Four editing instructions are used: change, delete, insert, and replace. Change is used to make small corrections in existing text or tables. The editing instruction specifies the location of the change and describes what is being changed by using strike through (to remove old material) and underscore (to add new material). Delete removes existing material. Insert adds new material without disturbing the existing material. Insertions may require renumbering. If so, renumbering instructions are given in the editing instruction. Replace is used to make large changes in existing text,

21 subclauses, tables, or figures by removing existing material and replacing it with new

material. Editorial notes will not be carried over into future editions because the changes will
be incorporated into the base standard.

1 Overview

1.1 IEEE 802.16h scope

This amendment specifies improved mechanisms, as policies and medium access control
 enhancements, to enable coexistence among license-exempt systems based on IEEE Standard
 802.16 and to facilitate the coexistence of such systems with primary users.

1.2 IEEE 802.16h applicability

This amendment is applicable for un-coordinated frequency operation in all bands in which 802.16-2004 is
applicable, including bands allowing shared services.

2 References

3 Definitions

Copyright © 2005 IEEE. All rights reserved.

1	4	Abbrevia	ations and acronyms
2			
3	[Ins	ert the fo	llowing abbreviations at appropriate location:]
4		-	
5	AH		Authentication Header
6	BSIS	5	Base Station Identification Server
7	CNT	Ί	Cognitive Network Time Interval
8	CoN	BR	Coexistence Neighbor
9	CR		Cognitive Radio
10	CR_	NOC	Cognitive Radio Network Operations Centre.
11	CTS		Coexistence Time Slot
12	DRR		Distributed Radio Resource Management
12	DSM	1	Distribution System Medium
13 14	ESP		IP Encapsulating Security Payload
	IAN	A	Internet Assigned Numbers Authority
15	IBS	_	Initializing Base Station
16	IETF		Internet Engineering Task Force
17	IPBC		IP address Broadcast
18	IPsec		Internet Protocol Security
19	NOC		Network operation center
20	OBS		Operating Base Station
21	PKM		Private Key Management
22	PLE		Path Loss Exponent
23	PSD		power spectrum density
24	RAD		Remote Authentication Dial-in User Service
25	SAP SSU		Service Access Point Subscriber Station Unlink Padia Fragmany
26	TCP		Subscriber Station Uplink Radio Frequency Transmission Control Protocol
27	UDP		User Datagram Protocol
28	UTC		Universal Coordinated Time
29	010		Universal Coordinated Time
30	Note	es: the IP	broadcasting in the airlink is to be reconsidered and call for contribution for
31	mod	lification.	
32		•	
33			
34	_		
35	5	Service-s	specific CS
36			
37	6	MAC co	mmon part sublayer
38			
39			
40	6.3	Data/Co	ontrol plane
41			
42	6.3.2	2 MAC	PDU Format
43			
44	62	ЭЗ МАА	C management messages
45	0.3.	4.3 IVIA	C management messages
46	63	2 3 33 Ch	annel measurement Report Request/Response (REP-REQ/RSP)
47	0.3.	2.3.33 UI	anner measurement Report Request Response (REI "REQ/RSI)
48	г т		
49	[cha	inge the s	ection into the following text in 802.16 primary standard:]
	10		Copyright © 2005 IEEE. All rights reserved.

1 If the BS, operating in bands below 11 GHz, requires RSSI and CINR channel measurement

² reports, or requires neighbor detection reports, it shall send the channel measurements Report

- Request message. The Report Request message shall additionally be used to request the results of the measurements the BS has previously scheduled. Table 62 shows the REP-REQ message.
- 6

7 The channel measurement Report Response message shall be used by the SS to respond to the 8 channel measurements listed in the received Report Requests. Where regulation mandates 9 detection of specific signals by the SS, the SS shall also send a REP-RSP in an unsolicited 10 fashion upon detecting such signals on the channel it is operating in, if mandated by 11 12 regulatory requirements. The SS may also send a REP-RSP containing channel measurement 13 reports, in an unsolicited fashion, or when other interference is detected above a threshold 14 value. In cases where specific signal detection by an SS is not mandated by regulation, the SS 15 may indicate 'Unmeasured. Channel not measured.' (see 11.12) in the REP-RSP message 16 when responding to the REP-REQ message from the BS. Especially for coexistence network, 17 when SS have detected the IP broadcasting message from the coexistence neighbor BS, the 18 SS need to use REP RSP to report the information to its serving BS unsolicitedly. Table 63 19 shows the REP-RSP message. 20

21 22

23 24

6.4 MAC enhancement for coexistence

[tbc for deriving the appropriate part from clause 15 here]

[Notes: the "[WirelessHUMAN]" in section 6.4 indicate renaming is required according to
 meeting #40]

2829 6.4.1 Extension to [WirelessHUMAN] operation

This section describes extensions to [WirelessHUMAN] operation beyond that which is described in the sections above. Extended operation includes capability negotiation, extended channel numbering, and reporting. These aspects are discussed in the sections below.

34

44

6.4.1.1 Capability Negotiation

A mechanism is provided on how [WirelessHUMAN] and non-[WirelessHUMAN] devices are to inter-work. This is an important mechanism for deployment scenarios where regulatory designation of [WirelessHUMAN] operation is required. Some examples of how the capability negotiation can be used:

- 41 A device with [WirelessHUMAN] functionality will need to interact with
 42 infrastructure that knows nothing of [WirelessHUMAN].
 43 A non [WirelessHUMAN] device with need to interact with [WirelessHUMAN].
 - A non-[WirelessHUMAN] device will need to interact with [WirelessHUMAN] compliant infrastructure.
- 45
 46
 47
 47
 48
 49
 49
 49
 40
 41
 41
 42
 43
 44
 44
 45
 45
 45
 45
 45
 46
 47
 47
 48
 47
 48
 47
 48
 47
 48
 47
 48
 47
 48
 48
 47
 47
 47
 47
 47
 47
 47
 47
 47
 47
 47
 47
 47
 47
 47
 47
 47
 47
 47
 47
 47
 47
 47
 47
 47
 47
 47
 47
 47
 47
 47
 47
 47
 47
 47
 47
 47
 47
 47
 47
 47
 47
 47
 47
 47
 47
 47
 47
 47
 47
 47
 47
 47
 47
 47
 47
 47
 47
 47
 47
 47
 47
 47
 47
 47
 47
 47
 47
 47
 47
 47
 47
 47
 47
 47
 47
 47
 47
 47
 47
 47
 47
 47
 47
 47
 47
 47
 47
 47
 47
 47
 47
 47
 47
 47
 47
 47
 47
 47
 47
 47
 47
 47
 47
 47
 47
 47
 47
 47
 47
 47
 47
 47
 47
 47
 47
 47
 47
 47
 47
 47
 47
 47
 47
 47
 47
 47
 47
 47
 47
 47
 47
 47
 47
 47
 <
- 48 A [WirelessHUMAN] device shall work in a non- [WirelessHUMAN] network as
 49 'normal' non-[WirelessHUMAN] device.

1	
2	
3	6.4.1.2 Extended channel numbering structure
4	Extended channel numbering provide an enhancement to channelization and definition of
5	channel number in section 8.5.1. This extension provides channelization references beyond
6	the limits of 5-6GHz as defined in that section. The channelization is defined accordingly.
7	• Extended Channel Number (ExChNr) – 2 byte specific channel number reference in
8	MHz.
9	• Base Channel Reference (BaseChRef) – 1 byte base reference to frequency range or
10	deployment band in MHz.
11	
12	• Channel spacing (ChSp) - 1 byte channel spacing value (10kHz increments)
13 14	
14	In summary the definition of the <i>Channel Centre Frequency</i> is:
16	
17	Channel Centre Frequency [MHz] = BaseChRef [MHz] + (ExChNr [MHz]. ChSp
18	[10kHz]) [xxx]
19	
20	ExChNr is used in REP-REQ/REP-RSP messages while BaseChRef, and ChSp are
21	communicated at a session setup or reconfiguration.
22	
23	
24	6.4.1.3 Reporting
25	Reporting enhancements provide the ability to:
26	• Enhance details on environment knowledge for license-exempt operation.
27	
28	
29	
30	7 Privacy sublayer
31	7 Thvacy sublayer
32	
33	
34 25	
35 36	8 PHY
30 37	
38	
39	
40	9 Configuration
41	
42	
43	
44	10 Parameters and constants
45	
46	
47	
48	
49	
	12 Copyright © 2005 IEEE. All rights reserved.
	12 Copyright © 2005 IEEE. All rights reserved.

11 TLV encodings

11.7 REG-REQ/RSP management message encodings

[Insert the following row into table 369a:]

Туре	Parameter
45	[WirelessHUMAN] capability
46	Base Channel Reference (BaseChRef)
47	Channel Spacing (ChSp)

[Notes: the "[WirelessHUMAN]" in section 11 indicate renaming is required according to meeting #40]

11.7.8 SS capability encodings

[insert new subclause 11.7.8.14:]

11.7.8.14[WirelessHUMAN] capability

22	Name	Туре	Length	Value	Scope
23		(1 byte)	(1 byte)		_
24	[WirelessHUMAN]	45	1	Bit #0: No [WirelessHUMAN]	REG-REQ
25	capability			capability	
26				Bit #1: [WirelessHUMAN]	
27				capability	
28				Bits #2 - #7: Reserved	
28 29	Base Channel	46	1	Base Channel Reference in	REG-RSP
	Reference			MHz providing base	
30 31	(BaseChRef)			reference to frequency	
31				range or deployment band	
33	Channel Spacing	47	2	Channel Spacing in 10kHz	REG-RSP
34	(ChSp)			increments.	

11.11 REP-REQ management message encodings

39 [insert the following entry in the second table of 11.11:]

57		-		• -
40	Coexistence neighbor	1.9	1	Bit #0: 1-include IP address received in IPBC
41	Interference Report			Bit #1: 1-include RSSI of CTS symbols(only valid
42				when bit#0 is set to one)
43				Bit #2: 1-include frame number that start to receive
44				IPBC
45				Bit #3~7: reserved, shall be set to zero
46	ExChNr	1.10	2	Physical extended channel number
				([WirelessHUMAN] only)
47	Extended report type	1.11	1	Bit $\#0 = 1$: Include extended report type A
48				Bit $#1 = 1$: Include extended report type B
49				Bits #2 - #7: Reserved

Copyright © 2005 IEEE. All rights reserved.

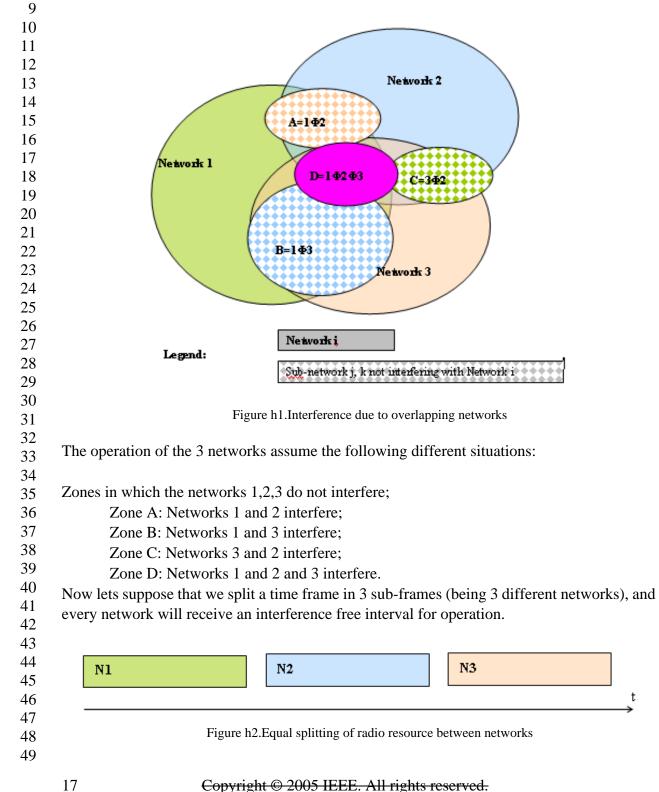
This is an unapproved IEEE Standards Draft, subject to change

11.12 REP-REQ management message encodings

[insert the following entry in the first table of 11.12:]

Coexistence neighbor	7	variable	Compound
Report			
Extended report type	8	variable	Compound

[insert the following table into 11.12 as indicates:]


Coexistence neighbor	Name	Туре	Length	Value
Interference				
Report type				
all	CoNBR count	7.1	1	Bit #0:1-New CoNBR Discovered by IPBC
	/New NDS			received
				Bit #1-7:The number of CoNBR that
				interference to this SS
bit #0=1	CoNBR IP	7.2	4	4bytes IP address of CoNBR interference
	address			to this SS,
				255. 255. 255. 255 indicate the fail of CRC
				check.
bit #1=1	CoNBR IP	7.3	2	1byte RSSI mean (see also 8.2.2, 8.3.9,
	address with			8.4.11) for details)
	RSSI			1byte standard deviation
Bit #2=1	Starting Frame	7.4	3	Bit# 0-24: frame number of IPBC starting
	Serial Number			frame
	of IPBC			

31	REP-REQ	Name	Туре	Length	Value
32	Extended			_	
33	report type				
34	Bit #0 = 1 OR	ExChNr	8.1	2	Extended physical channel number to
35	Bit #1 = 1				be reported on.
36	Bit #0 = 1 OR	[WirelessHU	8.2	1	Bit #0: Low interference indication
30 37	Bit #1 = 1	MAN]			Bit #1: Medium interference indication
		interference			Bit #2: High interference indication
38		indicator			Bit #3: Primary user detected on the
39					channel
40					Bit #4: Channel not measured.
41	Bit #1 = 1	Zone specific	8.3	2	1 byte: mean
42		CINR report			1 byte: standard deviation
43	Bit #1 = 1	Zone specific	8.4	2	1 byte: mean
44		RSSI report			1 byte: standard deviation

	2005-12-02 IEEE802.16h-05/027
1 2 3	12 System profiles
4 5 6 7	13 802.16 MIB structure for SNMP
8 9 10 11	14 Management Interfaces and Procedures
12 13 14	[insert new clause 15:]
15 16	15 Mechanism for improved coexistence
17 18 19 20	[Editor's notes: the figure number and table number is temporarily marked as Figure hxxx. And Table hxxx, these number should be corrected according to WG rules before the draft release]
21 22	15.1 General
23 24	15.2 Interference detection and prevention – general architecture
25 26	15.2.1 Operational Principles and Policies
27	15.2.1.1 General Principles
28 29	A possibility of 802.16h usage is in close relation with a database, including both deployment
29 30	information and an IP identifier for allowing the operation of a technology-independent
31	coexistence approach. It is assumed that:
32	• In some circumstances, there is country/region data base, which includes, for every
33	Base Station:
	Base Station.
34 25	• Operator ID
35	
35 36	0 Operator ID
35	 Operator ID Base Station ID
35 36 37	 Operator ID Base Station ID Base Station GPS coordinates
35 36 37 38 39 40	 Operator ID Base Station ID Base Station GPS coordinates IP identifier
35 36 37 38 39 40 41	 Operator ID Base Station ID Base Station GPS coordinates IP identifier The local Radio Administration may use, for light licensing procedure, its own database, generally not including the Base Station ID and IP identifier information. There is a Server that manage the write/reading of this Data Base, using the 802.16h
35 36 37 38 39 40 41 42	 Operator ID Base Station ID Base Station GPS coordinates IP identifier The local Radio Administration may use, for light licensing procedure, its own database, generally not including the Base Station ID and IP identifier information. There is a Server that manage the write/reading of this Data Base, using the 802.16h standardized procedures; the Server and the country/region data base can be hostedby
35 36 37 38 39 40 41 42 43	 Operator ID Base Station ID Base Station GPS coordinates IP identifier The local Radio Administration may use, for light licensing procedure, its own database, generally not including the Base Station ID and IP identifier information. There is a Server that manage the write/reading of this Data Base, using the 802.16h standardized procedures; the Server and the country/region data base can be hostedby one of the operators or a trusted entity, like the local Radio Administration.
35 36 37 38 39 40 41 42	 Operator ID Base Station ID Base Station GPS coordinates IP identifier The local Radio Administration may use, for light licensing procedure, its own database, generally not including the Base Station ID and IP identifier information. There is a Server that manage the write/reading of this Data Base, using the 802.16h standardized procedures; the Server and the country/region data base can be hostedby one of the operators or a trusted entity, like the local Radio Administration. Otherwise, if the region/country database is not available, the base stations should try
35 36 37 38 39 40 41 42 43 44	 Operator ID Base Station ID Base Station GPS coordinates IP identifier The local Radio Administration may use, for light licensing procedure, its own database, generally not including the Base Station ID and IP identifier information. There is a Server that manage the write/reading of this Data Base, using the 802.16h standardized procedures; the Server and the country/region data base can be hostedby one of the operators or a trusted entity, like the local Radio Administration. Otherwise, if the region/country database is not available, the base stations should try to find its neighbor and the community topology in a coordinatively distributed
35 36 37 38 39 40 41 42 43 44 45	 Operator ID Base Station ID Base Station GPS coordinates IP identifier The local Radio Administration may use, for light licensing procedure, its own database, generally not including the Base Station ID and IP identifier information. There is a Server that manage the write/reading of this Data Base, using the 802.16h standardized procedures; the Server and the country/region data base can be hostedby one of the operators or a trusted entity, like the local Radio Administration. Otherwise, if the region/country database is not available, the base stations should try

1		information related to the Base station itself and the associated SSs; a Base Station
2		and the associated SSs form a System. Other Base Stations can send queries related to
3		the information in the database to the DRRM entity, located in a Base Station (see
4		•
5		<xref><u>Figure h14</u>);</xref>
6	٠	A community of BSs is formed in an ad-hoc mode; in this community are included
7		Base Stations, if any two of the base stations form a neighborhood or have a
8		successive neighborhood relationship between each other; every Base Station
		maintains the list of the Base Stations forming the community. Supplementary, when
9		
10		using the IP-based communication approach:
11		• An SS will not communicate directly with a foreign BS in IP-based
12		communication;
13		• It is no need to register the SS location.
14	•	All the Base Stations forming a community will have synchronized MAC frames and
15	•	
16		frame number.
17	•	A community will be limited to a reasonable size; the size limitations and interactions
18		between different coexistence neighborhoods: t.b.d.
19	•	All Base Stations and their networks will as a first step seek the avoidance of co-
20		channel utilization of the same spectrum, and will be equipped with a spectrum
21		
22		detection and monitoring capability which will allow this.
23	•	All base stations are synchronized to a GPS clock. The start of all MAC frame and
24		other transaction are referenced to the rising edge of this clock.
25	•	All base stations and their networks, operating in the LE bands, will provide the
26		opportunity to other non-IEEE 802.16h systems to communicate their coexistence
20		requests to the IEEE 802.16h networks.
		-
28	•	The IEEE 802.16h systems will recognize the use of radar and other systems having
29		higher priority to LE spectrum.
30	•	Every network will have a guaranteed minimum access time for the interference free
31		use of the radio resource, being able to receive with minimum interference and to
32		transmit at the needed powers for allowing communication between its Base Station
33		and the remote subscribers
34		
35	•	Coexistence Neighbor (CoNBR) BSs: The base stations could create interference to
36		each other or that have valid SSs in the common coverage area are called
37		Coexistence neighbor (CoNBR) BSs, and shall form a coexistence neighborhood.
38		There are 2 basic conditions to form a coexistence neighborhood:
39		0 1) Common coverage area: base stations need to be close enough in
40		
41		geography;
42		o 2) Valid SSs exist in the common coverage area: When SS transfer data with
43		one BS at a time, it shall consider other BSs as an interference source at the
44		same time.
45	•	Coexistence Neighbor Networks: Coexistence Neighbor BSs & their SSs are called
46		Coexistence Neighbor Network, and shall form a network coexistence neighbor hood.
47		commence regnoor remore, and shall joint a network coemstence heighbor hood.
48		
49		
	1 -	

- 1 The figures below explain possible ways of implementing the guaranteed radio resource
- 2 principle, using a example of three overlapping radio networks.
- 3 The overlapping radio networks create different interference zones, based on spatial distance 4
- between transmitters and receivers. As example of BS to SS interference,, the radio receivers 5
- in Zone A, in the figure below, suffer from the interference (noted with) between Network 1 6
- and Network 2. Interference Zone B includes also the Base Station of the Network B. 7

Copyright © 2005 IEEE. All rights reserved.

3

4

5

6

Another possible approach will be to set an operating time for not interfering (noted \emptyset) situations, and split equally between the 3 networks the remaining resource, like shown below. It can be seen that non-interfering traffic may be scheduled in parallel, resulting a much better radio resource usage.

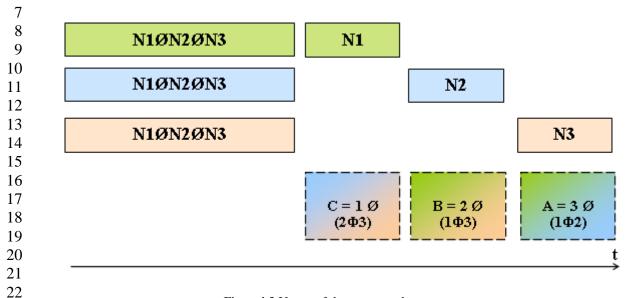


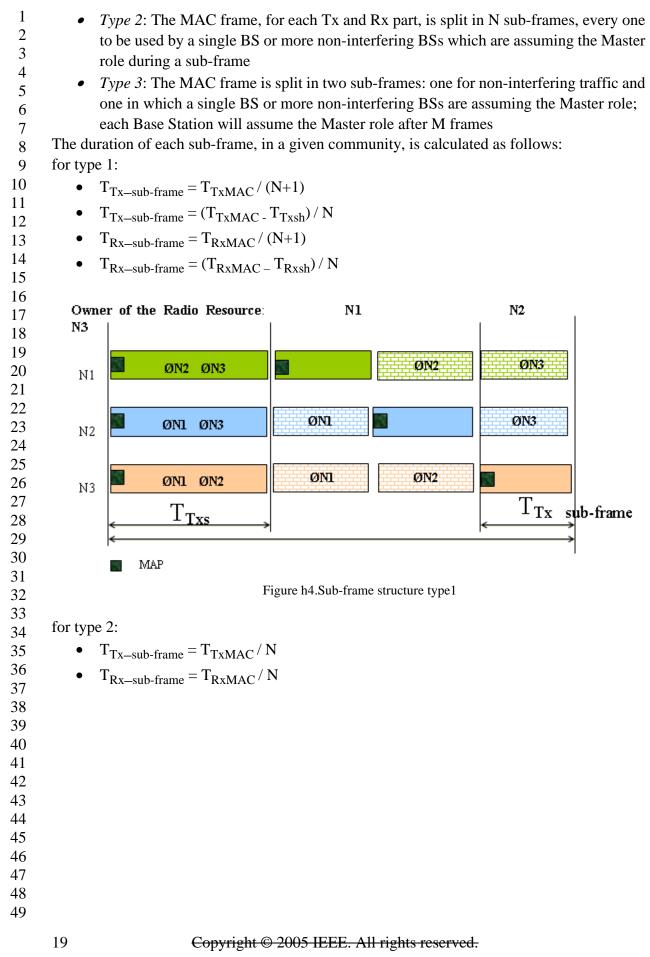
Figure h3.Usage of the spectrum by every system

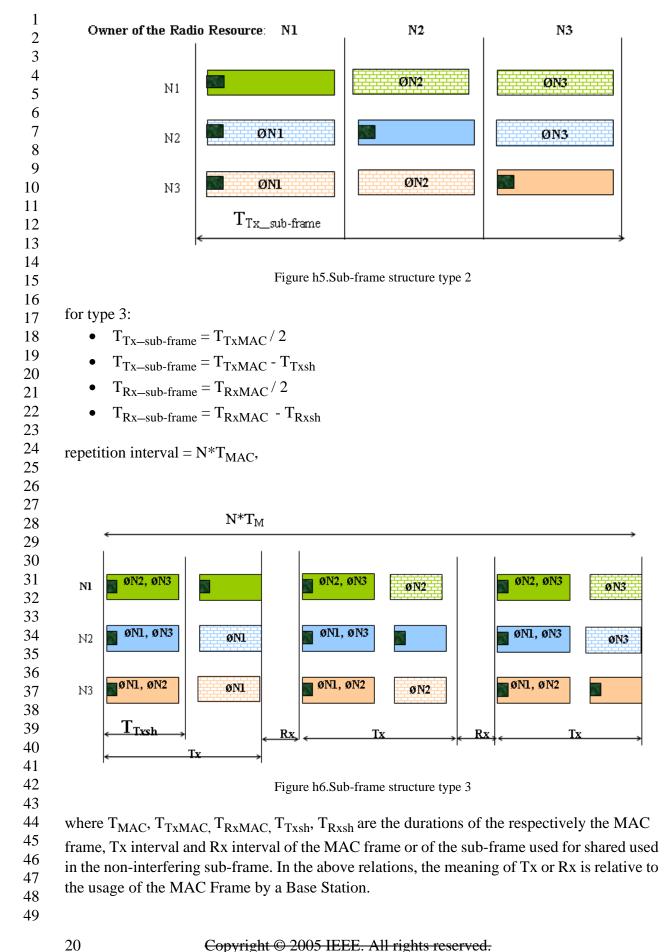
Taking as example Network 1, it can be seen that this network operates in all the sub-frames,
achieving in the same time interference-free operation and good spectral efficiency.
However, the networks working in the same time with the network having the control of the
radio resource, shall use power control, sectorization or beam-forming in order to not create
interference to that network.

30 31

23

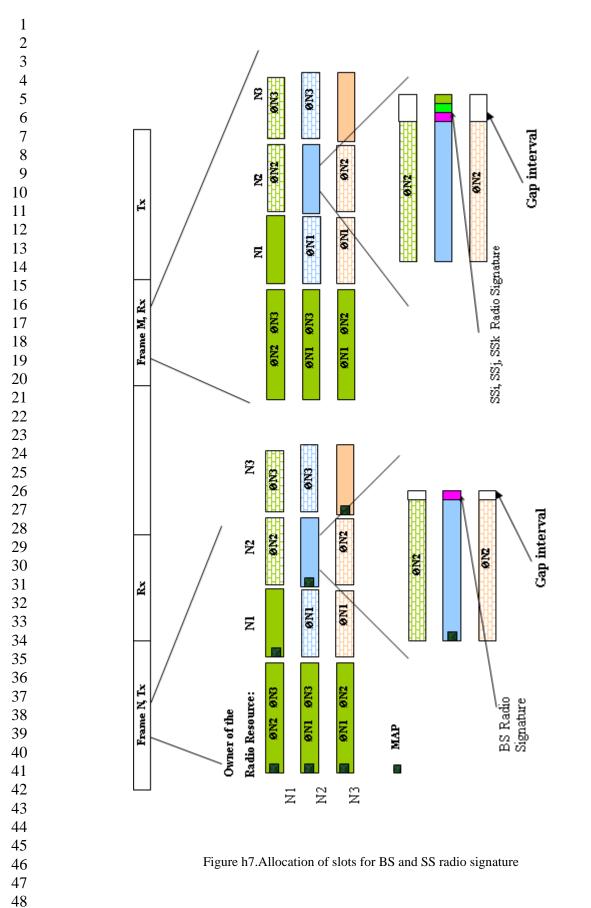
15.2.1.1.1 Cooperation with other networks

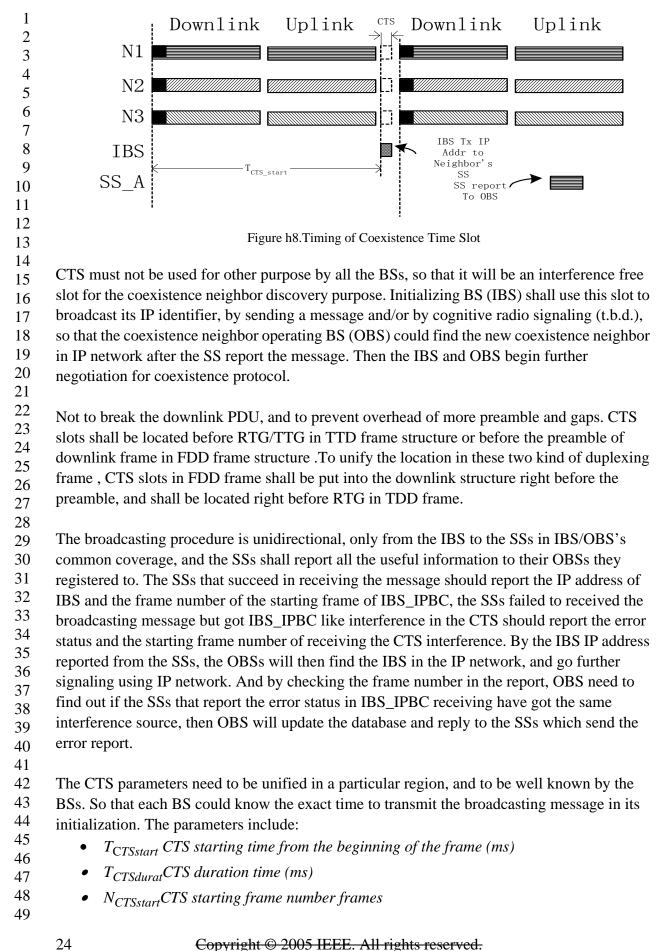

A network may need more time resource for its BS communication with the SSs, than available for its operation in the assigned interference-free time interval. In this case, the specific network may request from one or more adjacent networks to reduce their interference free transmission intervals. The other networks will consider the request, and when possible will accept the request, by indicating the agreed new interference-free operating interval. The duration of each sub-frame may be negotiated through inter-network communication and using the common DRRM policy.

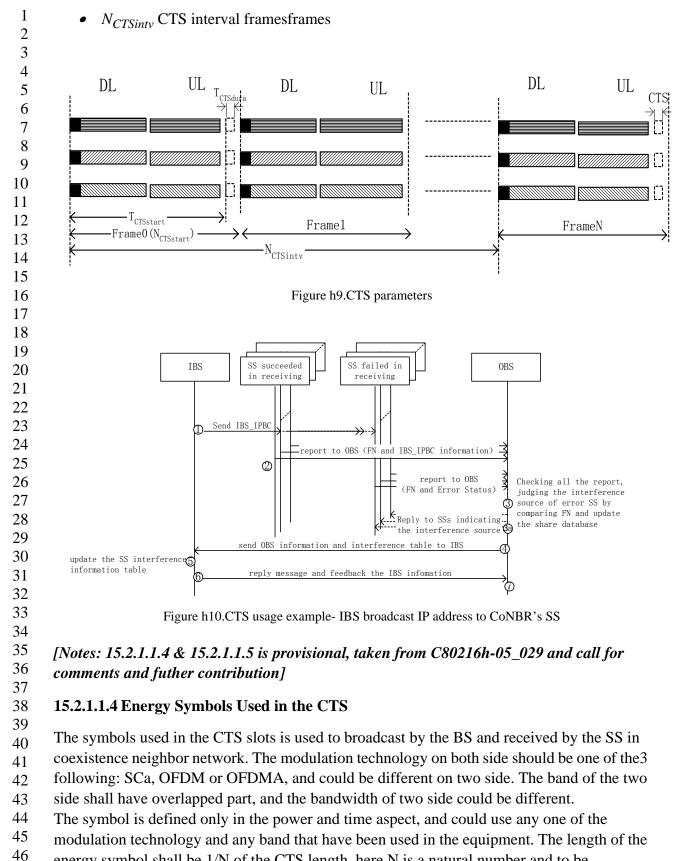

40

40 41 15.2.1.1.2 Scheduling of interference free intervals in the context of IEEE 802.16 MAC

A number of repetitive scheduling approaches are presented below, for Tx synchronized
 intervals. Same approach is valid for Rx intervals.


- 44
- 45
- *Type 1*: The MAC frame, for each Tx and Rx part, is split in N+1 sub-frames:
- 46 47
- One for non-interfering traffic
- 48 o Every other one to be used by a single BS or more non-interfering BSs which
 49 are assuming the Master role


Copyright © 2005 IEEE. All rights reserved.


During the Master sub-frame the Base Stations assuming Master role may use their maximum power; During every Master sub-frame, the Base Stations will create a slot, possibly not overlapping with another slot of a coexistence neighbor Base Station, during each every transmitter (BS or associated SS) will send a predefined signal; this signal, called "radio signature", will be used to measure the interference created by that transmitter. • The "radio signature slot" for a Base Station will be created during its Tx Master sub-frame, every B MAC-frames; • The "radio signature slot" for a Subscriber Station will be created during the Rx Master sub-frame; • UL MAP and suitable UIUC for scheduling the "radio signature" are t.b.d. • During "radio signature" intervals, all the other BSs and SSs shall use a GAP interval; • The Base Station shall take care to provide enough transmit opportunities for the active SSs. The figure below shows the possible allocation of the "radio signature" transmission opportunity for a given system, using for example the Type 1 repetitive pattern, with a focus on Network 2. The Network 2 will transmit its Base Station radio signatures from time to time (every N MAC intervals); different radio signatures will be sent for every used power/sub-channelization/OFDMA sub-channel/ spatial direction combination. During these intervals the other Base Stations will schedule a GAP interval, in order to identify solely one Base Station. Base Stations using the same MAC sub-frame as Master sub-frames shall schedule the transmission of their "radio-signatures" in such a way that will not interfere one with the other. The transmission of "radio-signatures" used by the active SSs will take place during the Master sub-frame, from time to time (a timer shall be defined). The repetition period and the duration of the signature transmission shall be a parameter in the BS Data Base. The active SSs will provide a signature for every used power/OFDMA/sub-channelization/ direction partition.

1 The BS data base will include:

2 • Operator ID 3 • Base Station ID 4 • *MAC Frame duration (same for a community)* 5 • *Shared Tx and Rx sub-frame durations (same for a community)* 6 7 • *Type of sub-frame allocation (same for a community)* 8 • MAC Frame number and sub-frame number chosen for the Master sub-frame (same 9 *for a community)* 10 • *Repetition period for Base Station radio-signature, measured in MAC-frames* 11 • Repetition interval between two Master sub-frames, measured in MAC-frames 12 13 • List of other used sub-frames, in the interval between two Master sub-frames 14 • *Time shift from the Master sub-frame start, duration and the repetition information* 15 for the Base Station radio-signature transmission 16 • Time_shift from the Master sub-frame start, duration and the repetition information 17 for the Subscriber Station radio-signature transmission 18 • *Time_shift from the Master sub-frame start and duration for network entry of a new* 19 *Base Station*, which is evaluating the possibility of using the same Master slot. 20 21 • BS power relative to radio-signature, in the used sub-frames, in the interval between 22 two Master subframes: 23 • For every active SS: SSID and its attenuation relative to radio-signature power, in the 24 used subframes, in the interval between two Master sub-frames; 25 • For every coexistence neighbor BS: the BSID, the IP address of the coexistence 26 neighbor and other profile information, and the SSs it interfered to, (and the SSs 27 belong to it that interfered by the database owner BS.tbd.) 28 • For every BS in the same community: the contact IP address and the interference 29 30 situation between this BS and other BS, including the interference situation with the 31 DB owner. 32 • For every SS registered: the interference situation, the number of interference source, 33 the IP address and RSSI of each source detected by the SS. 34 35 36 15.2.1.1.3 Coexistence Time Slot 37 CTS (Coexistence Time Slot): a predefined time slot for the coexistence protocol signaling 38 39 purpose, especially for the initializing BS to contact its coexistence neighbor operating BS 40 through one or more coexistence neighbor SSs in the common coverage area. 41 42 43 44 45 46 47 48 49

46 energy symbol shall be 1/N of the CTS length, here N is a natural number and to be 47 consolidated in region/country regulator

- $\frac{47}{48}$ consolidated in region/country regulator.
- There is 4 kinds of symbols: $\langle SOF \rangle$,0/null,1, $\langle EOF \rangle$, to be used to form any frame in CTS.

<SOF>: Start Of Frame, indicating the data part will start at the following symbol.
0/null: Binary code 0 used to compose the data part, same with null symbol.
1: Binary code 1 used to compose the data part.
<EOF>End Of Frame, indicating the data part ended at the last symbol

Each symbol is divided into two equal length parts. And for each part, there is 2 kinds of
power keying level defined, H (high) and L (low). High power level part need the BS to use
the maximum power to transmit and the SS will detect higher RSSI at that part, and the low
power level part need BS to be silent and SS will detect lower RSSI at that time.

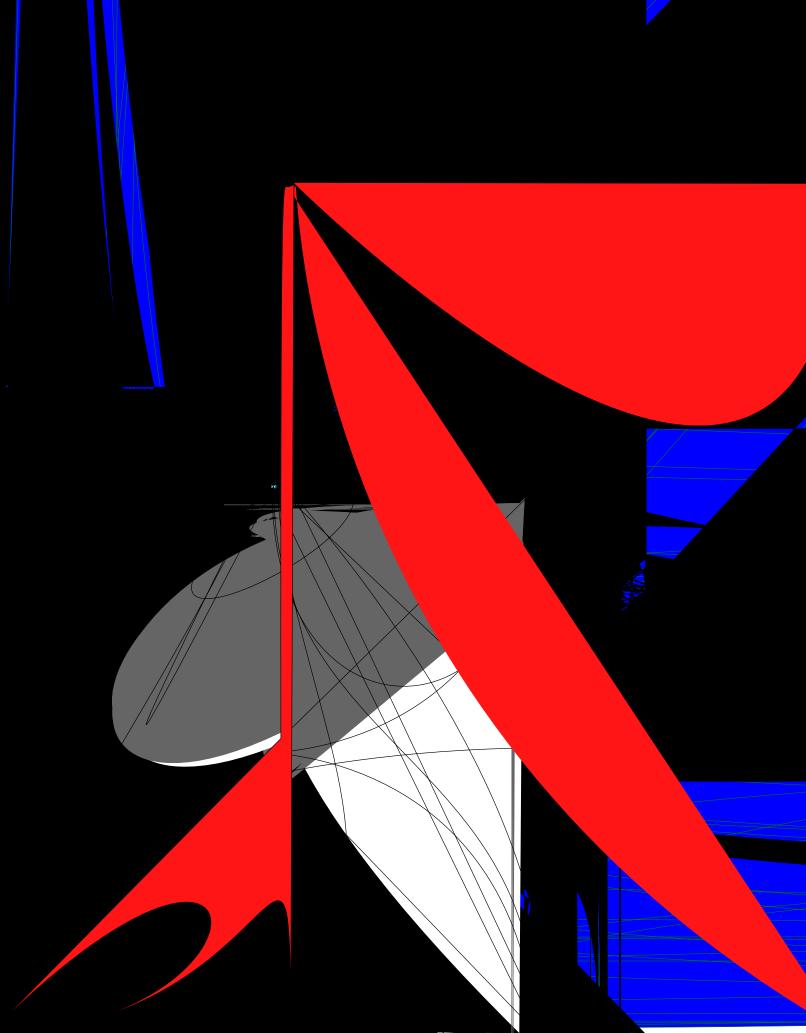
10 The format of each kind of symbols is shown in the table below:

- 1.

Table h1. CTS symbol Format

fo	rmat	signification
Part1	Part2	_
L	Н	<sof></sof>
Н	L	<eof></eof>
L	L	0
Н	Н	1

The receiving SS shall follow up the CTS timing and detect each symbol continuously in
every symbol space. The SSs shall verdict the symbol by this aspect of RSSI and time. One
CTS consists of several symbols with the same length, the number of symbols in each CTS
slot is standardized in region/country.


2526 15.2.1.1.5 CTS Frame Structure

CTS frame is broadcasted from the base station to coexistence neighbor's subscriber station. They are loaded into serialized CTS slots. It consists of power keying energy symbols as basic element and carry the information from BS to the coexistence neighbor's SS. The CTS frame has the <SOF> symbols and <EOF> symbols as the boundary of slots, and two consecutive <SOF> and <EOF> indicate the message boundary, it shall be filled with symbol one in the rest part of last slots which have not enough payload and checking appendant.CTS frame should be continuously carried in the serialized CTS slots during the whole CTS frame structure. Each CTS frame shall have 8 bits cyclic redundancy check (Polynomial "X8+X2+X+1") appendant to check the validity of the information carried in the CTS frame. The basic structure is shown below:

IEEE802.16h-05/027

1 2	RC	G 🖣		CTS Slot		CTG 🗕 rest part	of the physical frames
3							
4 5	CTS Cycle 1	SOF SOF		PLD	EOF		
6							
7	CTS Cycle 2	SOF		PLD	EOF		
8 9							
9 10	CTS Cycle N	SOF	PLD	Check	EOF EOF		
11		CTS Frame					
12 13	I			Elementa h 11 CTC from		!	
13 14				Figure h11.CTS frame	e construction		
15	The PLD (p	ayload) pa	art of the	CTS frame should be	divided into	TLV aspect.	FYPE indicate
16	·•	• • •		TH correspond to the		-	
17	VALUE por	rtion. (TY	PE and L	ENGTH is 1 octet ea	ich.)		
18							
19 20							
20 21				CTS Frame H	LD		
22							
23		Туре	Length		Value		
24 25		L		Figure h12.CTS fr	ame PLD		
26				riguie iniz.ero ii			
27	15.2.1.2 Int	terference	e Control	l			
28							
29	Interferer id	lentificatio	on using t	he radio signature			
30	• A re	ceiver wil	l listen to	the media during the	e radio signa	ture slot and w	ill find out
31 32	whic	ch are the	strongest	interferes; by scanni	ng the BS da	ta bases will b	e possible to
32 33	iden	tify, due t	o the kno	wledge of the frame	number, sub-	-frame number	and offset, to
33 34	whic	which BS is the interferer associated; based on time-shift information, the Base					
35	Stati	Station will be able to identify the Subscriber Station ID. During the allocated radio-					
36	sign	ature trans	smit oppo	ortunity no other radio	o transmitter	s will operate.	
37							
38	Interference	e reduction	ı				
39	• A B	S has the	right to <i>re</i>	equest an interferer to	o reduce its p	power by $P dB$,	for
40	trans	smissions	during th	e time in which a Bas	se Station is	a Master; if the	e requested
41	trans	smitter car	not exec	ute the request, it has	to cease the	operation duri	ing the Master
42	sub-	frame of t	he reques	sting Base Station; the	is applies als	so for systems u	using the sub-
43		ne as a Ma	-	C ·		·	C
44							
45 46	Sharing the	Master tin	ne				
40 47	•			icate in the data base	what portio	n of the sub-fra	ıme time.
48				<i>2x, is actually used</i>	r	<i>j</i>	·
49	-	• •		o not interfere one w	ith each othe	er, may use tha	t time interval
	27		Copyrigh	nt © 2005 IEEE. All i	rights reserve	ed.	

1	
2 3	Target acceptable interference levels during Master sub-frames:
4 5 6	For the Base Station and its SS, using the Master sub-frame: min. 14dB above the noise + interference level (16QAM 1/2 [note: we should define the interference criteria; the existing one may be too stringent and not necessary for short links]
7 8	15.2.1.3 Community Entry of new BS
$\begin{array}{c} 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 23 \\ 24 \\ 25 \\ 26 \\ 27 \\ 28 \\ 29 \\ 30 \\ 31 \\ 32 \\ 33 \\ 34 \\ 35 \\ 36 \\ 37 \\ 38 \\ 39 \\ 40 \\ 41 \\ 42 \\ 43 \\ 44 \\ 45 \\ 46 \\ 47 \\ 48 \end{array}$	 <xref>Figure h13 explains how one new entry BS discovers its coexistence neighbor BSs. The new entry BS-5 uses its GPS coordinates (x5, y5) and its maximum coverage radius in LOS, Rm, at allowed maximum transmission power. A BS is <i>potential</i> coexistence neighbor BS of another BS if: In co-channel operation the LOS maximum coverage area resulting for the allowed maximum transmission power overlaps one with each other. As depicted in <xref>Figureh 13, the regional LE DB will return BS-1, BS-2 and BS-3 as the <i>potential</i> coexistence neighbor BSs of the new entry BS.</xref> In first or alternate adjacent channels operation, the BS should consider the attenuation of the transmitted power, corresponding to the actual operation channels of different Base Stations </xref> Once a LE BS has learnt its <i>potential</i> coexistence neighbor topology from the regional LE DB, it evaluates the coexisting LE BSs and identifies which BSs might create interferences. The Adaptive Channel selection will select the actual operating frequency, such that the probability of interference will be minimized. Each LE BS tries to form its own community. By including the coexistence neighbor BS that create interferences to the associated SSs The members of community will change when the working frequency of any BSs changes or new interfering coexistence neighbor BS comes in.
49	

The serving BS will get all the information from the related SSs and saved the useful content to their database. After that, the serving BS will contact new BS using the IP address reported by the SS and transfer the parameter of its own to the new coming one with authorization and negotiation, thereafter the serving BS will also get the parameter and other corresponding information from the new coming BS.

7 8 9

In general, the coexistence detection, avoidance and resolution are performed in two stages, initialization stage and operating stage.

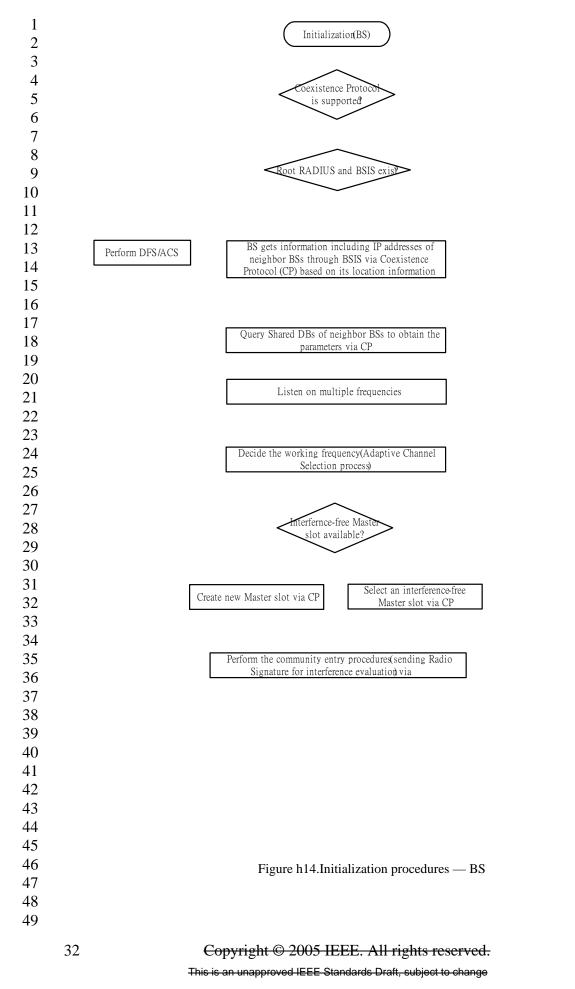
10 11

12 (1) Initialization stage

13 In initialization stage the LE BSs may avoid the co-channel or adjacent channel interference 14 by scanning the available frequencies. But this method cannot avoid the hidden LE BS 15 problem, i.e. the BS that cannot be heard directly but may have overlapping service coverage. 16 Thus, with the knowledge of coexistence neighbor topology the LE BSs can detect the *hidden* 17 LE BSs and can, therefore, avoid the possible interferences from coexisting coexistence 18 neighbors. Alternatively, if the country/region database is not valid in this phase, the 19 initializing BS will use the coexistence time slot to broadcast its IP address to its coverage 20 using its maximum power. In this way, the SSs in the reachable zone of the new BS's 21 interference will receive the message and forward the address to its serving BS. And after the 22 neighbor BSs get the address via the SSs' reports, they will contact with their new coming 23 24 neighbor via IP network and updating the database on both side. Thus, in ad-hoc fashion, it 25 will avoid the hidden neighbor BS issue by the SSs in the neighbor network. If the LE BS 26 finds that there is no "free" channel, the coexistence neighbor topology in the share database 27 provides the information of with whom it should negotiate. LE BS may decide whether a 28 "free" frequency can be allocated for itself by channel reallocation within community, If IBS 29 can figure out optimized channel distribution in the community, which made every member 30 in the community could occupy a exclusive channel, IBS should contact the BSs in the 31 community which need to reallocate the channel in the new distribution and negotiate, after 32 admitted by each BS, IBS should send a message to the candidate BS to indicate the switch 33 time and the target channel, all the candidate BS should then follow the indication and switch 34 to the target channel synchronously. Otherwise, if IBS can't get a "free" frequency whatever 35 36 reallocation executed, that means IBS should have to share a frequency with one or some of 37 its neighbors. The procedures are described in Figure 12.

38

39 (2) *Operating stage*


In operating stage the LE BS has SS associated with it, however, even the operating system
parameters has decided, the co-channel or adjacent channel interference from LE BSs of
different network may still have a chance to happen due to the detection of interference from
primary user, channel switching of coexistence neighbor BS or the entry of new coexistence
neighbor BS makes the community so crowded that there is no enough channels. If the LE BS
finds that there is no "free" channel at that moment, synchronous channel switching maybe

- 47 executed, or the coexistence neighbor topology provides the guidelines of with whom it
- 48 should negotiate to share the channel. *[detailed procedures are to be defined]*49
 - •

30

1	<xref>Figureh14 shows the initialization procedures for the 802.16 LE BSs. Note that the</xref>
2 3	procedures that BS tries to create a Master slot or channel switching are also applicable for
3	operating stage. The detailed negotiation and update procedures are described in section
4	Coexistence Protocol and 15.7.1.4.
5	Coexistence 110tocol and 15./.1.4.
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	

(

1	[Note: th	e following text needs further consideration]
2	• T	he first phase of the Community Entry is to judge the validity of country/region data
3		ase. If the country/region Root RADIUS serveris valid(t.b.c: what means valid?),
4		e processfurther queries Root RADIUS server::
5		o Get the BSISs from the country/region Root RADIUS server;
6		• <i>Read the data base maintained by BSIS via Coexistence Protocol;</i>
7		
8		• Identify which Base Stations might create interference, based on the location
9		information;
10		• The IBS learn the IP identifier for those Base Stations;
11	0	therwise:
12		• New BS uses the interference free slot to broadcast the message containing
13		the contact request and/or the cognitive radio signal transmitting the IP
14		address
15 16		• The SS in the common coverage will forward the information to its operating
17		base station. using REP_RSP message
18		• The operating BS <u>update its database and</u> send feedback information to the
19		IBS, using the IP network
20		
21		
22		by the coexistence neighbor BS via IP network
23		uild the local image of the relevant information in the community BS's, by copying
24		the info in those BSs
25	• Li	isten on multiple frequencies
26		• Identify the level of interference on each frequency channel;
27	• D	ecide the working frequency (ACS – Adaptive Channel Selection process);
28		• If no interference detected on some channels, select one randomly as working
29		channel;
30		• If interference detected by IBS or OBS network on all channels, then IBS
31		should decide whether an optimized channel distribution can allocate an
32		
33		exclusive channel for each BSs including IBS in community.
34		• If every BS in community can be allocated an exclusive channel without
35		interfering with others, that means default interference-free Master slot is
36 37		available for this initializing BS.
38	• If	available, select an interference-free Master sub-frame; if not, use the procedure for
38 39	cr	reating new Master sub-frames;
40	• Se	earch the Base Station data base for finding the BSs using the selected Master sub-
41	fr	ame;
42	• R	equest those Base Stations, by sending IP unicast messages, to listen during the
43		<i>S_entry slot</i> in order to evaluate the interference from the new Base Station;
44		se the allocated slots for transmitting the "radio signature" at maximum power,
45		aximum power density and in all the used directions;
46		sk for permission of the Base Stations, using the sub-frame as Masters, to operate in
47		arallel and use the same sub-frames;
48	pa	muner und use me sume sub-frames,
49		

1 2	• If all of them acknowledge, the Base Station acquires a "temporary community
23	entry"status; the final status will be achieved after admission of the SSs;
4	• If no free Master slot sub-frame is found, use the procedure for creating new Master
5	slotssub-frames.
6	
7	15.2.1.4 Network and Community Entry for SS
8 9	• Start listening;
10	• Determine interference intervals;
11	• Assume that the interference is reciprocal;
12	 Build database for possible working slots and sub-frames;
13	 Wait for the Base Station community entry and start of operation;
14	
15	• At BS request, send a list of the above identified time intervals;
16	• If an old Base Station will perceive interference from the new SSs, it will <i>ask the new</i>
17	Base Station to find another sub-frame for that SS operation;
18 19	• If the SS will sense interference, will request their Base Station to <i>find another sub-</i>
20	frame for operation as Master.
21	15.2.1.5 BS regular operation
22	• Schedule SS traffic: The traffic of each served SS should be schedule into
23	corresponding sub-frame/resource based on the SSs' interference situation. Traffic of
24	SSs in the interference free zone could be scheduled into any available sub-frame/
25 26	resource of the serving BS, and traffic of SSs in the interference zone should take only
26 27	corresponding master subframe/resource of the serving BS.
28	• Set Tx power levels, such to use minimum power levels for both BS and SSs;
29	• Maintain it own database when other BSs join the network.
30	 The BS need to keep updating the information of all the BS in the community
31	including the coexistence neighbor BS, and the information of the served SSs in the
32	own network. The information include the profile and the interference situation of the
33	stations. The interference situation information include the interference status, the
34	interference source and corresponding RSSI, the interference victims founded. Etc.
35	interference source and corresponding robbi, the interference victims founded. Dec.
36 37	15.2.1.6 Operational dynamic changes
38	15.2.1.7 Creation of a new sub-frame
39	If none sub-frame can be used, a new Base Station may request the addition of another sub-
40	<i>frame</i> . The effect of such a request will be the reduction of operating time for those Base
41 42	Stations that interfere with the new Base Station. However, all the others, that do not interfere
43	one with each other and with the new one, may work in parallel and use the same operating
44	time.
45	A Base Station will request the creation of a new sub-frame by:
46	• Sending IP messages to all BS members of the community, and indicating:
47	• The interfering operator ID and BS ID
48	
49	

Copyright © 2005 IEEE. All rights reserved.

1 2	• The MAC frame-number in which the addition of a new sub-frame will take
3	<i>place.</i>All the requested <i>BSs will acknowledge the request</i>, by
4	 An the requested biss will acknowledge the request, by Sending back a message having as parameters:
5	 Frame-number for the change (must be the same as the requested one
6 7	 Master sub-frame number for the new BS (SF = Sfold+1).
7 8	
9	
10	attempts, after that will be considered that they are not working;
11	• At the above specified MAC frame number, a new sub-frame partition will
12	take place, by inserting in the sub-frame calculation relation $N=N+1$
13	• The BSs will up-date the own SSs about the change
14	• Start to use the created Master sub-frame.
15 16	
17	15.2.1.8 Controlling interference during master sub-frame
18	
19	15.2.1.8.1 Interferer identification
20 21	
21	The interferers will be identified by their radio signature, for example a short preamble for
23	OFDM/OFDMA cases. The radio signature consist of:
24	• Peak power
25	Relative spectral density
26	• Direction of arrival.
27	Every transmitter will send the radio signature during an interference-free slot. The <i>time</i>
28 29	position of this slot (frame_number, sub-frame, time-shift) will be used for identification.
30	In IBS's coexistence neighbor discovery phase, the IBS's IP address shall be broadcast using
31	the IPBC frame with pulse energy keying. And this shall be detected by coexistence
32	neighbor's SS in the IBS's reachable range and reported to its serving BS.
33	The IP address is used to identify the coexistence neighbor BS by the receiver SS in the IBS's
34	coexistence neighbor discovery phase. And also be the identifier of the IBS for the
35	coexistence neighbor BS before the coexistence neighbor got in touch with the IBS in the IP network.
36 37	letwork.
38	15.2.1.8.2 Interference to BS
39	• Identify the interferers;
40	 Send messages to interfering BSs, asking to drop the power of the specified
41	transmitter by P dB;
42	 Alternatively, send messages to related BSs, asking to stop operating during the BS
43 44	<i>master slot</i>
44 45	 The requested Base Station has the alternative of looking for another Master slot.
46	• The requested base station has the alternative of looking for another waster slot.
47	15.2.1.8.3 Interference to SS
48 49	• <i>Report</i> to BS about experienced interference
	35 Copyright © 2005 IEEE. All rights reserved.

- List of frame number, sub-frame, offset, IP address of source BS (if detected)
- BS start process for interference reduction with *feedback from the SS*.

15.2.1.9 Controlling interference during not-interfering traffic sub-frames

The Base Station data base shall keep the following information regarding the usage of "noninterfering sub-frame" or Master sub-frames belonging to other systems:

8 9 10

11

6

7

1

2

3 4 5

- BS power, relative to the radio signature *power*, when using each of the sub-frames; •
- List of SSs and their power, relative to the radio signature *power*, when using each of the sub-frames.

12 The received power during other sub-frames can be obtained by using the radio signature 13 measurement and suitable calculations, according to data-base information on used powers. 14 Messages as Stop Operating Request and Reduce Power Request can be used for 15 controlling the interference levels.

16 17

18 15.2.1.10Power Control

19 Every network will strive to reduce its transmit powers to the minimum, such that the C/I+N 20 will be sufficient to allow the operation at the minimum common rate, considered as OPSK1/ 21 2 for all the 802.16 systems; an exception from this rule is possible only when a network is 22 operating during its interference-free period. The power control mandatory algorithm will be 23 defined in chap. [t.b.c.] 24

25 26

15.2.1.11Coexistence with non-802.16 wireless access systems

27 The above principles are also applicable to non-802.16 systems, like 802.11. During every 28 802.16 MAC frame, a 802.11 system may find that a sub-frame may be used, due to the low 29 30 created interference levels. In the case that no operation in parallel is possible, the new system 31 will ask for the creation of a new Master sub-frame. The Coexistence Protocol, working at IP 32 level, will allow the communication between systems using different PHY/MAC standards. 33 The scheduled use of the MAC frame is possible by using the 802.11 PCF mode.

34 35

36 15.2.1 Shared distributed system architecture

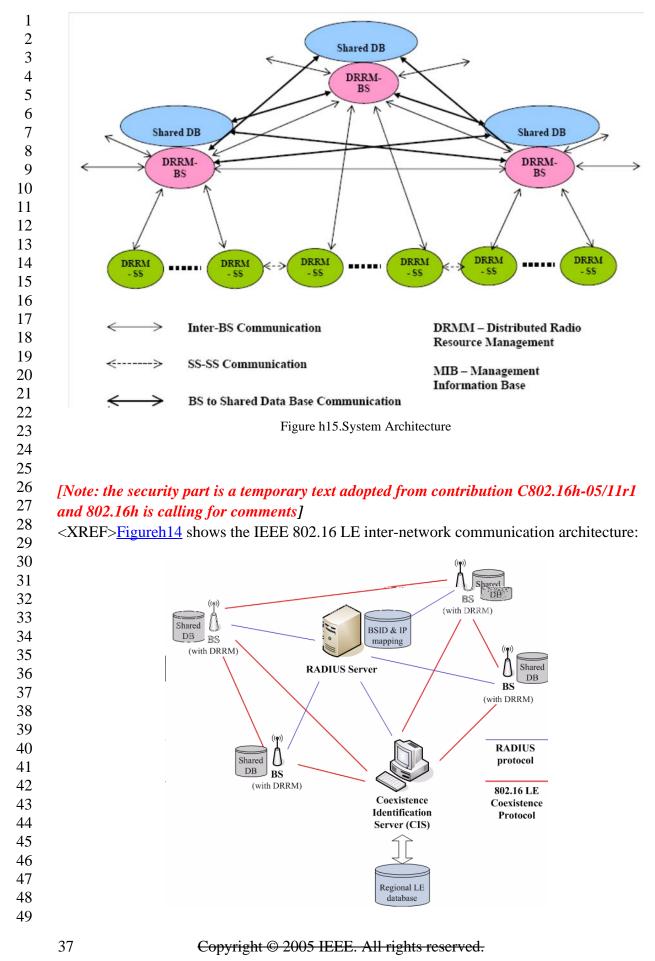
37

38 **15.2.1.1** Architecture 39

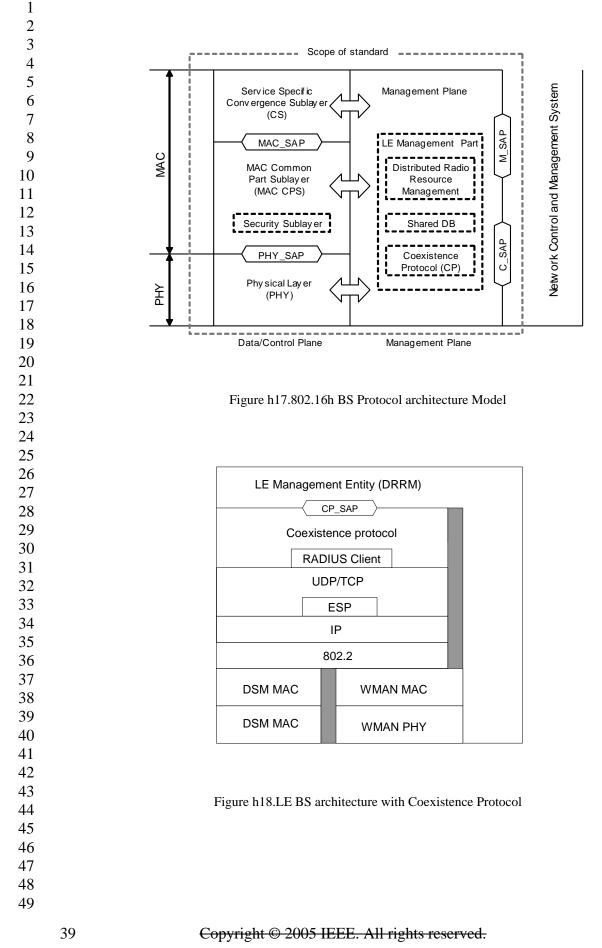
The architecture for Radio Resource Management in the context of IEEE 802.16h it is a 40

distributed one and allows communication and exchange of parameters between different 41 networks. A network consists from a Base Station and its associated Subscriber Stations.

42 Every Base Station includes a Distributed Radio Resource Management entity, to apply the 43


44 802.16h spectrum sharing policies, and a Data Base to store the shared information regarding

45 the actual usage and the intended usage of the Radio Resource.


46 A subscriber Station may include an instance of DRRM, adapted to SS functionality in

47 802.16h context. The following figure shows the functional diagram of the IEEE 802.16h 48

network architecture: 49

1	Figure h16.Network Architecture
2 3 4 5 6 7 8 9	General architecture includes the components operating over IP-based network: - The RADIUS Server- The Base Station Identification Server (BSIS), described in detail in section xxx - The BSs cooperating with the Distributed Radio Resource Management (DRRM) procedure RADIUS server to maintain the address mapping of wireless medium addresses of BSs (their BSID) and medium addresses of BSIS to their IP addresses.
10	15.2.1.2 Inter-network communication
11	The inter-network communication consists in:
12 13	• Inter-network messages
13 14	• Base Station to/from Base Station
15	 Base Station to/from Subscriber Station to/from foreign Base Station; the
16 17	subscriber Station is used as relay, if the two Base Stations are hidden one from the other
18	 Open access to DRRM Data Base:
19	• To read the parameters of the hosting Base Station
20 21	 To request change of the hosting Base Station operating parameters.
21	5 To request change of the nosting base blatton operating parameters.
22	
24	15.2.1.3 Coexistence Protocol
25	[Note: the security part is a temporary text adopted from contribution C802.16h-05/11r1
26	and is subject to further discussion.]
27	In order to get the coexistence neighbor topology, perform registration to the database and
28	registration to peer, negotiation for Shared RRM etc. will be used a Coexistence Protocol
29	(CP). <xref>Figureh20 describes the 802.16h protocol architecture. The protocol</xref>
30 31	architecture indicates that DRRM, Coexistence Protocol and Shared DB belong to LE
31 32	Management Part located in management plane and the messages will be exchanged over IP
33	network. Thus, DRRM in LE Management Part uses the Coexistence protocol to
34	communicate with other BSs and with Regional LE DB and interact with MAC or PHY.
35	<xref><u>Figureh20</u> is LE BS architecture with Coexistence Protocol. The gray area indicates</xref>
36	area where there is an absence of connection between blocks. DSM is Distribution System
37	Medium which is another interface to the backbone network. Note that is architecture is only
38	for reference. Similarly, <xref><u>Figureh20</u> is the BSIS architecture with co-located regional</xref>
39	LE database. Other architectures are not being illustrated. The Coexistence Protocol services
40	are accessed by the LE Management Entity through CP SAP. The service primitives are
41 42	described in t.b.d A BS uses the Coexistence Protocol, which is similar to PKM protocol, to
42 43	perform the coexistence resolution and negotiation procedures. There are two types of
44	messages to support Coexistence Protocol:
45	(1) LE_CP-REQ: BS \rightarrow BS or BS \rightarrow BSIS
46	(2) LE_CP-RSP: BS \rightarrow BS or BSIS \rightarrow BS
47	
48	
49	

1 2			
3 4		regional LE database software	
5		CP-DB_SAP	_
6		Coexistence protocol	
7 8			
8 9		RADIUS Client	_
10		UDP/TCP	
11		ESP	
12		IP	
13		802.2	_
14		002.2	_
15		DSM MAC	
16 17			_
17		DSM PHY	
19			
20			
21			
22	Figur	e h19.BSIS architecture with co-located regional	LE database
23			
24 25			
25 26	15.2.1.3.1 Same PHY P	rofile	
20 27	For notworks using the s	ama 802 16 DUV Profile including alam	onto oc
28	e	ame 802.16 PHY Profile, including elem	
29	-	el spacing for LE system in TBD MHz v	vill de TBD MHZ;
30	• PHY mode:		
31		IAN-OFDM (256 FFT points)	
32		y profiles for operation in the LE $5725-3$	
33 24		ofM3_pmp,profP3_10,profC3_23,TDD,p	
34 35		<i>IAN OFDMA 2k (in future 128, 512, 1k)</i>	FFI points
36	0 WirelessN	,	
37		inication may be done using 802.16 mess	•
38		2.16h amendment. The procedures for sen	lding these messages are
39	described in t.b.d.		
40 41	15.2.1.3.2 Mixed-PHY I	Profile communication	
42	In the case of different Pl	HY Profiles the communication will be do	one at IP Level. Every Base
43		IP address of the DRRM of the Base Stat	
44		sing a regional data base approach or/and	•
45	signaling.		
46 47			
47 48			
48 49			
.,	40	puright @ 2005 IEEE All rights reserved	1
	40 C_{0}	THE THE THE ALL MADE TO A THE PARTY AND THE	

15.2.1.4 Information table in share database

3	Syntax	Size	Notes
4	This BS information table(){	5120	Notes
5	BSID	48bits	
5	Operator ID	?bits	
	IP address	32bits	IPv4 address
7	Master resource ID	8bits	Sub-frame number
3	Negotiation status	8bits	Bit0: get communication in the IP network
	C		Bit1: be registered in
)			Bit2: registered to
			Bit3: done for resource sharing(if neighboring)
			Bit4-7: tbc.
	CTS parameter(){		Regulated by region/country
	Tcts_start	16bits	In microseconds
	Tcts_duration	8bits	In microseconds
	Period of frames	8bits	frames
)	Starting frames offset	16bits	frame serial number of the first frame that CTS
			presented
	Length of Symbols	8bits	In microseconds, need to be 1/n of Tcts_duration
)	}		
	Number of CoNBRs	8bits	m:The number of coexistence neighbors of this BS
)	for (i= 1; i <= m; i++) {		
	BSID	48bits	
	(Tbc.)	(Tbc.)	(Tbc.)
	}		
	Profile(){		
	Band		
	PHY mode(){		
	Modulation		
	(Tbc.)		
	}	0.1	11
	Maximum power	8 bits	dbm
	Number of registered SS for $(i = 1; i < p; i + 1)$	12bits	n
	for (i = 1; i <= n; i++) { SSID	48bits	
	(tbc.)	(tbc.)	(tbc.)
	}		
	(tbc.)	(tbc.)	(tbc.)
	}	(100.)	

	Table	h3. BS information table
Syntax	Size	Notes
BS information table(){		
Index	16bits	
BSID	48bits	
Operator ID	?bits	
IP address	32bits	IPv4 address
Sector ID	8bits	
Master resource ID	8bits	Sub-frame number
Negotiation status	8bits	Bit0: get communication in the IP network
		Bit1: be registered in
		-
		Bit2: registered to
		Bit3: done for resource sharing(if coexistence
		neighboring)
		Bit4-7: tbc.
Coexistence neighboring	1bit	Coexistence neighbor with this BS?
Coexistence nergibornig	TOIL	-
		1-yes
		0-no
If (Coexistence neighbor){		
Number of victim SSs	16bits	n:The number of victim SSs of this coexistence
		neighbor, in this network
for $(i - i) : \langle -n : i \rangle$		
$for (i = i; i \le n; i++) $	48bits	
SSID		11. (c) DCCL
RSSI	16bits	1byte RSSI mean (see also 8.2.2, 8.3.9, 8.4.11) fo
		details)
		1byte standard deviation
}		
(Tbc.)	(Tbc.)	(Tbc.)
}	(100)	
Number of Coexistence	8bits	m:The number of coexistence neighbors of this B
	00105	In the number of coexistence heighbors of this b
neighbors		
for (i= 1; i <= m; i++) {	401.1	
BSID	48bits	
(Tbc.)	(Tbc.)	(Tbc.)
}		
Profile(){		
Band		
PHY mode(){		
Modulation		
(Tbc.)		
}		
Maximum power	8 bits	dbm
Number of registered SS	12bits	
(tbc.)	(tbc.)	(tbc.)
}	(100.)	
(tbc.)	(tbc.)	(tbc.)
1	(100.)	
1	I	
	Table	h4. SS information table
Syntax	Size	Notes
SS information table(){		
Index	16bits	
SSID	48bits	
Interference status	1bit	Interfered by coexistence neighbor?
		1-yes
		-
		0-no
If (Interfered){		

49

1	Number of source BSs	8bits	n:The number of interference source of coexistence
2			neighbor
3	for $(i = 1; i \le n; i++)$ {		
	BSID	48bits	
4	IBS_IPBC detected	1bits	1-yes 0-no
5	If (IBS_IPBC detected){		
6	IP address	32bits	If the IBS_IPBC message detected, the IP address
7			report by the SS will add here, and updating the bit
8			above
9	Sector ID	?bits	Reported by SS
	Frame number	24bits	Reported by SS
10	Error Status	?bits	0 -no error
11			1 - not capable to decode the energe pulse symbol.;
12			2 - not able to find the eligible <sof>;</sof>
13			3 - not able to find the eligible <eof>;</eof>
14			4 - not able to pass the CRC check for message;
15	(tbc.)	(tbc.)	(tbc.)
	}		
16	RSSI	16bits	1byte RSSI mean (see also 8.2.2, 8.3.9, 8.4.11 for
17			details)
18			1byte standard deviation
19	(tbc.)	(tbc.)	(tbc.)
20	}		
21	(tbc.)	(tbc.)	(tbc.)
	}		
22	(tbc.)	(tbc.)	(tbc.)
23	[}		

15.3 Interference victims and sources

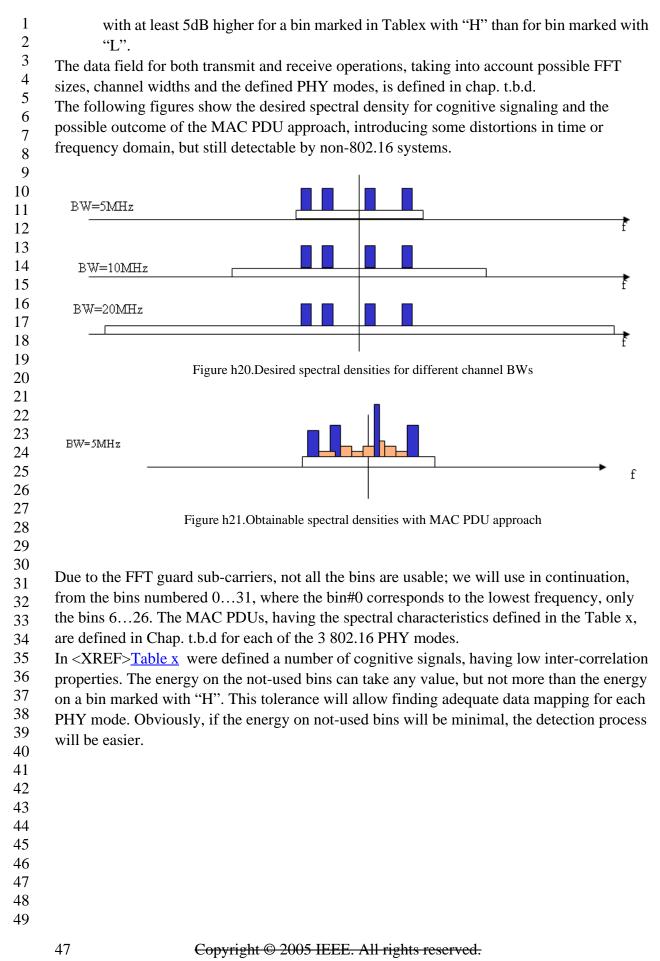
15.3.1 Identification of the interference situations

15.3.1.1 Interferer identification

15.3.1.1 Interferer identification
 The interferers will be identified by their radio signature, for example a short preamble for
 OFDM/OFDMA cases. The radio signature consist of:

- Peak power
- Relative spectral density
- Direction of arrival.

Brection of arrival.
Every transmitter will send the radio signature during an interference-free slot. The *time position of this slot (frame_number, sub-frame, time-shift)* will be used for identification.
The transmitted power of non-interfering radio transmitters using a Master sub-frame will be
known from the BS data base, indicating their power attenuation relative to the radio


- 44 signature, for every used sub-frame.

1	15.3.1.2 Grouping of interfering/not-interfering units
2 3 4	15.3.1 Identification of spectrum sharers
4 5 6	15.3.1.1 Regulations
7	15.3.1.2 Messages to disseminate the information
8 9	15.3.1.3 Avoid false-identification situations
10 11	15.3.1.4 Using centralized server
12 13	[Note: overlapping chapter]
14	15.3.1.4.1 Base Station Identification Server
$ \begin{array}{r} 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 23 \\ 24 \\ 25 \\ 26 \\ 27 \\ 28 \\ 29 \\ 30 \\ 31 \\ 32 \\ 33 \\ 34 \\ 35 \\ 36 \\ 37 \\ 38 \\ 39 \\ 40 \\ 41 \\ 42 \\ 43 \\ 44 \\ 45 \\ 46 \\ 47 \\ 48 \\ 49 \\ \end{array} $	[Note: The following part from 3.2.4.1 is a temporary text adopted from contribution C802.16h-05/11r1 and is subject to further discussion. A call for comment from security experts is open to comment on this text.] The Base Station Identification Server (BSIS) acts as an interface between 802.16 LE BSs and the regional LE DB which stores the geographic and important operational information, e.g. latitude, longitude, BSID etc., of the LE BSs belonging to the same region. It converts the actions carried in PDUs received from the 802.16 LE BSs to the proper formats, e.g. sQL (Structured Query Language) string, and forwards the strings to the regional LE DB, which can be any available database software. BSIS converts the query results from the regional LE DB to the proper format, e.g., TLV encodings, and replies to the requested BSs. <xref>Figureh14 shows the general architecture of inter-network communication across 802.16 LE systems. BSIS acts as a peer of 802.16 LE systems within certain domain. The messages exchanged between the LE BSs and the BSIS will be revealed in the next section. Note that the interface between BSIS and regional LE DB is out of scope.</xref>

2005-12-02

1	15.4 Interference prevention
2 3 4	15.4.1 Adaptive Channel Selection – ACS
5	15.4.1.1 Between 802.16 systems
6 7 8	15.4.1 Dynamic Frequency Selection – DFS
9 10	15.4.1.1 Frequency selection for regulatory compliance
11 12	15.5 Pro-active cognitive approach
13 14	15.5.1 Signaling to other systems
15 16 17	[Note: the cognitive signaling may have effect on the power amplifier and on the PAPR. Call for contribution to investigate if there are any such effects.]
18 19 20 21 22 23 24 25	 15.5.1.1 Ad-hoc systems - operating principles using Cognitive Radio signaling In order to reduce the interference situations, in deployments in which may exist a combination of 802.16 systems using a Coexistence Protocol and 802.16 ad-hoc systems, the 802.16 ad-hoc systems will apply the Adaptive Channel Selection procedures and use cognitive radio signaling procedures to interact with systems using a Coexistence Protocol. The ad-hoc systems obtain a temporary Community registration status, that has to be renewed from time to time.
26	15.5.1.2 Registration
27 28 29 30	The 802.16h pro-active cognitive radio approach defines signals and procedures for the reservation of the activity intervals and registration of ad-hoc systems. The operational procedures are described below:
30 31 32 33 34 35 36	 802.16h Community registered systems, using a Coexistence Protocol, will reserve the MAC frame Tx/Rx intervals by using, during the MAC Frame N, cognitive signals to indicate the MAC Tx_start, MAC Tx_end, MAC Rx_start, MAC Rx_end. These signals are transmitted by Base Stations and Repeaters. The specific MAC frame N is indicated in the BS data-base and these procedures will repeat after N_{cogn} MAC
37 38 39 40 41 42	 frames; During the MAC frame N+1, cognitive signals will indicate the beginning and the end of Master sub-frames, by transmitting signals indicating by their transmission start the Tx_start, Tx_end, Rx_start, Rx_end for the specific sub-frame; these signals are transmitted by Base Stations, Repeaters and those SSs which experiences interference, at intervals equal with N_{cog} MAC Frames;
43 44 45 46 47 48 49	 During the MAC frame N+2, will be indicated the position of the time-slots, in each Master sub-frame, to be used starting with the MAC Frame N+3 for registration using cognitive signaling. The start of the "Rx_slot" signal will indicate the start of the slot. The start of the MAC frame N+4 is the start of a registration interval using the cognitive signaling; the registration interval has the duration of Tcr_reg seconds; The ad-hoc transmitters shall use during the MAC frame N+4, the marked slot for sending

1	their radio signature. The radio signature will be used for the evaluation of the
2	potential interference during the Master slot, to systems which use the sub-frame as
3	Master systems.
4	• An ad-hoc radio unit (BS, Repeater or SS) will send this signal using a random
5	access mode for Tcr_reg1 seconds, using the sub-frame intended for their
6	
7	regular transmission (BSs and SSs use different sub-frames for transmission).
8	• The ad-hoc transmitters will have to use the registration procedures every
9	Tad_reg seconds.
10	Registration replay
11	• The radio units using the Master sub-frame will send a NACK signal, to be
12	sent in a random mode during the next Tcr_reg_ack seconds, if they
13	appreciate that the ad-hoc transmitter will cause interference. Typically, to a
14	registration signal sent during a DL sub-frame, the NAK will be sent by one or
15	more SSs, while to a registration signal sent during UL sub-frame, the NACK
16	signal will be sent by a Base Station. The radio units using the Master sub-
17	
18	frame will send their response in random mode.
19	• The NACK signal indicates that the requesting ad-hoc device cannot use the
20	specific sub-frame, while using the requesting radio signature
21	• Same device may try again, if using a different radio signature (for example,
22	lower power).
23	 Lack of response, for Tcr_reg_ack seconds, indicates that the registration is
24 25	accepted for transmission during the specific sub-frame.
25 26	
20 27	15.5.1.3 Selection of suitable reception sub-frames
28	An ad-hoc unit will find his suitable reception sub-frames, by using the ACS and Registration
20 29	process in a repetitive way, searching for a suitable operation frequency. The practical
	interference situations, with synchronized MAC Frames are BS-SS and SS-BS interference.
30	
30 31	Assuming similar transmit powers, the above mentioned process will have as result finding
31	Assuming similar transmit powers, the above mentioned process will have as result finding
31 32	
31 32 33	Assuming similar transmit powers, the above mentioned process will have as result finding Master sub-frames in which the path attenuation between interfering units is maximal.
31 32	Assuming similar transmit powers, the above mentioned process will have as result finding
31 32 33 34	Assuming similar transmit powers, the above mentioned process will have as result finding Master sub-frames in which the path attenuation between interfering units is maximal.
31 32 33 34 35	Assuming similar transmit powers, the above mentioned process will have as result finding Master sub-frames in which the path attenuation between interfering units is maximal. 15.5.1.4 Signaling procedures for Cognitive Radio applications
31 32 33 34 35 36	Assuming similar transmit powers, the above mentioned process will have as result finding Master sub-frames in which the path attenuation between interfering units is maximal. 15.5.1.4 Signaling procedures for Cognitive Radio applications The signaling and message exchange between an ad-hoc system and systems using a Coexistence Protocol is done as detailed below:
31 32 33 34 35 36 37	Assuming similar transmit powers, the above mentioned process will have as result finding Master sub-frames in which the path attenuation between interfering units is maximal. 15.5.1.4 Signaling procedures for Cognitive Radio applications The signaling and message exchange between an ad-hoc system and systems using a Coexistence Protocol is done as detailed below: • Split the narrowest channel to be used (as defined in 802.16 Profiles) into 32 energy
31 32 33 34 35 36 37 38 39 40	 Assuming similar transmit powers, the above mentioned process will have as result finding Master sub-frames in which the path attenuation between interfering units is maximal. 15.5.1.4 Signaling procedures for Cognitive Radio applications The signaling and message exchange between an ad-hoc system and systems using a Coexistence Protocol is done as detailed below: Split the narrowest channel to be used (as defined in 802.16 Profiles) into 32 energy bins, as follows:
31 32 33 34 35 36 37 38 39 40 41	 Assuming similar transmit powers, the above mentioned process will have as result finding Master sub-frames in which the path attenuation between interfering units is maximal. 15.5.1.4 Signaling procedures for Cognitive Radio applications The signaling and message exchange between an ad-hoc system and systems using a Coexistence Protocol is done as detailed below: Split the narrowest channel to be used (as defined in 802.16 Profiles) into 32 energy bins, as follows: For 256FFT, to 8 sub-carriers/bin
31 32 33 34 35 36 37 38 39 40 41 42	 Assuming similar transmit powers, the above mentioned process will have as result finding Master sub-frames in which the path attenuation between interfering units is maximal. 15.5.1.4 Signaling procedures for Cognitive Radio applications The signaling and message exchange between an ad-hoc system and systems using a Coexistence Protocol is done as detailed below: Split the narrowest channel to be used (as defined in 802.16 Profiles) into 32 energy bins, as follows: For 256FFT, to 8 sub-carriers/bin For 512 FFT, to 16 sub-carriers/bin
31 32 33 34 35 36 37 38 39 40 41 42 43	 Assuming similar transmit powers, the above mentioned process will have as result finding Master sub-frames in which the path attenuation between interfering units is maximal. 15.5.1.4 Signaling procedures for Cognitive Radio applications The signaling and message exchange between an ad-hoc system and systems using a Coexistence Protocol is done as detailed below: Split the narrowest channel to be used (as defined in 802.16 Profiles) into 32 energy bins, as follows: For 256FFT, to 8 sub-carriers/bin For 512 FFT, to 16 sub-carriers/bin For 1024FFT, to 32 sub-carriers/bin
31 32 33 34 35 36 37 38 39 40 41 42 43 44	 Assuming similar transmit powers, the above mentioned process will have as result finding Master sub-frames in which the path attenuation between interfering units is maximal. 15.5.1.4 Signaling procedures for Cognitive Radio applications The signaling and message exchange between an ad-hoc system and systems using a Coexistence Protocol is done as detailed below: Split the narrowest channel to be used (as defined in 802.16 Profiles) into 32 energy bins, as follows: For 256FFT, to 8 sub-carriers/bin For 512 FFT, to 16 sub-carriers/bin For 1024FFT, to 32 sub-carriers/bin For 2048FFT, to 64 sub-carriers/bin.
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45	 Assuming similar transmit powers, the above mentioned process will have as result finding Master sub-frames in which the path attenuation between interfering units is maximal. 15.5.1.4 Signaling procedures for Cognitive Radio applications The signaling and message exchange between an ad-hoc system and systems using a Coexistence Protocol is done as detailed below: Split the narrowest channel to be used (as defined in 802.16 Profiles) into 32 energy bins, as follows: For 256FFT, to 8 sub-carriers/bin For 512 FFT, to 16 sub-carriers/bin For 1024FFT, to 32 sub-carriers/bin
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46	 Assuming similar transmit powers, the above mentioned process will have as result finding Master sub-frames in which the path attenuation between interfering units is maximal. 15.5.1.4 Signaling procedures for Cognitive Radio applications The signaling and message exchange between an ad-hoc system and systems using a Coexistence Protocol is done as detailed below: Split the narrowest channel to be used (as defined in 802.16 Profiles) into 32 energy bins, as follows: For 256FFT, to 8 sub-carriers/bin For 512 FFT, to 16 sub-carriers/bin For 1024FFT, to 32 sub-carriers/bin For 2048FFT, to 64 sub-carriers/bin.
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47	 Assuming similar transmit powers, the above mentioned process will have as result finding Master sub-frames in which the path attenuation between interfering units is maximal. 15.5.1.4 Signaling procedures for Cognitive Radio applications The signaling and message exchange between an ad-hoc system and systems using a Coexistence Protocol is done as detailed below: Split the narrowest channel to be used (as defined in 802.16 Profiles) into 32 energy bins, as follows: For 256FFT, to 8 sub-carriers/bin For 512 FFT, to 16 sub-carriers/bin For 1024FFT, to 32 sub-carriers/bin For 2048FFT, to 64 sub-carriers/bin. Send an 802.16h MAC message, at a suitable rate, such that the MAC header will use
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48	 Assuming similar transmit powers, the above mentioned process will have as result finding Master sub-frames in which the path attenuation between interfering units is maximal. 15.5.1.4 Signaling procedures for Cognitive Radio applications The signaling and message exchange between an ad-hoc system and systems using a Coexistence Protocol is done as detailed below: Split the narrowest channel to be used (as defined in 802.16 Profiles) into 32 energy bins, as follows: For 256FFT, to 8 sub-carriers/bin For 512 FFT, to 16 sub-carriers/bin For 1024FFT, to 32 sub-carriers/bin For 2048FFT, to 64 sub-carriers/bin. Send an 802.16h MAC message, at a suitable rate, such that the MAC header will use 1 symbol and the MAC PDU will use another symbol; the MAC header and the data
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47	 Assuming similar transmit powers, the above mentioned process will have as result finding Master sub-frames in which the path attenuation between interfering units is maximal. 15.5.1.4 Signaling procedures for Cognitive Radio applications The signaling and message exchange between an ad-hoc system and systems using a Coexistence Protocol is done as detailed below: Split the narrowest channel to be used (as defined in 802.16 Profiles) into 32 energy bins, as follows: For 256FFT, to 8 sub-carriers/bin For 512 FFT, to 16 sub-carriers/bin For 1024FFT, to 32 sub-carriers/bin For 2048FFT, to 64 sub-carriers/bin. Send an 802.16h MAC message, at a suitable rate, such that the MAC header will use 1 symbol and the MAC PDU will use another symbol; the MAC header and the data

Bin number /Signal	6	8	10	12	14	18	20	22	24	26
number										
1 (802.16h Cognitive	Η	L	L	Η	Η	L	L	L	Н	L
MAC Header)										
2 (Tx_start)	L	Η	L	L	Η	Н	L	L	L	Η
3 (Rx_start or Rx_slot)	Η	L	Η	L	L	Н	Η	L	L	L
4 (Tx_end)	L	Η	L	Η	L	L	Η	Η	L	L
5 (Rx_end)	L	L	Η	L	Η	L	L	Η	Н	L
6 (NACK)	L	L	L	Н	L	Η	L	L	Н	Η
7 (CTS_Start)	Η	L	L	L	Η	L	Η	L	L	Η
8 (CTS_Continuation)	L	Η	Н	L	L	Η	L	Η	L	L
9	L	L	Η	Η	L	L	Η	L	Н	L

Table h5. Cognitive signal definition

14

[Note: 15.5.1.5 is provisional, taken from C80216h-05_032r1 and call for comments and further contribution]

1715.5.1.5 Using the coexistence slot for transmitting the BS IP identifier

The cognitive radio signaling described above may be also used for the transmission of theBS IP identifier, when there is no installed Base Station Identification Server.

The transmission is done in consecutive coexistence time slots, every NIptx MAC frames.

The transmission is done in consecutive coexistence time slots, every Nipix MAC frames The first CTS in the series starts with CTS start signal, the last CTS contains the Tx, end

The first CTS in the series starts with CTS start signal, the last CTS contains the Tx_end signal, the continuation in sequential MAC frames starts with the CTS_Continuation, as

²⁴ defined in Table x. Between these signals is transmitted the IP identifier of the BS and a 8bit

 25 CPC the L S D (least significant bit) for each field being transmitted first. The transmission

CRC, the L.S.B (least significant bit) for each field being transmitted first. The transmission of the above information uses only the bins 6,8,10,12,14,18,20,22,24,26 (10bits / symbol), the

- 27 bit the above information uses only the bins 0,8
 28 L.S.B. corresponding to the lowest frequency.
- The transmission of a IPV4 address will request 1 + (32+8)/10 + 1 = 6 symbols and the
- 30 transmission of a IPv6 address will request 1 + ceil((128+8)/10) + 1 = 16 symbols.
- 31
- 32 33

15.5.1 Recognition of other systems

34 35

36

15.6 Transmission of information

15.6.1 Coexistence Protocol (CP) messages (LE_CP-REQ/ LE_CP-RSP) 38

Coexistence Protocol employs two MAC message types: LE CP Request (LE_CP-REQ) and
 LE CP Response (LE_CP-RSP), as described in Table x.

Table h6. LE_CP MAC messages

41

42	
43	

Type Value	Message name	Message description
0	LE_CP-REQ	LE Coexistence Resolution and Negotiation Request
1	LE_CP-RSP	LE Coexistence Resolution and Negotiation Response

45 46

44

These MAC management messages are exchanged between peers, e.g. BS and BSIS or BS
 and BS or BS and SS., and distinguish between CP requests (BS -> BS/BSIS/SS or SS-> BS)

49

1 and CP responses (BS/BSIS/SS -> BS or SS->BS). Each message encapsulates one CP

² message in the Management Message Payload. Coexistence Protocol messages exchanged

between the BS and BS or between BS and BSIS or between BS and SS shall use the form

 $\frac{4}{5}$ shown in<XREF>. Table x.

Syntax	Size	Notes
CP _Message_Format() {		
Version of protocol in use	4 bits	1 for current version
Code	8 bits	See table x
Management Message Type	16bits	0-LE_CP-REQ
		1-LE_CP-RSP
Length of Payload	<i>16</i> bits	
Confirmation Code	8 bits	0-OK/success
		1-Reject-other
		2-Reject-unrecognized-configuratio
		setting
		3-Reject-unknow-action
		4-Reject-authentication-failure
		5-255 Reserved
Alignment	4 bits	
AssociationID	??bits	
CP Message Seq_ID	8 bits	
TLV Encoded Attributes	variable	TLV specific
}		

Table h7. LE	CP	message format
		message rormat

24 25

The parameters shall be as follows:

$\frac{27}{28}$ Version of protocol in use

This specification of the protocol is version 1. $\frac{20}{100}$

- 30
- 31 Code

The Code is one byte and identifies the type of CP packet. When a packet is received with an invalid Code, it shall be silently discarded. The code values are defined in Table x.

34

35 Length of payload

The length of payload descript the length of payload in bytes .

37 38

CP Message Sequence Identifier (CP Message Seq_ID)

The CP Message Sequence Identifier field is one byte. A BS/BSIS uses the identifier to match

- a BS/BSIS response to the BS's requests. The BS shall increment (modulo 256) the Identifier
- field whenever it issues a new CP message. The retransmission mechanism relies on TCP.
- 43 The Identifier field in a BS/BSIS's CP-RSP message shall match the Identifier field of the
- 44 CP-REQ message the BS/BSIS is responding to.
- 45

46 Association identifier(Association ID)

- 47 For uniquely identifying an CP connection between a initiator and responder
- An Association ID is a parameter used to uniquely assign or relate a response to a request.

- The association identifier used on the responder and initiator MUST be a random number
- greater than zero to protect against blind attacks and delayed packets.
- When the initiator sends subsequent messages, it uses the responder's association identifier in
- the Association ID field; when the responder sends a message it uses the initiator's association
- identifier in the Association ID field.

Confirmation Code

- The appropriate CC for the entire corresponding LE CP-RSP.

Attributes

CP attributes carry the specific authentication, coexistence resolution, and coexistence

- negotiation data exchanged between peers. Each CP packet type has its own set of required and optional attributes. Unless explicitly stated, there are no requirements on the ordering of attributes within a CP message. The end of the list of attributes is indicated by the LEN field of the MAC PDU header.

Code	CP Message type	MAC Message Type	Protocol type	Direction
0	Reserved			
1	Identify Coexistence Request	LE CP-REQ	ТСР	BSIS->BSIS
2	Identify Coexistence Response	LE CP-RSP	ТСР	BSIS->BSIS
3	CoNBR Topology Request	LE CP-REQ	ТСР	BS->BSIS
4	CoNBR Topology Reply	LE CP-RSP	ТСР	BSIS->BS
5	Registration Request	LE CP-REQ	TCP	BS-> BSIS
6	Registration Reply	LE_CP-RSP	ТСР	BSIS->BS
7	Registration Update Request	LE CP-REQ	TCP	BS-> BSIS
8	Registration Update Reply	LE_CP-RSP	TCP	BSIS->BS
9	De-registration Request	LE CP-REQ	TCP	BS-> BSIS
10	De-registration Reply	LE CP-RSP	TCP	BSIS->BS
10	Add Coexistence Neighbor Request	LE_CP-REQ	ТСР	BS->BS
12	Add Coexistence Neighbor Reply	LE CP-RSP	ТСР	BS->BS
12	Update Coexistence Neighbor Request	LE_CP-REQ	TCP	BS->BS
13	Update Coexistence Neighbor Reply	LE_CP-RSP	ТСР	BS->BS
15		LE_CP-REQ	ТСР	BS->BS
16	Delete Coexistence Neighbor Reply	LE CP-RSP	ТСР	BS->BS
17	Get_Param_Request	LE_CP-REQ	UDP	BS->BS
18	Get Param Reply	LE CP-RSP	UDP	BS->BS
19	Evaluate_Interference_Request	LE_CP-REQ	UDP	BS->BS
20	Evaluate_Interference_Reply	LE CP-RSP	UDP	BS->BS
20	Work_In_Parallel_Request	LE CP-REQ	UDP	BS->BS
22	Work_In_Parallel_Reply	LE CP-RSP	UDP	BS->BS
23	Quit_Sub_Frame_Request	LE CP-REQ	UDP	BS->BS
23	Quit_Sub_Frame_Reply	LE CP-RSP	UDP	BS->BS
25	Create_New_Sub_Frame_Request	LE_CP-REQ	UDP	BS->BS(MC?
26	Create_New_Sub_Frame_Reply	LE CP-RSP	UDP	BS->BS
27	Reduce_Power_Request	LE_CP-REQ	UDP	BS->BS
28	Reduce_Power_Reply	LE_CP-RSP	UDP	BS->BS
29	Stop Operating Request	LE CP-REQ	UDP	BS->BS
30	Stop_Operating_Reply	LE_CP-RSP	UDP	BS->BS
31	BS_CCID_IND	LE CP-REQ	UDP	BS->BS
32	BS_CCID_RSP	LE_CP-RSP	UDP	BS->BS
33	SS CCID IND	LE_CP-REQ	UDP	BS->BS
34	SS_CCID_RSP	LE CP-RSP	UDP	BS->BS
35	PSD REQ	LE_CP-REQ	UDP	BS->BS
36	PSD RSP	LE CP-RSP	UDP	BS->BS
37	Channel Switch Negotiation Request	LE CP-REQ	ТСР	BS->BS
38	Channel Switch Negotiation Reply	LE_CP-RSP	ТСР	BS->BS
39	Channel Switch Request	LE CP-REQ	ТСР	BS->BS
40	Channel Switch Reply	LE CP-RSP	ТСР	BS->BS
41-255	reserved			
11 255				

Table h8. LE_CP message codes

37

38

39 Formats for each of the CP messages are described in the following subclauses. The 40 descriptions list the CP attributes contained within each CP message type. The attributes 41 themselves are described in <u>x.xx</u>. Unknown attributes shall be ignored on receipt and skipped 42 over while scanning for recognized attributes. The BS/BSIS shall silently discard all requests 43 that do not contain ALL required attributes. The BS shall silently discard all responses that do 44 not contain ALL required attributes. 45

[Note: The following security part is a temporary text adopted from contribution 46 C802.16h-05/11r1 and is subject to further discussion. A call for comment from security

47 experts is open to comment on this text.] 48

49

The following Type-Length-Value (TLV) types may be present in the CP payload

2 depending on the Message_Type:

3

1

Table h9. TLV types for CP payload 4 **Parameter Description** Туре 5 Operator ID tbc 6 **BS-ID** tbc 7 tbc BS GPS coordinates 8 **BS IP Address** tbc MAC Frame duration 9 tbc tbc Type of sub-frame allocation 10 tbc MAC Frame number chosen for the Master sub-frame 11 tbc Sub-frame number chosen for the Master sub-frame 12 Repetition interval between two Master sub-frames, measured in MAC-frames tbc Time shift from the Master sub-frame start of the Base Station radio-signature transmission tbc 13 tbc Duration information for the Base Station radio-signature transmission 14 tbc Repetition information for the Base Station radio-signature transmission 15 tbc Time shift from the Master sub-frame start of the Subscriber Station radio-signature 16 transmission tbc Duration information for the Subscriber Station radio-signature transmission 17 tbc Repetition information for the Subscriber Station radio-signature transmission 18 tbc List of other used sub-frames, in the interval between two Master sub-frames 19 tbc Slot position 20 Country Code Tbc Tbc Operator contact - phone 21 Tbc Operator contact - E-mail 22 Tbc PHY mode 23 Maximum coverage at Max. power Tbc 24 Tbc Current Tx power

25 26

27 **15.6.1.1 Identify Coexistence Request message** 28

The BSIS requests to the foreign BSIS with geographical information of the requesting LE 29 30 BS.

31 Code: 1

32 Attributes are show in Table x

33 34

Table h10. Identify Coexistence Request message attribute

Attribute	Contents
Operator identifier	The operator ID of the BSIS.
Country code	The country code of the BSIS
Latitude	The latitude information of the BS.
Longitude	The longitude information of the BS.
Altitude	The altitude information of the BS.
Maximum coverage at Max. power	The maximum radius at maximum allowed/
	designed power that the BS intends to detect its
	coexistence neighbors.

42 43

44 45 **15.6.1.2 Identify Coexistence Reply message**

46 The BSIS responds to the foreign BSIS to Identify Coexistence Request with a Identify

47 Coexistence Reply message.

48 Code: 2 49

The query results is in the format of Coexistence Neighbor Topology Parameter Set, each result will contain the attributes shown in Table x. Each BSID TLV indicates start of new result.

4 5

Table h11. Coexistence neighbor Topology Parameter Set

Attribute	Contents
BSID	The BSID of the requested BS.
Operator identifier	The operator ID.
Operator contact - phone	The phone number in ASCII string of the
	operator.
Operator contact – E-mail	The E-mail address in ASCII string of the
	operator.
Country code	The country code of the BS
PHY mode	The PHY modes of the requested BS.
Latitude	The latitude information of the BS.
Longitude	The longitude information of the BS.
Altitude	The altitude information of the BS.
Maximum coverage at Max. power	The maximum radius at maximum allowed/
	designed power that the BS intends to detect its
	coexistence neighbors.

18 19

20

21 15.6.1.3 Coexistence Neighbor Topology Request message

This message is sent by the BS to the BSIS to request its coexistence neighbor topology with
 its geometric information.

 $\frac{1}{2}$ Code: 3

 $\begin{array}{c} 25\\ 26 \end{array}$ Attributes are shown in Table x.

Table h12. Coexistence Neighbor Top	pology Request message attribute
-------------------------------------	----------------------------------

28	Attribute	Contents
29	Latitude	The latitude information of the BS.
30	Longitude	The longitude information of the BS.
21	Altitude	The altitude information of the BS.
31	Maximum Coverage at Max. power	The maximum radius at maximum power that the BS
32		intends to detect its coexistence neighbors.

33

27

³⁴₂₅ 15.6.1.4 Coexistence neighbor Topology Reply message

The BSIS responds to the BS' to Coexistence neighbor Topology Request with a Coexistence

neighbor Topology Reply message.

38 Code: 4

39 Specification of the query results of coexistence neighbor topology from BSIS specific

40 parameters.

41 The query results is in the format of Coexistence Neighbor Topology Parameter Set, each

- 42 result will contain the attributes shown in Table x. Each BSID TLV indicates start of new
- 43 result.
- 44 45
- 46
- 47
- 48
- 49

Table h13. Coexistence neighbor Topology Parameter Set

2	Attribute	Contents
3	BSID	The BSID of the requested BS.
Δ	Operator identifier	The operator ID.
5	Operator contact - phone	The phone number in ASCII string of the operator.
5	Operator contact – E-mail	The E-mail address in ASCII string of the
6		operator.
7	Country code	The country code of the BS
8	PHY mode	The PHY modes of the requested BS.
Q	Latitude	The latitude information of the BS.
)	Longitude	The longitude information of the BS.
10	Altitude	The altitude information of the BS.
11	Maximum coverage at Max. power	The maximum radius at maximum allowed/
12		designed power that the BS intends to detect its
13		coexistence neighbors.

15.6.1.5 Registration Request message

This message is sent by the BS to the regional LE DB to perform the registration.

- Code: 5
- Attributes are shown in <XREF><u>Table</u> x.

Attribute	Contents
BSID	The BSID of the requested BS.
BS IP	The IP address of BS.
Operator identifier	The operator ID.
Operator contact - phone	The phone number in ASCII string of the operator.
Operator contact – E-mail	The E-mail address in ASCII string of the operator
Country code	The country code of the BS
PHY mode	The PHY modes of the requested BS.
Latitude	The latitude information of the BS.
Longitude	The longitude information of the BS.
Altitude	The altitude information of the BS.
Operational Range at Max. Power	The maximum operational radius of the BS at Max
	power.

15.6.1.6 Registration Reply message

The BSIS responds to the BS' to Registration Request with a Registration Reply message.

Code: 6

- No Attributes.

15.6.1.7 Registration Update Request message

This message is sent by the BS to the regional LE DB to update the registration.

Code:7

Attributes are shown in <XREF><u>Table</u> x.

15.6.1.8 Registration Update Reply message

The BSIS responds to the BS' to Registration update Request with a Registration update

- Reply message.
- Code: 8
- No Attributes.

1	15.6.1.9 De-registration Request message			
2	This message is sent by the BS to the BSIS to perform de-registration.			
3	Code: 9			
4		re shown i	n <xref>Table x.</xref>	
5	T ttillbutes u			tion Request message attributes
6				
7	BS		Attribute	Contents The BSID of the request BS.
8	<u>D3</u>			The BSID of the request BS.
9				
10				
11	15.6.1.10De	e-registrati	on Reply message	
12	The BSIS re	esponds to t	he BS' to De-registration	on Request with a De-registration Reply
13	message.	I	0	
14	Code: 10			
15	No Attribute	20		
16	No Auribui	es.		
17	15.6.1.11Ad	ld Coexiste	ence Neighbor Request	message
18			•	ice neighbor BS to request to add it to
19	-	•		the heighbor bs to request to add it to
20	coexistence	neignoor n	.81.	
21	Code: 11			
22	Attributes an	re shown in	ı <xref><u>Table</u> x.</xref>	
23			Table h16. Add Coexistence	Neighbor Request message attributes
24			Attribute	Contents
25	BSI			The BSID of the requested BS.
26	BSI			The IP address of requested BS.
27		rator identifie	er	The operator ID.The country code of the requested BS.
28		Y mode		The PHY modes of the requested BS.
29	Lati	tude		The latitude information of the BS.
30		gitude		The longitude information of the BS.
31	Altit	rent Tx power	•	The altitude information of the BS. Current Tx power of the BS.
32		rational Rang		The operational radius of the BS.
33	PHY	Y specific par	ameters	The PHY specific encodings.
34				
35	15.6.1.12Ad	ld Coexiste	ence Neighbor Reply n	iessage
36	The BSIS re	esponds to t	he BS' to Add Coexiste	nce Neighbor Request with an Add
37		-	Reply message.	
38	Code: 12	i teigheor	ttepij message.	
39 40	No Attribute	90		
40		00.		
41	15.6.1.13Up	odate Coex	istence Neighbor Requ	lest message
42	-		• •	ice neighbor BS to request to update its
43	neighbor list	•		tee heighbor be to request to update its
44 45	Code: 13	ι.		
45 46			VDEE T 11	
46	Attributes a	re shown 1	n <xref><u>Table</u> x.</xref>	
47				
48				
49				
	55	€	Copyright © 2005 IEEE.	All rights reserved.

Table h17. Update Coexistence Neighbor Request message attributes 1 2 Attribute **Contents** The BSID of the requested BS. 3 BSID PHY mode The PHY modes of the requested BS. 4 Latitude The latitude information of the BS. 5 Longitude The longitude information of the BS. 6 Altitude The altitude information of the BS. **Operational Range** 7 The operational radius of the BS. PHY specific parameters The PHY specific parameters. 8 9 10 11 15.6.1.14Update Coexistence Neighbor Reply message 12 The BSIS responds to the BS' to Update Coexistence Neighbor Request with an Update 13 Coexistence Coexistence neighbor Reply message. 14 Code: 14 15 No Attributes. 16 17 15.6.1.15Delete Coexistence Neighbor Request message 18 This message is sent by the BS to the coexistence neighbor BS to request to delete form its 19 coexistence neighbor list. 20 Code: 15 21 22 Attributes are shown in <XREF>Table x. 23 Table h18. Delete Coexistence Neighbor Request message attrubutes 24 Attribute Contents 25 BSID The BSID of the requested BS 26 27 **15.6.1.16Delete** Coexistence Neighbor Reply message 28 The BSIS responds to the BS' to Delete Coexistence Neighbor Request with a Delete 29 Coexistence Neighbor Reply message. 30 Code: 16 31 No Attributes. 32 33 15.6.1.17Get Param Request message 34 Messages between BSs, used to request the list of parameters 35 36 Code:17 37 Parameters: list of the BS parameters 38 39 40 **15.6.1.18Get Param Reply message** 41 Messages between BSs, reply to the Get_Param_Request 42 Code:18 43 Parameters: list of the BS parameters 44 45 **15.6.1.19Evaluate_Interference_Request message** 46 A message sent by a new BS wishing to use an existing Master sub-frame, to the BSs already 47 acting as Masters, requesting them to evaluate its interference 48 Code:19 49

- 1 Parameters: tbc.
- 2 3

15.6.1.20Evaluate Interference Reply message

- 4 A message sent by the existing Master BSs, reply to the Evaluate_Interference_Request.
- 5 Code:20
- 6 Parameters: tbc.

8 15.6.1.21Work_In_Parallel_Request message

- 9 A message sent by a new BS to request the use an existing Master sub-frame
- 10 Code: 21
- 11 Parameters: tbc.

13 **15.6.1.22Work_In_Parallel_Reply message**

- A message sent by a existing Master BS in response to the Work_In_Paraller_Request
- 15 message.
- 10 Code: 22
- $\frac{17}{18}$ Parameters: tbc.

19 15.6.1.23Quit_Sub_Frame_Request message

- A message sent by an old Base Station, in order to request the new Base Station to cease the
- $\frac{21}{22}$ operation as Master in the current sub-frame
- 23 Code:23
- 24 Parameters: tbc.

25 26 15.6.1.24Quit_Sub_Frame_Reply message

- 27 A message sent by an new Base Station, in response to the old Base Station's
- 28 Quit_Sub_Frame_Request message.
- 29 Code:24
- 30 Parameters: tbc.

31

32 15.6.1.25Create_New_Sub_Frame_Request message

- A message sent by a BSs to all the community BSs, to request the creation of a new Master
- 34 sub-frame; the message will include: interfering BSIDs and the frame-number in which the
- 35 change will take place
- 36 Code:25
- ³⁷ Parameters: tbc.
- 38

39 **15.6.1.26Create_New_Sub_Frame_Request message**

- 40 A message sent in response to the Create_New_Sub_Frame_Request message.
- $\frac{41}{42}$ Code:26
- $\begin{array}{c} 42\\ 43 \end{array}$ Parameters: tbc.

44 **15.6.1.27Reduce_Power_Request message**

- 45 A message between a BS and an interfering BS requesting to reduce the power of the
- 46
 47
 46
 47
 47
 48
 47
 48
 47
 48
 47
 48
 47
 48
 47
 48
 47
 48
 47
 48
 47
 48
 47
 48
 47
 48
 47
 48
 47
 48
 47
 48
 47
 48
 47
 48
 47
 48
 47
 48
 47
 48
 47
 48
 47
 48
 47
 48
 47
 48
 48
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 4
- 48 Code: 27
- 49 Parameters: tbc.
 - 57

- 1 15.6.1.28Reduce_Power_Reply message
- 2 A message by an interfering BS in response to the Reduce_Power_Reply message.
- 3 Code: 28
- 4 Parameters: tbc. 5
- 6 15.6.1.29Stop_Operating_Request message
- 7 A message sent by a Master BS to the BSs operating in its Master sub-frame, but not being
- ⁸ Masters for this sub-frame, requesting to cease using this sub-frame in parallel
- 9 Code: 29
- 10 11 Parameters: tbc.

12 15.6.1.30Stop_Operating_Reply message

- A message sent by the BSs operating in its Master sub-frame, in response to the
- 15 Stop_Operating_Request message.
- 16 Code: 30
- 17 Parameters: tbc.

¹⁸ 19 **15.6.1.31BS_CCID_IND** message

- 20 A message sent by BSs to indicate co-channel interference detected.
- 21 Code: 31
- 22 This is a message sent by a SS to CR_NMS when co-channel interference is detected at SS.
- This message shall contain the following minimum information to help determine the sourceand victim of co-channel interference:
 - BS_NUM: total number of base stations from which CCI interference is detected.
 - BS_ID: the base station IDs causing CCI
 - Sector_ID: the sector IDs of the base stations causing CCI
 - SS_ID: the SS that sent this message.
- 30 Essentially, this message will contain a table of co-channel interference sources for this SS.
- 31 32

33 34 35

25

26

27

28

29

Table h19. table of co-channel interference source for SS

Base station ID	Sector ID
123456	2
234534	4

- 36 37
- 38

³⁹ **15.6.1.32BS_CCID_RSP** message

- $\begin{array}{c} 40\\ 41 \end{array} \quad \text{A "set" message to BS.} \end{array}$
- 42 Code: 32
- This is a "set" message; it is to set the emission or reception qualities of the specified SS.
- 44 Upon receiving co-channel interference notification, the algorithm in CR-NMS will
- 45 determine an appropriate CCI mitigation decision and forward
- 46 This message to the victim SS.
- 47 SS_CCID_RSP can contain the following information for example:
- 48 49

- 2005-12-02 1 SS ID: the ID of subscriber station that causes/receives co-channel interference. It is the 2 receiver of this message. 3 • EIRP for the specified SS. This is a reduced/increased EIRP value for this SS based on 4 algorithm. 5 • Downlink/uplink frequency change. 6 • Reregistration request to a new BS 7 8 • Specification of allowable uplink timing slots. 9 • Adaptive antenna configuration parameters for reception/transmission. 10 11 12 15.6.1.33SS_CCID_IND message 13 A message sent by SSs to indicate co-channel interference detected. 14 Code: 33 15 This is a message sent by a BS to CR_NMS when co-channel interference is detected at BS. 16 This message shall contain the following information to help determine the source and victim 17 of co-channel interference: 18 • SS_NUM: total number of subscriber stations that interference events were noted. 19 20 • SS_ID: the subscriber stations ID that causes the co-channel interference 21 • Sector ID: the sector ID of the subscriber stations that cause interference 22 • Source basestation ID: the BS that sent this message. 23 • Source sector ID: the antenna sector that detects the co-channel interference. 24 Essentially, this message will contain a table of co-channel interference sources for this BS. 25 26 27 15.6.1.34SS CCID RSP message 28 A "set" message to SS. 29 Code: 34 30 This is a "set" message; it is to set the configuration of the BS. Upon receiving co-channel 31 32 interference notification, the algorithm in CR-NMS will use this message to set the emission 33 or reception qualities of the specified BS. It shall have the following information: 34 • BS ID: Base station ID of Base Station receiving/causing interference. It is the 35 receiver of this message. 36 • EIRP for the specified BS 37 • Downlink/Uplink frequency change. 38 • Adaptive antenna configuration parameters for reception/transmission. 39 40 15.6.1.35PSD_REQ message 41 A"set" message to start PSD (power spectrum density) sampling 42 43 Code: 35 44 45 All co-channel interference that is created cannot necessarily be demodulated or decoded correctly, allowing the 46
 - extraction of Tagged information from interference frames. Additionally, some users of license-exempt spectrum may not comply with any of the IEEE standards and be impossible to identify. In this event it is useful
 - 47 for a to be able to monitor the LE spectrum to determine available spectrum "white space" and determine sub-48
 - 49

- detection interference. "Snapshots" of spectrum space are useful to CR systems, especially when new base
- stations or terminals are installed and are searching for unoccupied spectrum.
- This is a "set" message, it is requests a BS or SS to sample PSD (power spectrum density) data for next "get" message. Since sampling PSD data will take some time, depending on environment, nature of bursty users, the
- following "get" message shall wait long enough for BS/SS to complete the PSD data sampling.
- There shall be only one scalar MIB object defined for this operation.

- 15.6.1.36PSD_RSP message
- A "get" message to get PSD (power spectrum density) data table.
- Code: 36
- This is a "get" response message, MIB objects shall be defined accordingly; it shall contain the following values for a complete PSD:
 - Antenna Parameter List containing attributes of antenna undertaking PSD •
 - X-min, the lower bound of channel frequency (in kilohertz) •
 - X-max, the upper bound of channel frequency (in kilohertz)
 - Resolution bandwidth
 - Power spectrum density measurement
- Resolution bandwidth is scalar, it is used together with X-max and X-min to determine how many PSD values are collected and contained in the STRUF_REP message (i.e.

 $(X_{\text{max}} - X_{\text{min}})/(resolutionBandwidth) + 1)$

Upon reception of this message, CR NMS will stamp the message based on the arrival time and translate the information into internal format and store it into database.

Here is an example of PSD display:

Figure h22.Example of PSD Display

15.6.1.37Channel Switch Negotiation Request message

This message is send by BS to another coexistence BS in the community to negotiate to

- switch to a certain target channel.
- Code: 37

1 2 2	Parameters: tbc.
3	15 (1 29 Channel Switch Negotiation Danks maggage
4	15.6.1.38Channel Switch Negotiation Reply message
5	A message sent by BS, reply to Channel Switch Negotiation Request message about whether
6	it agree or refuse to switch.
7	Code: 38
8	Parameters: tbc.
9	
10	
11	15.6.1.39Channel Switch Request message
12	This message is send by BS to another coexistence BS in the community to request to switch
13	to a certain target channel.
14	Code: 39
15	Parameters: tbc.
16	
17	
18	15.6.1.40Channel Switch reply message
19	A message sent by BS, reply to Channel Switch Request message.
20	Code: 40
21	
22	Parameters: tbc.
23	
24	[Note: the following part "RADIUS Protocol Messages" is from contribution C802.16-05/
25	012r1, calling for comments, as all the security issues]
26	
27	
28	15.6.1 Sequencing and Retransmission
29	CP is a request-response protocol. In any particular message exchange, one party acts as the
30	initiator (sends a request) and the other party acts as the responder (sends a response
31	
32	message).
33	The initiator sets the Message ID in the header to any value in the first message of the CP
34	association, and increases the Message ID by one for each new request using serial number
35	arithmetic. Retransmissions do not increment the Message ID. The responder sets the
36	message ID in the response to the value of the message ID in the request.
37	The initiator is always responsible for retransmissions. The responder only retransmits a
38	response on seeing a retransmitted request; it does not otherwise process the retransmitted
39	request.
40	The retransmitted requests/responses are exact duplicates of previous requests/responses. The
41	initiator must not send a new request until it receives a response to the previous one. Packets
42	with out-of-sequence Message IDs are considered invalid packets and are discarded.
43	
44	The initiator must retransmit after a configurable interval until either it gets a valid response,
45	or decides after a configurable number of attempts that the CP association has failed. (Since
46	the retransmission algorithm is implementation-dependent, it is not defined here.)
47 19	
48	
49	

15.6.1	Messag	e Validity Ch	neck				
A mess	age is or	nly accepted in	f all the follow	ing holds true:			
	-	e version <i>field</i>		C			
	-	-	natch a curren	t association			
•	All mess	ages received	l by peer have	R bit in flag set to) zero		
		0	• •	tor have R bit in			
	-	e opCode is va	-	·			
	Ŭ		ls size of paylo	ad			
		• •	• • •	d sequence numbe	er		
	0		1	Vs expected given		he opCode	
			-	<i>l-form</i> ed, TLVs n	-	-	
	recogniz	_		<i>i joi mea</i> , 12 (5 h	iumed us mun	autory are	
5.6.1	Fragme	entation					
	C						
CP doe	s not pro	vide support	for fragmentat	ion.			
15.6.1	Transpo	ort Protocol					
^ר D ווגפע		s the transport	t protocol with	port number TBI	All message	e are unicast	
_1 uses	S ODI a	s the transport		port number TBI	. An message	s are unicasi	
5.6.1	Using d	edicated mes	sages				
15.6.1.1	l Comm	ion PHY					
15.6.1.2	2 Betwe	en BS and SS	5				
[Note:]	followin	g 15.6.8.2.1 is	s provisional, i	taken from C802	16h-05 029 an	id call for	
- 0		further contra		U U	_	0	
15614	2.1 IBS_	IDRC					
15.0.1.2	2.1 IDS_	IFDC					
		0	0	sted by the initialized	0		
		-		S frame to carry			from
				all be reported by		-	
		-	-	oexistence neight		d the initialized	zing
BS in th	ne IP net	work, and the		her coexistence n			
			Table h20. IBS				f12 0 0 12 89.82 59.22 T BS IP address(IPv
				IPBC_V6	1	16	BS IP address(IPv
_							
62		Convri	ght © 2005 IEI	EE. All rights reso	erved.		
				-8			

interference

1 Two MAC messages are defined for use between the BS and SS. These messages are called

² "tags" since the tag the radio packet communication bursts which create co-channel

3 4

5

15.6.1.2.2 SS_MEM

The subscriber station membership (SS_MEM) message can be a new (or modified) MAC
message for IEEE 802.16h FDD. The BS broadcasts a SS_MEM message in each RF sector
at a periodic intervals, inserted within the DL MAC PDU. It defines the radio emission
characteristics of the downlink of the sector, and provides information on uplink FDD
channels utilized by the sector and could include channel width information as well. The
message is encoded in the following format:

_	-
1	4
1	5

16

	BS_ID	SECTOR_ID	DL EIRP	UPLINK RF	FRSEQ#	BS IP ADDRESS
--	-------	-----------	---------	-----------	--------	---------------

- 1718 Parameters:
- 19 • BS ID: The base station ID. This information will help SS to determine which BS this 20 message is received from. If it is not received from the home base station (it registered 21 with), then it is co-channel interference caused by another BS downlink. In this case, a 22 BS CCID IND message shall be send to Network Management System (CR NMS) 23 to indicate co-channel interference source and victim. Upon receiving this message, 24 CR NMS will initiate a response, which could access the CIS or be determined by the 25 CR-NMS by itself, based on the SS Mem contents. 26
- - DL EIRP: Down link EIRP of sector
 - Uplink RF: Uplink RF frequency channels used by this sector
 - FrSeq#: Frame sequence number
 - BS IP address: IP address of the base station that broadcasts this message.

3637 15.6.1.2.3 SSURF

• The subscriber station uplink radio frequency (SSURF) message shall be a modified (or new) MAC message for IEEE 802.16h. This message is periodically sent by SS as uplink tags, but could also contain interference and other event information experienced by the SS.

43 44 45

32

33

34

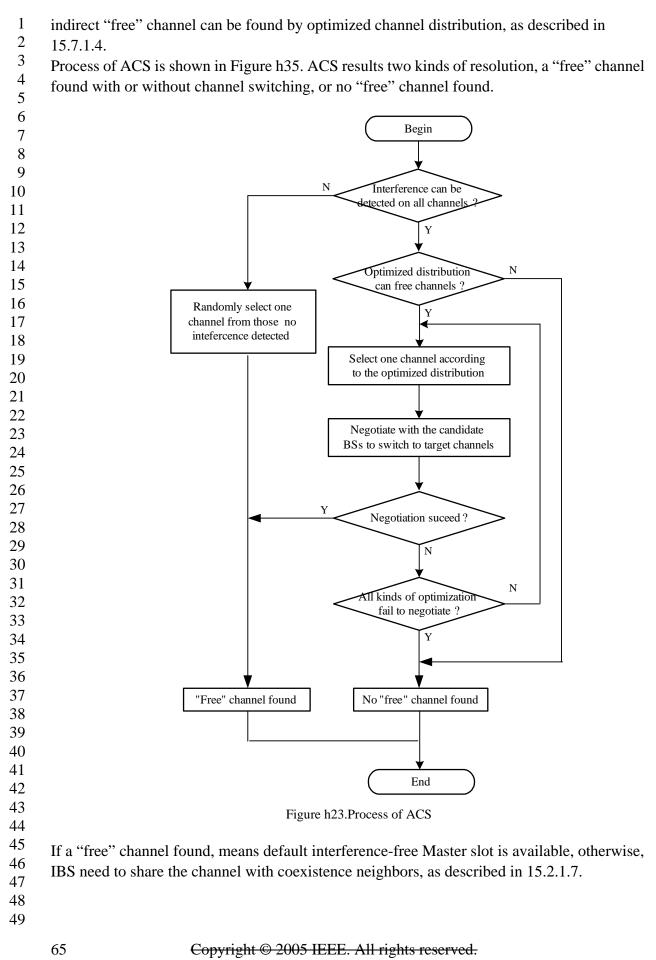
35

38

39

40

41 42

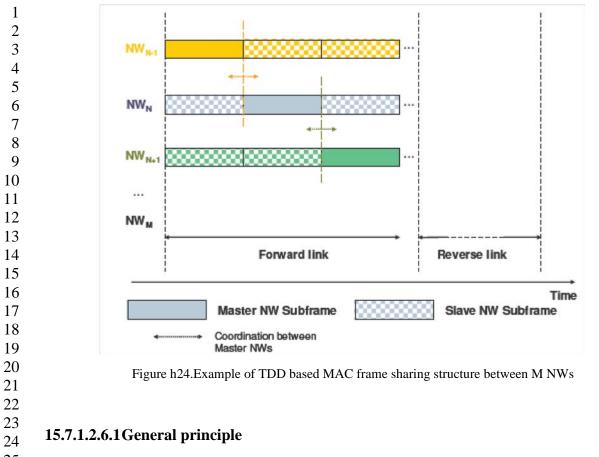

BS_ID SECTOR_ID FRSEQ# APL EIRP GEOPL CH_STATE
--

46

47 SSURF message fields are:

48 49

$ \begin{array}{c} 1\\2\\3\\4\\5\\6\\7\\8\\9\\10\\11\\12\\13\\14\\15\\16\\17\\18\\19\\20\\21\\22\\23\\24\\25\end{array} $	 BS_ID: The base station ID to identify which base station this message is sent to. This information will help receiving BS to determine if received packet is CCI. If BS_ID it is different from the receiving base station ID, co-channel interference has occurred with another SS uplink. In this case, a SS_CCID_IND message shall be send to Network Management System (CR_NMS) to indicate co-channel interference source and victim. Upon receiving this message, CR_NMS will, initiate a CR response, which could access the CIS or be determined by the CR-NMS by itself. A response could be based on the SSURF contents. Sector_ID: Identifies the destination sector antenna of this message. In essence, it is the same field as used in the SS_MEM message. Contains information, that if this packet is received as CCI, can to transported to a CR_NMS within the SS_CCID_IND message. FrSeq#: Frame sequence number. APL: Antenna parameter list giving information on antenna type (adaptive w/ parameters; beam width, polarization, diversity, etc) of SS EIRP: EIRP of transmitted SSURF GeoPl: Geographical placement of SS, Range from associated BS, GPS coordinates, etc.) Ch_State: mean fade duration, mean fade depth, variance of DL signal strength, Bit Error Rate mean, Bit Error Rate Variance, RSSI mean, RSSI variance, etc.
26 27	15.6.1.3 BS to BS
28 29	15.6.1.4 Connection sponsorship
30 31	15.6.1.5 Using a common management system
32	15.6.1.6 Higher layers communication
33 34	15.6.1.7 Decentralized control
35 36	15.6.1.8 Information sharing
37 38 39	15.6.1.9 IP / MAC address dissemination
40 41	15.7 Common policies
42 43	15.7.1 How to select a "free" channel (for ACS and DFS)
44 45 46 47 48 49	BS should listen on multiple frequencies during the selection of working frequency. If the interference's level is greater than the detection threshold, which is the required strength level of a received signal within the channel bandwidth, the channel is considered as a interfered channel. If IBS can't find a "free" channel by scanning, it should figure out whether an



This is an unapproved IEEE Standards Draft, subject to change

15.7.1.1 Acceptable S/(N+I) **15.7.1.2** Acceptable time occupancy **15.7.1.3** Capability of sharing the spectrum 15.7.1.4 Optimization of Channel Distribution **15.7.1 Interference reduction policies 15.7.1.1 BS synchronization** 15.7.1.1.1 Synchronization of the IEEE 802.16h Networks All base stations forming a community of users sharing common radio spectrum will use a common clock to synchronize their MAC frames. The common clock will be available to all outdoor IEEE 802.16h networks. Such a clock can be provided by global navigational systems such as GPS (Annex 2) or can be distributed by other mean. Every BS upon activation, will as a first step ensure the derivation of the common system clock. 15.7.1.1.1.1 Network Time Interval All synchronized IEEE 802.16h base stations will either synthesize or derive a 1 pps clock broadcast by a global navigational system or other means. The 1 sec duration is called the Network Time Interval (NTI). The rising edge of the 1 pps synchronization pulse will be considered as the start of the NTI. The 1pps pulse will have a stability of +/- 100 XX microseconds, as measured from rising edge to rising edge. 15.7.1.1.1.2 Granularity of the NTI The NTI will be comprised of 1000 1 Millisecond slotsNTI S unit that will be used by both TDD and FDD networks to negotiate times and durations of co-channel occupancy. Negotiation for access time to common spectrum will be specified in terms of the NTI_S unit 1 millisecond units. Occupancy times will be specified in terms of time from the beginning of the NTI and in terms of negotiated number of NTI S unit1 millisecond intervals. 15.7.1.1.1.3 UTC Standard Time The common clock specified in 15.7.2.1.1 will provide a Universal Coordinated Time (UTC) signal to all IEEE802.16h networks, making all networks synchronized to this referenced time stamp. IEEE 802.16h base stations will use the UTC time standard for coordinating and identifying specific NTI intervals.

2005-12-02

1	15.7.1.1.2 Ad-hoc
2	
3 4	15.7.1.2 Shared Radio Resource Management
5 6	15.7.1.2.1 Fairness criteria
7 8	15.7.1.2.1.1Power control
9 10	15.7.1.2.1.2Mutual tolerance
11 12	15.7.1.2.2 Distributed scheduling
13 14	15.7.1.2.2.1Assignments
15 16	15.7.1.2.3 Distributed power control
17 18	15.7.1.2.4 Distributed bandwidth control
19 20 21	15.7.1.2.5 Beam-forming
22 23 24	15.7.1.2.6 Credit token based coexistence protocol
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40	Spectrum sharing between several networks (NW) can be achieved through the sharing of a common MAC frame between the different NWs as exampled by <xref>Figure h33. In such a MAC frame structure, dedicated portions (denoted as "master NW sub-frames") of the frame are periodically and exclusively allocated to a NW (denoted as the "master NW") respectively in the forward and reverse link. The terminology used hereafter defines a slave NW as a NW that may operate during the other master NWs sub-frames. With respect to this definition, the slave NW sub-frames are the time intervals operating in parallel of the master NWs sub-frames. Additional flexibility can be provided by such a frame structure if The length of each master sub-frame(interference free sub-frame) can be dynamically adjusted as a function of the spatial and temporal traffic load variations of each NWas stated in section 15.2.1.1.1. To achieve this, this section proposes the dynamic coordination of the frame structure sharing between BSs when several master NWs compete to share this common shared MAC frame.</xref>
41 42 43 44 45 46 47 48 49	

In order to solve contention access channel and resources scheduling issues between NWs,
 the first step consists in defining credit tokens and designing appropriate reserve price
 auctioning and bidding mechanisms. Then, on the basis of the credit tokens based
 mechanisms usage, the second step consists in managing dynamically(temporally) the
 bandwidthrequests and grants mechanisms for the sharing of the master sub frames within the
 common MAC frame.

32

Based on the credit tokens transactions (selling, purchase and awarding), these two steps
provide the mechanisms to enable spectrum efficiency and a fair spectrum usage in a real
time fashion, while ensuring both the master and slave NWs QoS. These two steps enable to
manage spectrum sharing between master NWs themselves. The result is the dynamic
shaping of the MAC frame structure sharing as a function of the space time traffic intensity
variations, and the dynamic credit tokens portfolio account of the master NWs. The
transaction mechanisms are detailed in the following sections.

41 42

45

15.7.1.2.6.2 Credit tokens assignment and usage principles

- 43 44
- Each NW is initially allocated with a given credit tokens account.
- Negotiation for spectrum sharing between NWs is based on credit tokens transactions.
- 46
 Credit tokens transactions occur dynamically between a seller (master NW owner of 47 the radio resources during the active master sub-frame) and one or several bidders (the 48 other master NWs).

2

3

4 5

6 7

8

9

10

11

12

13

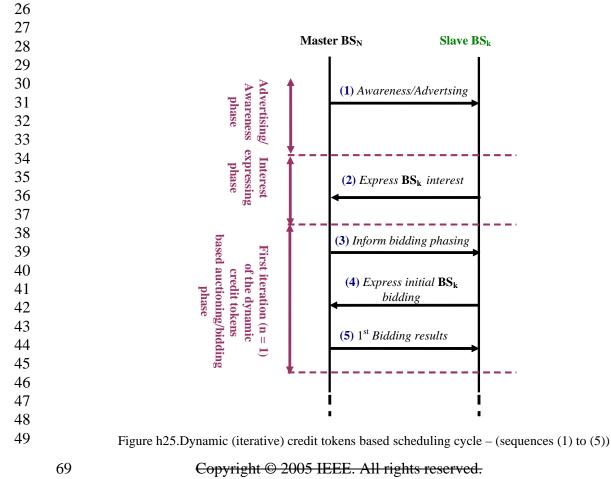
14

15

16

17

18


• The negotiation occurs dynamically between master NWs to agree the length of each master sub-frame as a function of the spatial and temporal traffic load variations need of each master NW.

15.7.1.2.6.3 Negotiation between master NWs

- 15.7.1.2.6.3.1Definition and notation
 - BSN denotes the BS belonging to the master NWN.
 - BSk denotes the BS belonging to the slave NWk.
- Each BSk can dynamically make a bid BS_CT(n)k at the nth iteration. This bid corresponds to the amount of credit tokens per time unit corresponding to the BSk during the nth iteration of the auctioning/bidding phase.
- Resource scheduling is carried out by an auction like mechanism. The auction type used for the scheduling is dynamic in time. Starting from the reserved price auction RPA, the price of auction is successfully raised (at each iteration n) until the winning bidders remain.

1920 15.7.1.2.6.3.2Dynamic credit tokens based scheduling cycle

The contribution proposes a dynamic scheduling cycle between one BSN of master NWN and
several BSk of different slave NWk. For the sake of simplicity, the cycle is illustrated (Figure
1 and Figure 2) for one BSN and one BSk of a given slave NWk. The cycle is composed of
different phases, and each phase can be composed of several sequences as follows.

This is an unapproved IEEE Standards Draft, subject to change

1		
2		
3 4		(5) $(n-1)^{th}$ Bidding results
4 5		
6		(6) Express new BS_k bidding (n^{th})
0 7		\triangleleft
8		(7) $n^{th xpisg(e)-7.9()-2.8(ss)-3.1txp}$
9		(7) $n^{m \text{Apisg}(e_{f}^{-1}, g_{f}^{-2}, o_{f}^{-2}, o_{f}^{-2}$
10		
11		
12		(8) Final Bidding
13		results/Pricing
14		
15		(9) Transaction
16		
17		(10) BW Granting
18		d
19		Resource Usage phase
20		e pl
21		1ase
22		
23		Figure h26.Dynamic (iterative) credit tokens based scheduling cycle – (sequences (5) to (10))
24		
25		
26	15.7.1.2	2.6.3.3Negotiation mechanisms between master NWs
27		h of the phase of the credit tokens based scheduling cycle presented in section
28		2.6.3.2, this section 15.7.2.2.6.3.3 describes the details of the enhanced mechanisms.
29	13.7.2.2	2.0.5.2, this section 15.7.2.2.0.5.5 describes the details of the enhanced mechanisms.
30		
31		
32		
33		
34		
35		
36		
37		
38		
39 40		
40		
41		
42		
43		
44 45		
45 46		
46 47	Fi	igure h27.Simplified MAC frame structure illustrating master NW sub-frame renting principle and
47 48		associated notations
48 49		
77		
	70	Copyright © 2005 IEEE. All rights reserved.

1	Adver	tising/Awareness phase
2	This p	hase is composed of the single sequence (1) as follows:
3	•	The master NW_N (seller) advertises that its periodic assigned master sub-frame is
4 5		open for renting (Figure h34) from starting time T_{Start} to ending time T_{End} for a
6		fraction ($\mathbf{T}_{\text{Renting}}/\mathbf{T}_{\text{Msf}}$) of its master sub-frame duration \mathbf{T}_{Msf} . $\mathbf{T}_{\text{Renting}} = \mathbf{T}_{\text{End}}$
7		Renting - T _{Start Renting} .
8	•	The master NW_N proposes a reserve price auction RPA for this renting. The RPA is
9	•	
10		expressed as a number of credit tokens per time unit.
11 12	Intere	st expressing phase
13		hase is composed of the single sequence (2) as follows: each BSk informs the master
14	-	bout its willingness (or not) to participate to the bidding. If the BSk is interested, it
15		unicates its idk to the master BSN.
16		
17 18	First i	teration $(n = 1)$ of the credit tokens based auctioning/bidding phase
18 19	This p	hase is divided into 3 sequences as follows:
20	٠	In sequence (3), the master BS_N provides the following information to the slave BS_ks
21		that have expressed the interest to participate to the bidding:
22		• T _{Start Bidding} : time from which the bidding phase will start,
23		• $T_{End Bidding}$: time at which the bidding phase will end ($T_{End Bidding} < T_{Start}$),
24 25		• Note: For this first iteration (n = 1), the initial $\{id_k\}$ is noted $\{id^{(1)}_k\}$.
26	٠	In sequence (4), each BS _k provides the following information to BS _N : BID ⁽¹⁾ _k =
27	•	
28		$\{BS_CT^{(1)}_{k}, x_k, T_{Start k}, T_{End k}\}$ where:
29		• $BS_CT^{(1)}_k$ is the amount of bided credit tokens per time unit proposed by BS_k
30 31		for the first iteration,
32		σ x_k is the fraction of $T_{Renting}$ for which bid BS_CT ⁽¹⁾ applies for,
33		• $[T_{Start k}, T_{End k}]$ is the time interval for which bid BS_CT ⁽¹⁾ _k applies for.
34		$[T_{\text{Start }k}, T_{\text{End }k}] \subseteq [T_{\text{Start}}, T_{\text{End}}].$
35	_	
36 27	•	In sequence (5), BS_N performs the following action:
37 38		• Given the set of intervals $\{[\mathbf{T}_{\text{Start } \mathbf{k}}, \mathbf{T}_{\text{End } \mathbf{k}}]\}$ received from different bidders
39		${id^{(1)}}_{k}$, BS _N partitions {[T _{Start} , T _{End}]} into contiguous time segments
40		$\{TS_m\}$. Each TS_m corresponds to a time window (integer number of T_{Frame})
41		in which a subset of intervals of $\{[T_{\text{Start }k}, T_{\text{End }k}]\}$ overlap.
42 43		• The different bidders $\{id^{(1)}_k\}$ assigned to a given TS_m are identified by
44		${id^{(1)}}_{k,m}$. ${id^{(1)}}_{k,m}$ compete for each TS_m . Each involved bidder $id^{(1)}}_{k,m}$
45 46		competes with his respective $BID^{(1)}_{k}$.
40 47		• Then, for each TS_{m} , the master BS_{N} calculates the payoff $P^{(1)}_{k} = BS_{CT}T^{(1)}_{k} *$
48		$\mathbf{x_k}^* \mathbf{T_{Renting}} * \mathbf{N_{Frame m}}$ for each bidder k, and searches the subset
49	71	
	71	Copyright © 2005 IEEE. All rights reserved.

1	$(1) \qquad (1) \qquad (1)$
2	$(\{id^{(1)}_{k,m}\}_{selected})$ of $\{id^{(1)}_{k,m}\}$ such as $sum(x_k) = 1$ and $sum(P^{(1)}_{k})$ is
$\frac{2}{3}$	maximal. $N_{Frame m}$ is the number of frames within TS_m ($N_{Frame m} = TS_m$ /
4	T _{Frame}).
5	
6	• For each TS_m , BS_N informs all $\{id^{(1)}_{k,m}\}$ about $P^{min, (1)}_m$ and $P^{max, (1)}_m$
7	where $\mathbf{P^{min, (1)}}_{m}$ is the minimal payoff from $\{\mathbf{id^{(1)}}_{k,m}\}_{selected}$ and $\mathbf{P^{max, (1)}}_{m}$
8	
9	is the maximal payoff from ${\{id^{(1)}_{k,m}\}}_{selected}$ during the first iteration. With
10	this approach, each BS_k is directly informed whether it has been selected or
10	not, and has some information on how far it is from $\mathbf{P^{min, (1)}}_{\mathbf{m}}$ while still
12	
13	having some information on $\mathbf{P}^{\max, (1)}$ m. This approach enables to keep the
14	privacy of competing $\{id^{(1)}_{k,m}\}$ on TS_m .
15	
16	
17	
18	the second s
19	n th iteration of the credit tokens based auctioning/bidding phase
20	This phase is composed of 2 sequences as follows:
21	• In sequence (6):
22	• If $\mathbf{P^{(1)}}_{\mathbf{k}} < \mathbf{P^{\min, (1)}}_{\mathbf{m}}$, this means that BS _k has not been selected for being
23	granted the resources he has bided for during the first iteration $n = 1$. More
24	
25	generally speaking, for n>1, if $P^{(n-1)}_{k} < P^{\min, (n-1)}_{m}$, this means that BS _k has
26	not been selected for being granted the resources he has bided for during the
27	(n-1) th iteration.
28	• If $\mathbf{P^{(n-1)}}_k < \mathbf{P^{min, (n-1)}}_m$ and if BS_k is still interest to be allocated with the
29	
30	additional resources he initially requested for, it can propose a new $\mathbf{BS}_{\mathbf{CT}}^{(n)}{}_{\mathbf{k}}$
31	for the n th iteration. Then, BS _k computes the new $P^{(n)}_{k} = BS_{CT}^{(n)}_{k} * x_{k}^{*}$
32	$T_{Renting} * N_{Frame m}$ where $x_k, T_{Renting}$ and $N_{Frame m}$ are fixed for all n on
33 34	
34 35	TS_{m}
36	• If $\mathbf{P^{(n)}}_{k} > \mathbf{P^{(n-1)}}_{k}$ and $\mathbf{P^{(n)}}_{k} > \mathbf{P^{min, (n-1)}}_{m}$, BS _k expresses its interest to keep on
37	participating in the bidding with the new bid ${\bf P^{(n)}}_k$. In that case, it informs ${\rm BS}_{ m N}$
38	
39	with its new (update) value of $BS_CT^{(n)}_k$. In case $P^{(n)}_k = P^{(n-1)}_k$ or $P^{(n)}_k < CT^{(n)}_k$
40	$\mathbf{P^{min, (n-1)}}_{m}$, BS _k leaves the bidding phase and will not be granted with the
41	additional resources he asked for.
42	• In sequence (7), BS _N updates $\{id^{(n-1)}_{k,m}\}$ into $\{id^{(n)}_{k,m}\}$. Based on the new received
43	
44	biddings $\{BS_CT^{(n)}_k\}$ for each TS_{m} , the master BS_N calculates the new payoff $P^{(n)}_k$
45	$= BS_CT^{(n)}_{k} * x_k * T_{Renting} * N_{Frame m}$ for each bidder k who still participates to the
46	
47	bidding. Then, for each TS_m , BS_N searches the subset $(\{id^{(n)}_{k,m}\}_{selected})$ of
48	$\{id^{(n)}_{k,m}\}$ such as sum $(x_k) = 1$ and sum $(P^{(n)}_k)$ is maximal. Next, BS _N performs the
49	

1	same actions as in sequence (5): for each TS_m , BS_N informs all $\{id^{(n)}_{k,m}\}$ about P^{min} ,
2	
3	⁽ⁿ⁾ $_{\mathbf{m}}$ and $\mathbf{P}^{\mathbf{max}, (n)} _{\mathbf{m}}$ where $\mathbf{P}^{\mathbf{min}, (n)} _{\mathbf{m}}$ is the minimal payoff from $\{\mathbf{id}^{(n)}_{\mathbf{k},\mathbf{m}}\}_{\text{selected}}$
4	and $\mathbf{P^{max}}^{(n)}$ is the maximal payoff from $\{\mathbf{id^{(n)}}_{k,m}\}_{selected}$ during the n th iteration.
2 3 4 5	\mathbf{m} is the maximal payoff from $\{\mathbf{k}, \mathbf{m}\}$ selected during the in iteration.
6	
6 7	Final pricing and credit tokens transaction phase
8	This phase is composed of two sequences as follows:
9	• In sequence (8):
10	• As long as $T_{End Bidding}$ - $T_{Start Bidding} > 0$ (i.e. the bidding phase duration has
11	not yet elapsed), n is increased and the credit tokens based bidding phase
12	mechanisms of the previous paragraph " <i>nth iteration of the credit tokens</i>
13	based auctioning/bidding phase" are applied.
14	
15	• When $\mathbf{T_{End Bidding}} - \mathbf{T_{Start Bidding}} = 0$, bidding phase is over. None BS_k can
16	propose a new bid. $\{id^{(n \text{ final})}_{k,m}\}_{selected}$ is derived. At this point, BS _N derives
17	the clearing price auction BS_CPA_k (expressed as a number of credit tokens
18	_
19	per time unit) for each $\mathbf{TS}_{\mathbf{m}}$ and each k from $\{\mathbf{id}^{(\mathbf{n}\ \mathbf{final})}_{\mathbf{k},\mathbf{m}}\}$. For each k and m,
20	BS_CPA_k can correspond to the BS_CT^(final) , or for example can follow
21	
22	another price auction method.
23	• In sequence (9), eack BS _k is requested to pay $Pr_k = BS_CPA_k * x_k * T_{Renting}$
24	$N_{Frame m}$ to be allowed to use the resources it won on its corresponding TS_m .
25	Provided that $\mathbf{Pr}_{\mathbf{k}}$ does not exceed the credit tokens account of BS _k , the token
26	
27	transaction between BS_N and each BS_k is performed.
28	
29	Credit tokens based bandwidth granting phase
30	This phase is composed of the single sequence (10). During this phase, BS_N grants the
31	
32	resource to each BS_k who has successfully performed the credit transaction operation in
33	sequence (9).
34	
35	Resource usage phase
36	After BS _k has been granted with the resources, BS _k can use them during during $x_k * T_{Renting}$
37	time unit of NW _N and for $N_{Frame m}$ frames from the beginning on its corresponding TS_m .
38	time unit of \mathbf{W}_{N} and for $\mathbf{W}_{Frame m}$ frames from the beginning on its corresponding \mathbf{IS}_{m} .
39	
40	15.7.1.2.6.4 Inter BSs communication
40 41	
	The above mechanisms require inter BSs communication between different NWs. This inter
42	BS communications is necessary to exchange the parameters related to the Advertising phase,
43	the Admissible co-channel interference control phase and the Auctioning/bidding phase. It is
44	assumed that these parameters are stored into the regional LE DB and into the local database
45	· ·
46	of each LE BS. The information exchange between these databases and the RADIUS/BSIS
47	servers can be either supported by secured over the air signalling, or by IP communication
48	between the networks.
49	

3	
 An IEEE 802.16h network that is a member of a community of networks gr shared spectrum resources only if it forms an actual network comprised of a station and one subscriber station and supports a bi-directional link. 	
7 8 15.7.1.2.8 Coverage Area 9	
 10 15.7.1.2.9 Direction of Coverage Area 11 	
12 13 14 15 16	
 ANNEX 1. Machanism of security in coexistence –reference 19 	
 A 1.1 General Principal The access to Data Bases is secured by authentication and possibly encryptic 	on
[Note: the security part is a temporary text adopted from contribution C80 and 802.16h is calling for comments] CXREF>Figureh14 shows the IEEE 802.16 LE inter-network communication Shared D3 (with DRRM) (with DRRM) RADIUS Server (with DRRM) RADIUS Server (with DRRM) RADIUS Server (with DRRM) RADIUS protocol	on architecture:
39 Joint B BS Joint B B	_
47Figure h28.Network Architecture48	
 49 General architecture includes the components operating over IP-based network 74 Copyright © 2005 IEEE. All rights reserved. 	ork:

This is an unapproved IEEE Standards Draft, subject to change

2005-12-02

IEEE802.16h-05/027

The RADIUS Server- The Base Station Identification Server (BSIS), described in detail in section xxx - The
 BSs cooperating with the Distributed Radio Resource Management (DRRM) procedureRADIUS server

performs two primary functions. The first one is to authenticate 802.16 LE BSs and BSIS. Keyed-Hashing for

performs two primary functions. The first one is to authenticate 802.16 LE BSs and BSIS. Keyed-Hashing for
 Message Authentication (HMAC) with Message Digest 5 (MD5) (RFC2869:2000) is adopted for authentication.

5 The second one is to maintain the address mapping of wireless medium addresses of BSs (their BSID) and

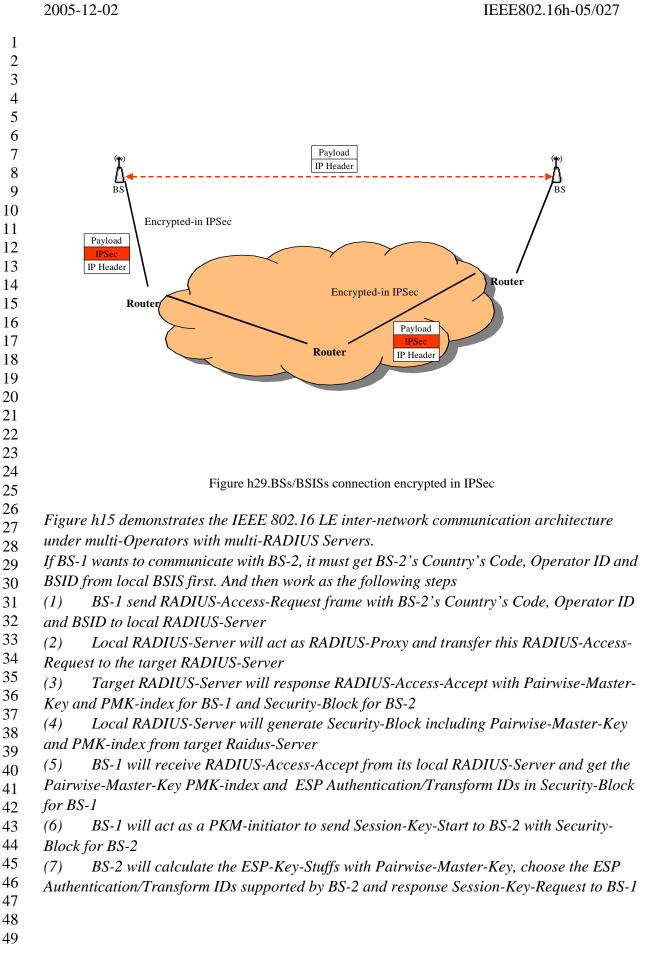
- medium addresses of BSIS to their IP addresses. This mapping is to distribute the keys for ESP used by BSs
 belonging to different networks.
- 8

BSIS maintains the geographic and operational information such as latitude, longitude and
 the BSID of LE BSs within certain management domain. BSs operating under LE system
 shall first query the foreign BSISs which are geographically close to the local BSIS and find
 the coexistence neighbor BSs while starting up, following the Coexistenceprotocol (detailed
 description in section 15.2.2.3). After the successful query procedure, the BS can obtain the
 BSIDs of the coexistence neighbor BSs. Intercommunication between BSs belonging to
 different networks is permitted after the BS acquires coexisting neighbor's Pairwise Master-

16 key. and PMK-index for ESP.

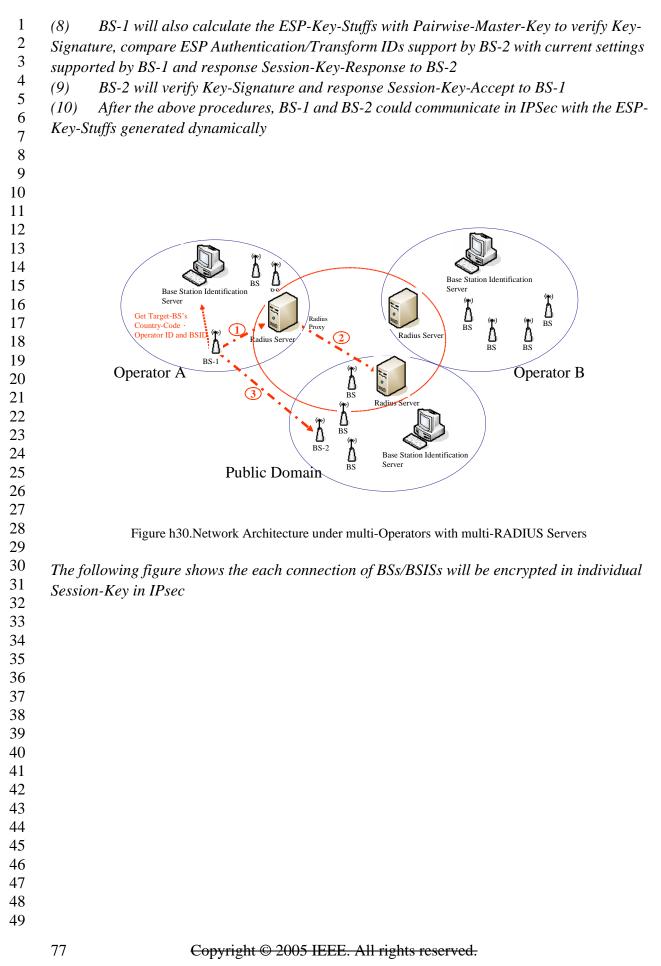
Considering the IP network firewalls and different filtering rules, we should find a common security solution to make BSs/BSISs data connection transparent under almost common

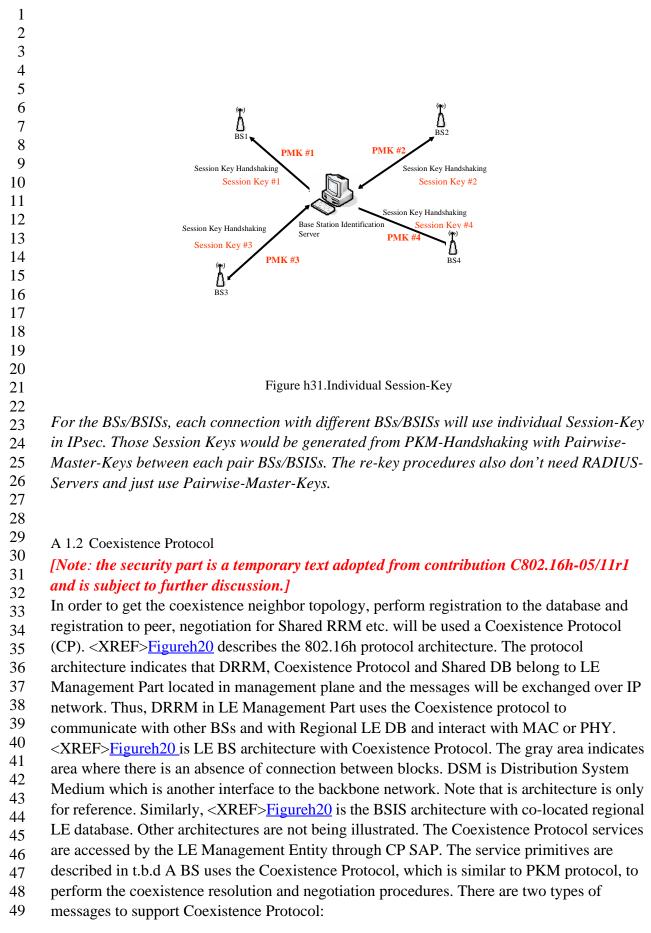
network management cases. IPSec is used to IPv4 and also included in IPv6 for the IP-Layer


20 network management cases. IPSec is used to IPv4 and also included in IPv6 for the IP-Layer 21 security solution. And all BSs/BSISs don't just reside in the same network environment. The

data connections should go through some routers/firewalls and need to follow a common security rules.

24


Figureh15 shows the BSs/BSISs connections encrypted in IPSec. Based on IPSec, all data
 connections between BSs/BSISs could pass through firewalls and routers unless some
 firewalls block IPSec connections.


- 28 29
- 30
- 31
- 32 33
- 34
- 35
- 36
- 37 38
- 39
- 40 41
- 42
- 43 44
- 45
- 46
- 47
- 48
- 49
- 75



Copyright © 2005 IEEE. All rights reserved.

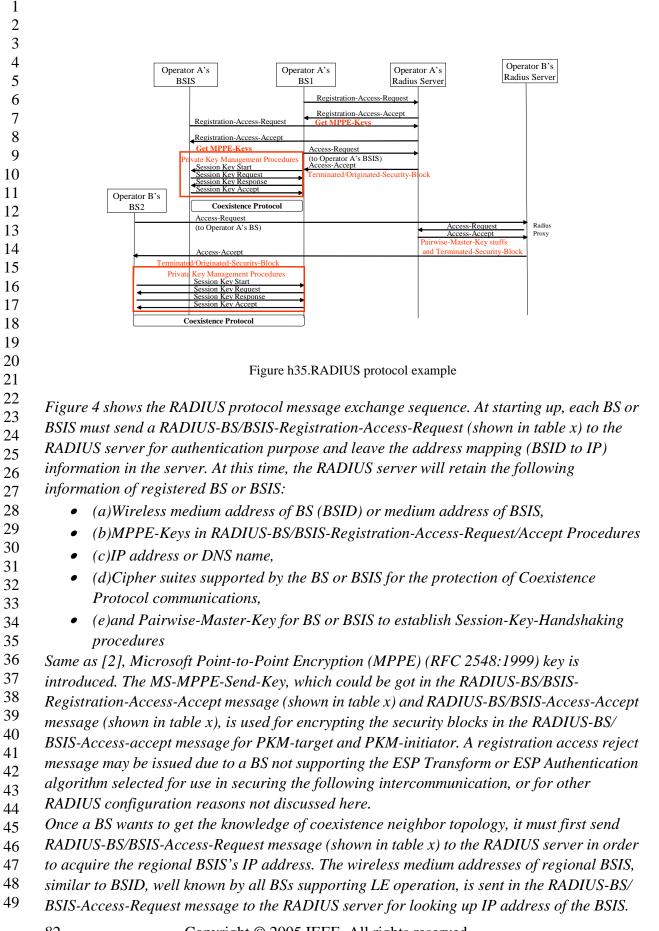
2005-12-02

1 2						
23	Г					
4		regional LE database software				
5		CP-DB_SAP	_			
6		Coexistence protocol				
7 8						
o 9	_	RADIUS Client	_			
10		UDP/TCP				
11		ESP				
12		IP				
13		802.2	_			
14		802.2	_			
15		DSM MAC				
16 17	_		_			
17 18		DSM PHY				
19						
20						
21						
22	Figure h	134.BSIS architecture with co-located regional	LE database			
23	To use the Coordistance Dra	teast which is similar to DKM grates	al to manfama the			
24		btocol, which is similar to PKM protocol	· •			
25 26	or BSIS and waits for the I	negotiation procedures a BS sends a L	E_CF-KEQ to another DS			
20 27		hanged between BS and BS/BSIS, sec	urity association must be			
28	•	E security associations between peers a	•			
29	-	vants to communicate with another BS				
30		p request the establishment of the secur				
31	-	ted BS/BSIS. RADIUS server replies a	•			
32	-	Formation for ESP operation, to the BS.	-			
33	-	plished between the peers. The BS send				
34	-	n the RADIUS Server, as a LE_CP-RE				
35 36	-	is the first message in the Coexistence				
30 37	·	BS and BSIS. The peer returns LE_CP	Ũ			
38		At this point both sides have the inform				
39		between the BS and BS or BS and BSIS				
40	1 0	gned by IANA to be opened for the CF				
41	reception of CP packets is xxxx.					
42	The TCP port number assigned	by IANA to be opened for the CP for transmiss	sion and reception of CP packets			
43	is xxxx.					
44 45						
45 46						
40 47						
48						
49						
	80 Copy	right © 2005 IEEE. All rights reserved	l.			

A 1.3 Base Station Identification Server The following part from 3.2.4.1 is a temporary text adopted from contribution **INote:** C802.16h-05/11r1 and is subject to further discussion. A call for comment from security experts is open to comment on this text.] The Base Station Identification Server (BSIS) acts as an interface between 802.16 LE BSs and the regional LE DB which stores the geographic and important operational information, e.g. latitude, longitude, BSID etc., of the LE BSs belonging to the same region. It converts the actions carried in PDUs received from the 802.16 LE BSs to the proper formats, e.g. SQL (Structured Query Language) string, and forwards the strings to the regional LE DB, which can be any available database software. BSIS converts the query results from the regional LE DB to the proper format, e.g. TLV encodings, and replies to the requested BSs. <u><XREF>Figureh14</u> shows the general architecture of inter-network communication across 802.16 LE systems. In this architecture, the 802.16 LE systems (BSs and BSIS) from different networks set up security association (including BS and BS, BSIS and BSIS) with each other by utilizing the services provided by the RADIUS server. BSIS acts as a peer of 802.16 LE BSs in this architecture. The BSID of regional BSIS is well known among the 802.16 LE systems within certain domain. In summary, ESP with RADIUS can discover a Rogue BS or BSIS. The messages exchanged between the LE BSs and the BSIS will be revealed in the next section. Note that the interface between BSIS and regional LE DB is out of scope.

A 1.4 RADIUS Protocol Usage

For future interoperability consideration, similar mechanisms are maintained. Secure


exchange of 802.16 LE signaling information can be achieved after successful procedures of

the RADIUS protocol. To include RADIUS support, the RADIUS server and the BS/BSIS

RADIUS client must be configured with the shared secret key and with each other's IP

address. Each BS/BSIS acts as a RADIUS client and has its own shared secret key with the

RADIUS server. The shared secret key may be different from that of any other BS/BSIS.

Copyright © 2005 IEEE. All rights reserved.

- 1 Upon receiving the request message, the RADIUS server will respond with a RADIUS-BS/
- 2 BSIS-Access-Accept message (shown in table x) if the BS is a valid member which is allowed
- 3 to perform inter-communication. The RADIUS-BS/BSIS-Access-Accept message would
- 4 contain Originated-BS-Security-Block(for BS encrypted in MPPE-Send-Key from current 5
- RADIUS-BS/BSIS-Access-Request/Accept message) and Terminated-BS/BSIS-Security-6
- Block(for BSIS encrypted in MPPE-Send-Key from BSIS's RADIUS-BS/BSIS-Registration-7
- Access-Request/Accept message). Security-Block (shown in table x) contains Pairwise Master 8
- Key IndexPairwise-Master-KEYKey Lifetimethe list of ESP Authentication/Transform IDs for 9

initiator-send/receive for establishing a secure connection with the BSIS. 10

- After querying process between the BS and the regional BSIS in Coexistence Protocol, the 11
- 12 BSIS will respond to the BS with possible coexistence neighbor BSs candidates and their
- 13 BSIDs. The BS, then, tries to establish secure connections with the coexistence neighbor BSs
- 14 after evaluating the coexistence relationships with these candidates. The BS sends RADIUS-
- 15 BS/BSIS-Access-Request message to local RADIUS server for Originated/Terminated-BS/
- 16 BSIS-Security-Blocks. After getting Security-Blocks from RADIUS-BS/BSIS-Access-Accept

17 messages, the BS establishes secure connections with each evaluated coexistence neighbor 18 BS. 19

An access reject message may be issued due to a BS or the regional BSIS not supporting the 20

ESP Transform or ESP Authentication algorithm selected for the following 21

intercommunication, or for other RADIUS configuration reasons not discussed here. 22

23

Table h21. Security Block Format

ID		
	1	Pairwise Master Key Index for BS/BSIS (0-255)
	32	Pairwise-Master-KEY
	4 * number	The list of ESP Authentication IDs corresponding to the ESP
		Authentication algorithms for initiator-send
	4 * number	The list of ESP Transform IDs corresponding to the ESP transforms
		for initiator-send
	4 * number	The list of ESP Authentication IDs corresponding to the ESP
		Authentication algorithms for initiator-receive
	4 * number	The list of ESP Transform IDs corresponding to the ESP transforms
		for initiator-receive
	4	Pairwise-Master-KEY Lifetime
		4 * number 4 * number 4 * number

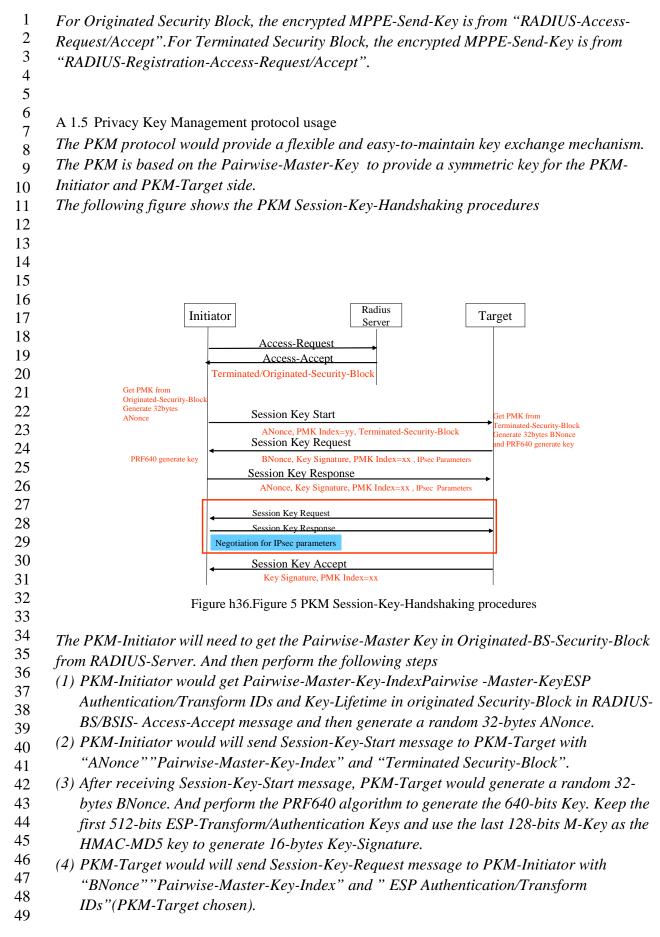
36 37

38 The Security-Block would be encrypted in 32-bytes MPPE-Send-Key with the following 39

manner ('+' *indicates concatenation*): 40

•

.


b(1) = MD5(MPPE-Send-Key+BSID)c(1) = p(1) xor b(1) C = c(1)41

- b(2) = MD5(MPPE-Send-Key+BSID + c(1)) c(2) = p(2) xor b(2) C = C + c(2)
- 42 43 44

45 b(i) = MD5(MPPE-Send-Key+BSID + c(i-1)) c(i) = p(i) xor b(i) C = C + c(i)

- 46 Break plain text into 16 octet chunks p(1), p(2)...p(i), where i = len(P)/16. Call the ciphertext
- 47 blocks c(1), c(2)...c(i) and the final ciphertext C. Intermediate values b(1), b(2)...c(i) are 48
- required. The resulting encrypted String field will contain c(1)+c(2)+...+c(i). 49

Copyright © 2005 IEEE. All rights reserved.

1 (5) After receiving Session-Key-Request message, PKM-Initiator would perform the PRF640 2 algorithm to generate the 640-bits Key. Keep the first 512-bits ESP-Transform/ 3 Authentication Keys and use the last 128-bits M-Key as the HMAC-MD5 key to generate 4 16-bytes Key-Signature to verify the Key-Signature field on the Session-Key-Request 5 message. If it is wrong, PKM-Initiator would perform silent-drop and doesn't response 6 any message. If it is correct, PKM-Initiator would prepare the Session-Key-Response 7 message and use HMAC-MD5 generate Key-Signature filed. 8 (6) PKM-Initiator would will send Session-Key-Response message to PKM-Target with 9 "ANonce""Pairwise-Master-Key-Index" and "ESP Authentication/Transform 10 IDs" (PKM-Initiator chosen). 11 12 (7) After receiving Session-Key- Response message, PKM-Target would check the ANonce 13 value if equal to the previous ANonce value in Session-Key-Start message and use 14 HMAC-MD5 generate Key-Signature filed to verify the Key-Signature field. Compare the 15 values of "ESP Authentication/Transform IDs" to make sure the security parameters. 16 (8) After the above, PKM-Target will send Session-Key-Accept with Key-Signature filed to 17 PKM-Initiator to verify. 18 (9) The following IPsec connection will use the first 512-bits ESP-Transform/Authentication 19 Keys from PRF640 as keys and perform the ESP-Transform/Authentication algorithms 20 from chosen ESP Authentication/Transform IDs. 21 The following figure shows the PKM Session-Key Re-Key procedures 22 23 24 25 Initiator Target 26 **PMK** 27 **Generate 32bytes** Session Key Start 28 **PMK** ANonce PMK Index=0, Terminated Security-Block once 29 Session Key Request Generate 32bytes BNonce and PRF640 generate key 30 BNonce, Key Signature, PMK Index=xx , Security Parameter **PRF640** generate Session Key Response 31 key ANonce, Key Signature, PMK Index=xx , Security Parameter 32 Session Key Accept Session Key#1 Key Signature, PMK Index=xx 33 Active Lifetime 34 Session Key Start 35 Session Key#1 ANonce, PMK Index=0, Terminated Security-Block Grace Time 36 Session Key Request BNonce, Key Signature, PMK Index=xx , Security Parameter 37 Session Key Response 38 once, Key Signature, PMK Index=xx, Security Parameter Session Key#1 Session Key Accept 39 Grace Time Key Signature, PMK Index=xx 40 41 Session Key#2 Session Key#2 Active Active 42 Lifetime Lifetime 43 44 45 Figure h37.Figure 6 PKM Session-Key Re-Key procedures 46 47 Each Session-Key would set a Key-Lifetime, and PKM-Initiator could set a Session-Key 48 grace time to perform Session-Key-Handshaking for the next new Session-Key#2 to be 49

1	generated until the e	end of the key lifetime. The Session-Key#1 could use up its lifetime and
2	then activate the Ses	sion-Key#2. If each side use the Session-Key#2 first in IPsec connection,
2 3 4 5		e the Session-Key#2. If the lifetime of Session-Key#1 use up, the PKM-
4		
5		form the Session-Key Re-Key procedures. PKM-Target would disconnect
	the IP connection un	ntil the Session-Key#2 generated.
6 7	The following figure	shows the PKM Session-Key Re-Key procedures with the PMK update
8		
9		
10		
11		
12		
13		
13 14		
15		
16		
17		
18		
19		
20		
21		
22		
23		
24		
25		
26		
27		
28		
29		
30		
31		
32		
33		
34		
35		
36		
30 37		
38		
39		
40		
41		
42		
43		
44		
45		
46		
47		
48		
40 49		
47		
	86	Copyright © 2005 IEEE. All rights reserved.

1						
2						
3	Pseudo Random Function					
4	640-bits					
5						
6						
7	0-127 bits 128-255 bits 256-383 bits 384-511 bits 512-639 bits					
8	128-bits 128-bits 128-bits					
9	128-bits Send key 128-bits Send key Receive key Receive key used by ESP used by					
10	Transform Authentication Used by ESP Used by ESP HMAC-MD5 for					
11	in PKM-Initiator in PKM-Initiator in PKM-Initiator in PKM-Initiator					
12						
13						
14						
15	Figure h39.the 640-bits Key generated by PRF640					
16						
17	The BSs/BSISs get Pairwise-Master-Key from RADIUS-Servers and generate 32-bytes Nonce					
18	value to derive 640-bits key as follows					
19	PRF-640(PMK, ''BS-BSIS key expansion'', Min(BS11D,BS21D) Max (BS11D,BS21D)					
20	Min(ANonce,BNonce) Max(ANonce,BNonce))					
20	Where					
22	PRF-640(K,A,B) =					
23	for i=0 to 4 do					
24	R = R/HMAC-SHA-1(K, A/0/B/I)					
25						
26	return LeastSignificant-640-bits(R)					
27	and "/" denotes bitstring concatenation					
28						
29						
30	A 1.6 Security consideration					
31	In this model, data traffic is protected by using IPsec.					
32	The IP Security Protocol provides cryptographically based security for IPv4. The protection					
33	offered by IPsec is achieved by using one or both of the data protection protocols (AH and					
33 34	ESP). Data protection requirements are defined in the Security Policy Database (SPD). IPsec					
35	assumes use of version 2 of the Internet Key Exchange protocol, but a key and security					
36	association (SA) management system with comparable features can be used instead.					
30 37	association (SA) management system with comparable reatures can be used instead.					
38						
38 39						
	A 1.7 RADIUS Protocol Messages					
40 41	The following messages are listed to support RADIUS protocol:					
41	Note that TBD means To Be Defined.					
43	• RADIUS-BS/BSIS-Registration-Request (BS/BSIS RADIUS server): A startup BS/					
44 45	BSIS sends this message for authentication purpose.					
45 46	2010 senus mis message for aunemication purpose.					
46 47						
47 19						
48						
49						
	87 Copyright © 2005 IEEE. All rights reserved.					

17 18 19

20

21

22

23 24

Attribute Attribute name		Value	
number			
1	User-Name	BSID. The BSID should be represented in ASCII format, with octet	
		values separated by a "-". Example: "00-10-A4-23-19-C0".	
4	NAS-IP-Address	BS's IP Address	
6	Service-Type	Coexistence-Protocol-Register (value = TBD, ex. IAPP-Register,	
		value = 15)	
26	Vendor-Specific-		
	Attribute (VSA)		
26-TBD	Supported-ESP-	The list of ESP Authentication IDs corresponding to the ESP	
	Authentication-	Authentication algorithms supported by this BS (See Table x)	
	Algorithms		
		The list of ESP Transform IDs corresponding to the ESP transforms	
26-TBD	Supported-ESP-	supported by this BS (See Table x)	
	Transforms		
32	NAS-Identifier	BS's NAS Identifier	
6 80 Message-Authenticator The RADIUS message's authe		The RADIUS message's authenticator	

Table h22. RADIUS-BS/BSIS-Registration-Access-Request

According to RFC 2865:2000, other RADIUS attributes may be included in the RADIUS-BS/ BSIS-Registration-Access-Request packet in addition to the ones listed in Table x.

• RADIUS-BS/BSIS-Registration-Accept (RADIUS server BS/BSIS): After RADIUS server verifies the valid membership, it will respond with this accept message.

Table h23. RADIUS-BS/BSIS-Registration-Access-Accept

Attribute	Attribute name	Value
number		
1	User-Name	BSID.
6	Service-Type	Coexistence-Protocol -Register (value = TBD, ex. IAPP-
		Register, value $= 15$)
26	Vendor-Specific-	
	Attribute (VSA)	
26-TBD	Supported-ESP-	The list of ESP Authentication IDs corresponding to the ESI
	Authentication-	Authentication algorithms approved by Radius Server
	Algorithms	
	8.	The list of ESP Transform IDs corresponding to the ESP
26-TBD	Supported-ESP-	transforms approved by Radius Server
	Transforms	
27	Session-Timeout	Number of seconds until the BS should re-issue the
		registration Access-Request to the RADIUS server to obtain
		new key information.
80	Message-Authenticator	The RADIUS message's authenticator

42

46

47

48

43 According to RFC 2865:2000, other RADIUS attributes may be included in the RADIUS-BS/ 44 BSIS-Registration-Access-Accept packet in addition to the ones listed in Table x. 45

• RADIUS-BS/BSIS-Access-Request (BS/BSIS RADIUS server): The BS sends this message to request for inter-communication with another coexistence neighbor BS or a regional BSIS.

49

1

Attribute	Attribute Attribute name Value			
number				
1	User-Name	User-Name must include Country-CodeOperator ID and Regional		
		BSIS's WM address or coexistence neighbor BS's BSID		
6 4 NAS-IP-Address Original BS's IP Address (the BS sending this i		Original BS's IP Address (the BS sending this request message)		
6	Service-Type	CS/CIS-Check (value = TBD, ex. IAPP-AP-Check, value = 16)		
61	NAS-Port-Type	Wireless – Other (value = 18)		
80	Message-Authenticator	uthenticator The RADIUS message's authenticator		

Table h24. RADIUS-BS/BSIS- Access-Request

9 10

According to RFC 2865:2000, other RADIUS attributes may be included in the RADIUS-BS/ 11

12 BSIS-Access-Request packet in addition to the ones listed in Table x.

13 RADIUS-BS/BSIS-Access-Accept (RADIUS server BS/BSIS): After verifying that the

14 coexistence neighbor BS is valid member, RADIUS server will respond with the security 15

blocks necessary for establishing a secure connection between the coexistence neighbor BS 16

and requesting BS or between BSIS and requesting BS. 17

18 19 Attribute Attribute name Value 20 number User-Name User-Name must include Country-CodeOperator ID 21 and Regional BSIS's WM address or coexistence 22 neighbor BS's BSID 23 8 Framed-IP-Address IP Address of Regional BSIS or coexistence neighbor 24 BS. 25 26 Vendor-Specific-Attribute (VSA) 26 Originated-BS-Security-Block 27 26-TBD Security Block encrypted using originated BS's MPPE-SEND-KEY, to be decrypted and used by the 28 26-TBD Terminated-BS/BSIS-Security-Block original BS 29 Security Block encrypted using coexistence neighbor 30 BS's MPPE-SEND-KEY (or BSIS's), to be decrypted 31 and used by the coexistence neighbor BS (or BSIS) 32 80 Message-Authenticator The RADIUS message's authenticator

Table h25. RADIUS-BS/BSIS- Access-Accept

33 34

35

36

According to RFC 2865:2000, other RADIUS attributes may be included in the RADIUS-BS/ BSIS-Access-Accept packet in addition to the ones listed in Table x.

Table h26. ESP Transform identifiers 1 2 Transform identifier Value Reference 3 RESERVED [RFC2407] 0 [RFC2407] ESP_DES_IV64 1 4 ESP DES 2 [RFC2407] 5 ESP 3DES 3 [RFC2407] 6 ESP_RC5 [RFC2407] 4 ESP_IDEA RFC2407] 5 7 ESP_CAST [RFC2407] 6 8 [RFC2407] ESP_BLOWFISH 7 9 ESP_3IDEA 8 [RFC2407] 10 ESP_DES_IV32 9 [RFC2407] 10 ESP_RC4 [RFC2407] 11 ESP NULL 11 [RFC2407] 12 ESP AES-CBC 12 [RFC3602] 13 Reserved for privacy use 249-255 [RFC2407] 14 15 16 Table h27. ESP Authentication algorithm identifiers 17 Transform identifier Value Reference 18 RESERVED 0 [RFC2407] 19 HMAC-MD5 1 [RFC2407] 20 HMAC-SHA [RFC2407] 2 3 RFC2407] DES-MAC 21 RFC2407 KPDK 4 22 HMAC-SHA2-256 5 Leech] 23 HMAC-SHA2-384 6 Leech] 24 HMAC-SHA2-512 [Leech] HMAC-RIPEMD [RFC2857] 8 25 RESERVED 9-61439 26 61440-65535 Reserved for privacy use 27 28 29 30 A 1.8 Privacy Key Management protocol messages 31 The PKM protocol procedures contain 4 message actions, and each-side could check the 32 code value of the begin of PKM message to recognize which action need to perform this 33 moment. The meaning of codes for PKM message as follows 34 • 0 = Session Key Start 35 36 • 1 = Session Key Request 37 • 2 = Session Key Response 38 3 = Session Key Accept • 39 The PKM message uses TLV format to add the following attributes 40 41 42 43 44 45 46 47 48 49

Copyright © 2005 IEEE. All rights reserved.

Туре	Length	Value Information
1	32	Nonce
2	8	Replay Counter
3	8	Key lifetime in seconds
4	16	Key Signature
5	4	Security Parameter Index
6	4 * number	The list of ESP Authentication IDs corresponding to the ESP
		Authentication algorithms for initiator-send supported by this B
7	4 * number	The list of ESP Transform IDs corresponding to the ESP
		transforms for initiator-send supported by this BS
8	4 * number	The list of ESP Authentication IDs corresponding to the ESP
		Authentication algorithms for initiator-receive supported by this
		BS
9	4 * number	The list of ESP Transform IDs corresponding to the ESP
		transforms for initiator-receive supported by this BS
10	33 + 4*n	Security Block

Table h28. Session Key frame TLV

17

1

18 The Length field contains a 16-bits value to record the whole frames size starting from Code

19 field, with the ESP-Transforms-and-Authentication-Algorithms-Codes field filled in if 20

present. 21

The PMK-Index field contains a 8-bits value to record the current Pairwise-Master-Key-22

Index each PKM-side used. If the PKM-Target detects the PMK-Index different of PKM-23

Initiator, it must update the latest Pairwise-Master-Key. 24

The Replay-Counter field contains a 64-bits random number (such as 64-bit NTP timestamp) 25

26 and does not repeat within the life of the Master-Key material.

27 The Key-Lifetime field contains a 64-bits value to record the Session-Key lifetime in seconds.

28 The Key-Signature field contains an HMAC-MD5 message integrity check computed over the

29 Session-Key-Frame starting from Code field, with the ESP-Transforms-and-Authentication-

30 Algorithms-Codes field filled in if present, but with the Key Signature field set to zero. The M-31 Key is used as the HMAC-MD5 key.

- 32 The Security-Parameters-Index field contains a 32-bits value to assign to the IPsec Security 33
- Association (including the encryption and authentication keys, the authentication algorithm 34

for AH and ESP, the encryption algorithm for ESP, the lifetime of encryption keys... etc in this 35

session). PKM-Initiator/Target could check the SPI value in ESP-Header to detect to use 36

which SA for this IPsec connection. 37

- 38 The following figure shows the Session-Key-Start message format
- 39 40

Code(1) =0 Length(2)	PMK Index(1)	Source_BSSID(6)	Destination_BSSID(6)		
TLV Attributes					
NONCE (32) Security Parameters Index (4) Terminated Security Block (33 + 4*n)					
Figure h40.Session-Key-Start message format					

The following figure shows the Session-Key-Request message format

Code(1) =1 Length(2)	PMK Index(1)	Source_BSSID(6)	Destination_BSSID(6)			
TLV Attributes NONCE (32) Replay Counter (8) Key Lifetime (8) Key Signature (16) Security Parameters Index (4)						
ESP Authentication IDs for initiator-send supported by this BS (Codes Number(1) + Codes Number *4) ESP Trans form IDs for initiator-send supported by this BS (Codes Number(1) + Codes Number *4) ESP Authentication IDs for initiator-neceive supported by this BS (Codes Number(1) + Codes Number *4) ESP Trans form IDs for initiator-neceive supported by this BS (Codes Number(1) + Codes Number *4)						

Figure h41.Session-Key-Request message format

The following figure shows the Session-Key-Response message format

Code(1) =2 Length(2)	PMK Index(1)	Source_BSSID(6)	Destination_BSSID(6)			
TLV Attributes NONCE (32) Replay Counter (8) Key Lifetime (8)						
Key Signature (16) Security Parameters Index (4)						
ESP Authentication IDs for initiator-send supported by this BS (Codes Number(1) + Codes Number *4) ESP Trans form IDs for initiator-send supported by this BS (Codes Number(1) + Codes Number *4) ESP Authentication IDs for initiator-neceive supported by this BS (Codes Number(1) + Codes Number *4) ESP Trans form IDs for initiator-neceive supported by this BS (Codes Number(1) + Codes Number *4)						

Figure h42.Session-Key-Response message format

The following figure shows the Session-Key-Accept message format

Code(1) =3	Length(2)	PMK Index(1)	Source_BSSID(6)	Destination_BSSID(6)
TLV At	tributes			
Replay Counter (8) Key Signature (16)				

Figure h43.Session-Key-Accept message format

ANNEX 2. GPS Timing and Base Station Synchronization

Every IEEE 802.16h network will be synchronized to a globally distributed reference timing system that is capable of allowing the network Base Stations to synthesize a 1 pps NTI and a UTC time stamp. The Global Positioning System (GPS) is capable of providing such a temporal references to the Base Stations providing they are equipped with GPS receivers.

Every base station equipped with a GPS receiver would be capable of receiving a UTC synchronized 1 pps timing signal. The accuracy of the clock pulses derived from using GPS are accurate to +/- 100 usec and the pulses that are derived typically have rise times within +/- 2.5 nsec. Fig 1 shows a typical GPS 1 sec pulse and its duration (Trimble Inc. Palisade output).

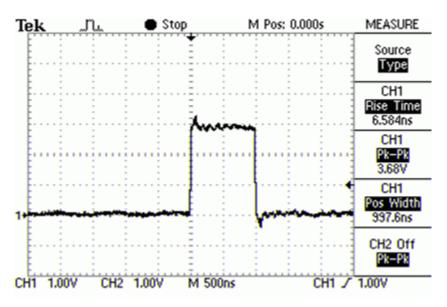


Figure h44.GPS 1pps Pulse

The availability of a globally distributed clock will result in a common temporal unit that can be used in negotiating access times to spectrum shared by a community of ad-hoc users. Non-IEEE 802.16h networks having different architectures and messaging signals could also use a common 1 sec interval for synchronization of their networks. This would conceivably allow communication between them and IEEE 802.16h networks in a synchronized manner, to facilitating the exchange of information related to coexistence and spectrum sharing.

The one second unit is considered ideal because it is distributed by the GPS as such and the length of the unit is seemingly appropriate. IEEE 802.16h networks typically have frames in the order of several to tens of milliseconds, which is of a granularity that could allow several to several tens of networks to negotiate coexistence subintervals within the 1 second span. Additionally, for IP networks, the 1 second interval is of a length sufficient to accommodate inter-router TCP/IP latency, especially over networks that are likely to be close to each other, such as ad-hoc LE networks.